Association of TNF-α (-308G/A) Gene Polymorphism with Circulating TNF-α Levels and Excessive Daytime Sleepiness in Adults with Coronary Artery Disease and Concomitant Obstructive Sleep Apnea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Study Oversight
2.3. Sleep Studies
2.4. Epworth Sleepiness Scale
2.5. Comorbidities
2.6. Circulating TNF-α Levels
2.7. TNF-α-308G/A (SNP Rs1800629) Genotyping
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Said, M.A.; van de Vegte, Y.; Zafar, M.M.; Van Der Ende, M.Y.; Raja, G.K.; Verweij, N.; Van Der Harst, P. Contributions of Interactions Between Lifestyle and Genetics on Coronary Artery Disease Risk. Curr. Cardiol. Rep. 2019, 21, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musunuru, K.; Kathiresan, S. Genetics of Common, Complex Coronary Artery Disease. Cell 2019, 177, 132–145. [Google Scholar] [CrossRef]
- Khera, A.V.; Kathiresan, S. Genetics of coronary artery disease: Discovery, biology and clinical translation. Nat. Rev. Genet. 2017, 18, 331–344. [Google Scholar] [CrossRef]
- Young, T.; Palta, M.; Dempsey, J.; Peppard, P.E.; Nieto, F.J.; Hla, K.M. Burden of sleep apnea: Rationale, design, and major findings of the Wisconsin Sleep Cohort study. WMJ 2009, 108, 246–249. [Google Scholar] [PubMed]
- Peker, Y.; Franklin, K.; Hedner, J. Coronary Artery Disease and Sleep Apnea. In Principals and Practice of Sleep Medicine; Kryger, M.H., Roth, T.T., Dement, W.T., Eds.; Elsevier Inc.: Philadelphia, PA, USA, 2017; pp. 1264–1270. [Google Scholar]
- Turgut Çelen, Y.; Peker, Y. Cardiovascular consequences of sleep apnea: II-Cardiovascular mechanisms. Anatol. J. Cardiol. 2010, 10, 168–175. [Google Scholar] [CrossRef]
- Hansson, G.K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 2005, 352, 1685–1695. [Google Scholar] [CrossRef] [Green Version]
- Cesari, M.; Penninx, B.W.; Newman, A.B.; Kritchevsky, S.B.; Nicklas, B.J.; Sutton-Tyrrell, K.; Rubin, S.M.; Ding, J.; Simonsick, E.M.; Harris, T.B.; et al. Inflammatory markers and onset of cardiovascular events: Results from the Health ABC study. Circulation 2003, 108, 2317–2322. [Google Scholar] [CrossRef] [Green Version]
- He, L.P.; Tang, X.Y.; Ling, W.H.; Chen, W.Q.; Chen, Y.M. Early C-reactive protein in the prediction of long-term outcomes after acute coronary syndromes: A meta-analysis of longitudinal studies. Heart 2010, 96, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Patt, B.T.; Jarjoura, D.; Haddad, D.N.; Sen, C.K.; Roy, S.; Flavahan, N.A.; Khayat, R.N. Endothelial dysfunction in the microcirculation of patients with obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2010, 182, 1540–1545. [Google Scholar] [CrossRef] [Green Version]
- Arnardottir, E.S.; Mackiewicz, M.; Gislason, T.; Teff, K.L.; Pack, A.I. Molecular signatures of obstructive sleep apnea in adults: A review and perspective. Sleep 2009, 32, 447–470. [Google Scholar] [CrossRef] [Green Version]
- Gabryelska, A.; Łukasik, Z.M.; Makowska, J.S.; Białasiewicz, P. Obstructive Sleep Apnea: From Intermittent Hypoxia to Cardiovascular Complications via Blood Platelets. Front. Neurol. 2018, 9, 635. [Google Scholar] [CrossRef] [PubMed]
- Reid, M.B.; Lännergren, J.; Westerblad, H. Respiratory and limb muscle weakness induced by tumor necrosis factor-alpha: Involvement of muscle myofilaments. Am. J. Respir. Crit. Care Med. 2002, 166, 479–484. [Google Scholar] [CrossRef]
- Boyd, J.H.; Petrof, B.J.; Hamid, Q.; Fraser, R.; Kimoff, R.J. Upper airway muscle inflammation and denervation changes in obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2004, 170, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Goodman, M.; Li, X.; Sands, S.A.; Li, J.; Stampfer, M.J.; Saxena, R.; Tworoger, S.S.; Redline, S. C-reactive Protein and Risk of OSA in Four US Cohorts. Chest 2021, 159, 2439–2448. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, R.; Molnar, J.; Madbouly, E.M.; Nida, M.; Aggarwal, S.; Sajid, H.; Naseem, J.; Loomba, R. Serum inflammatory markers in obstructive sleep apnea: A meta-analysis. J. Clin. Sleep Med. 2013, 9, 1003–1012. [Google Scholar] [CrossRef]
- Kheirandish-Gozal, L.; Gozal, D. Obstructive Sleep Apnea and Inflammation: Proof of Concept Based on Two Illustrative Cytokines. Int. J. Mol. Sci. 2019, 20, 459. [Google Scholar] [CrossRef] [Green Version]
- Ming, H.; Tian, A.; Liu, B.; Hu, Y.; Liu, C.; Chen, R.; Cheng, L. Inflammatory cytokines tumor necrosis factor-α, interleukin-8 and sleep monitoring in patients with obstructive sleep apnea syndrome. Exp. Ther. Med. 2019, 17, 1766–1770. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, S.; Saxena, R.; Palmer, L.J. The genetics of obstructive sleep apnoea. Respirology 2018, 23, 18–27. [Google Scholar] [CrossRef] [Green Version]
- Kent, B.D.; Ryan, S.; McNicholas, W.T. The genetics of obstructive sleep apnoea. Curr. Opin. Pulm. Med. 2010, 16, 536–542. [Google Scholar] [CrossRef]
- Popko, K.; Gorska, E.; Potapinska, O.; Wasik, M.; Stoklosa, A.; Plywaczewski, R.; Winiarska, M.; Gorecka, D.; Sliwinski, P.; Popko, M.; et al. Frequency of distribution of inflammatory cytokines IL-1, IL-6 and TNF-alpha gene polymorphism in patients with obstructive sleep apnea. J. Physiol. Pharmacol. 2008, 59 (Suppl. 6), 607–614. [Google Scholar]
- Bhushan, B.; Guleria, R.; Misra, A.; Luthra, K.; Vikram, N.K. TNF-alpha gene polymorphism and TNF-alpha levels in obese Asian Indians with obstructive sleep apnea. Respir. Med. 2009, 103, 386–392. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, S.P.; Guleria, R.; Vikram, N.K.; Vivekanandhan, S.; Singh, Y.; Gupta, A.K. Association of inflammatory genes in obstructive sleep apnea and non alcoholic fatty liver disease in Asian Indians residing in north India. PLoS ONE 2018, 13, e0199599. [Google Scholar] [CrossRef]
- Riha, R.L.; Brander, P.; Vennelle, M.; Mcardle, N.; Kerr, S.M.; Anderson, N.H.; Douglas, N.J. Tumour necrosis factor-α (-308) gene polymorphism in obstructive sleep apnoea–hypopnoea syndrome. Eur. Respir. J. 2005, 26, 673–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalyfa, A.; Serpero, L.D.; Kheirandish-Gozal, L.; Capdevila, O.S.; Gozal, D. TNF-α gene polymorphisms and excessive daytime sleepiness in pediatric obstructive sleep apnea. J. Pediatr. 2011, 158, 77–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, R.; Zhao, S.R.; Li, Y.; Liu, F.; Gong, Y.; Xing, J.; Xu, Z.S. Association of tumor necrosis factor-α gene polymorphisms and coronary artery disease susceptibility: A systematic review and meta-analysis. BMC Med. Genet. 2020, 21, 29. [Google Scholar] [CrossRef] [PubMed]
- Peker, Y.; Glantz, H.; Thunstrom, E.; Kallryd, A.; Herlitz, J.; Ejdeback, J. Rationale and design of the Randomized Intervention with CPAP in Coronary Artery Disease and Sleep Apnoea—RICCADSA trial. Scand. Cardiovasc. J. 2009, 43, 24–31. [Google Scholar] [CrossRef]
- Peker, Y.; Glantz, H.; Eulenburg, C.; Wegscheider, K.; Herlitz, J.; Thunstrom, E. Effect of Positive Airway Pressure on Cardiovascular Outcomes in Coronary Artery Disease Patients with Nonsleepy Obstructive Sleep Apnea. The RICCADSA Randomized Controlled Trial. Am. J. Respir. Crit. Care Med. 2016, 194, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Quan, S.F.; Gillin, J.C.; Littner, M.R.; Shepard, J.W. Sleep-related breathing disorders in adults: Recommendations for syndrome definition and measurement techniques in clinical research. Rep. Am. Acad. Sleep Med. Task Force Sleep 1999, 22, 667–689. [Google Scholar]
- Johns, M.W. A new method for measuring daytime sleepiness: The Epworth sleepiness scale. Sleep 1991, 14, 540–545. [Google Scholar] [CrossRef] [Green Version]
- WHO. Obesity: Preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ. Tech. Rep. Ser. 2000, 894, 1–253. [Google Scholar]
- Thunström, E.; Glantz, H.; Fu, M.; Yucel-Lindberg, T.; Petzold, M.; Lindberg, K.; Peker, Y. Increased inflammatory activity in nonobese patients with coronary artery disease and obstructive sleep apnea. Sleep 2015, 38, 463–471. [Google Scholar] [CrossRef] [Green Version]
- Lederer, D.J.; Bell, S.C.; Branson, R.; Chalmers, J.D.; Marshall, R.; Maslove, D.M.; Ost, D.E.; Punjabi, N.M.; Schatz, M.; Smyth, A.R.; et al. Control of Confounding and Reporting of Results in Causal Inference Studies. Guidance for Authors from Editors of Respiratory, Sleep, and Critical Care Journals. Ann. Am. Thorac. Soc. 2019, 16, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Karkucak, M.; Ursavaş, A.; Ocakoglu, G.; Gorukmez, O.; Yakut, T.; Ercan, I.; Karadağ, M. Analysis of TNF-alpha G308A and C857T Gene Polymorphisms in Turkish Patients with Obstructive Sleep Apnea Syndrome. Turk. Klin. J. Med Sci. 2012, 32, 1368–1373. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Liao, N.; Huang, Q.-P.; Xie, Z.-F. Association between Tumor Necrosis Factor-α-308G/A Polymorphism and Obstructive Sleep Apnea: A Meta-Analysis. Genet. Test. Mol. Biomark. 2012, 16, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Cao, C.; Wu, Y.; Zhang, C.; Zhu, C.; Ying, S.; Chen, Z.; Shen, H.; Li, W. TNF-α-308G/A Polymorphism Contributes to Obstructive Sleep Apnea Syndrome Risk: Evidence Based on 10 Case-Control Studies. PLoS ONE 2014, 9, e106183. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, E.; Jamialahmadi, K.; Avan, A.; Mirhafez, S.R.; Mohiti, J.; Pirhoushiaran, M.; Hosseini, N.; Mohammadi, A.; Ferns, G.A.; Pasdar, A.; et al. Association of tumor necrosis factor-α-308 G/A gene polymorphism with coronary artery diseases: An evidence-based study. J. Clin. Lab. Anal. 2018, 32, e22153. [Google Scholar] [CrossRef] [Green Version]
- Nejati, P.; Naeimipour, S.; Salehi, A.; Shahbazi, M. Association of tumor necrosis factor-alpha gene promoter polymorphism and its mRNA expression level in coronary artery disease. Meta Gene 2018, 18, 122–126. [Google Scholar] [CrossRef]
- Yuepeng, J.; Zhao, X.; Zhao, Y.; Li, L. Gene polymorphism associated with TNF-α (G308A) IL-6 (C174G) and susceptibility to coronary atherosclerotic heart disease: A meta-analysis. Medicine 2019, 98, e13813. [Google Scholar] [CrossRef]
- Li, Q.; Zheng, X. Tumor necrosis factor alpha is a promising circulating biomarker for the development of obstructive sleep apnea syndrome: A meta-analysis. Oncotarget 2017, 8, 27616–27626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thunström, E.; Glantz, H.; Yucel-Lindberg, T.; Lindberg, K.; Saygin, M.; Peker, Y. CPAP Does Not Reduce Inflammatory Biomarkers in Patients with Coronary Artery Disease and Nonsleepy Obstructive Sleep Apnea: A Randomized Controlled Trial. Sleep 2017, 40, zsx157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroeger, K.M.; Carville, K.S.; Abraham, L.J. The -308 tumor necrosis factor-alpha promoter polymorphism effects transcription. Mol. Immunol. 1997, 34, 391–399. [Google Scholar] [CrossRef]
- Cade, B.E.; Chen, H.; Stilp, A.M.; Louie, T.; Ancoli-Israel, S.; Arens, R.; Barfield, R.; Below, J.E.; Cai, J.; Redline, S.; et al. Associations of variants in the hexokinase 1 and interleukin 18 receptor regions with oxyhemoglobin saturation during sleep. PLoS Genet. 2019, 15, e1007739. [Google Scholar] [CrossRef] [PubMed]
- Szmyd, B.; Rogut, M.; Białasiewicz, P.; Gabryelska, A. The impact of glucocorticoids and statins on sleep quality. Sleep Med. Rev. 2021, 55, 101380. [Google Scholar] [CrossRef] [PubMed]
- Campbell, A.J.; Neill, A.M.; Scott, D. Clinical Reproducibility of the Epworth Sleepiness Scale for Patients with Suspected Sleep Apnea. J. Clin. Sleep Med. 2018, 14, 791–795. [Google Scholar] [CrossRef]
- Wise, M.S. Objective measures of sleepiness and wakefulness: Application to the real world? J. Clin. Neurophysiol. 2006, 23, 39–49. [Google Scholar] [CrossRef]
Eligible n = 326 | Not Eligible n = 186 | |
---|---|---|
Age, years | 64.4 (59.7–70.9) | 62.1 (57.3–69.7) |
Male sex, % | 84.0 | 82.7 |
BMI, kg/m2 | 27.8 (25.6–30.0) | 28.0 (25.4–31.0) |
Obesity, % | 24.5 | 32.4 |
WHR | 0.95 (0.92–1.00) | 0.97 (0.92–1.00) |
Abdominal obesity, % | 90.4 | 90.5 |
Current smoking, % | 16.0 | 23.2 |
ESS score | 7.0 (4.0–10.0) | 7.0 (4.0–10.0) |
EDS (ESS score ≥ 10), % | 32.5 | 30.8 |
OSA (AHI ≥ 15 events/h), % | 78.5 | 77.3 |
AHI, events/h | 22.1 (15.6–34.3) | 20.7 (15.4–30.8) |
ODI, events/h | 11.1 (4.4–21.3) | 10.0 (3.4–19.5) |
Hypertension, % | 56.7 | 60.5 |
Lung disease, % | 7.1 | 12.4 |
Diabetes, % | 20.2 | 25.4 |
Stroke, % | 6.2 | 7.6 |
Depression, % | 3.5 | 7.3 |
Statin use, % | 95.9 | 91.2 |
Plasma TNF-α (pg/mL) | 5.01 (3.31–6.85) | 4.82 (3.33–7.21) |
GG n = 191 | GA n = 115 | AA n = 20 | |
---|---|---|---|
Age, years | 64.4 (59.0–70.9) | 64.8 (60.3–71.1) | 66.6 (59.2–71.8) |
Male sex, % | 84.8 | 82.6 | 85.0 |
BMI, kg/m2 | 27.5 (25.6–30.1) | 27.5 (25.7–29.7) | 29.0 (26.3–30.9) |
Obesity, % | 25.1 | 22.6 | 30.0 |
WHR | 0.95 (0.91–0.99) | 0.95 (0.92–1.00) | 0.97 (0.92–1.00) |
Abdominal obesity, % | 89.5 | 90.3 | 100 |
Current smoking, % | 16.2 | 15.7 | 15.0 |
ESS score | 8.0 (4.0–10.7) | 7.0 (4.0–10.0) | 7.0 (4.0–10.0) |
EDS (ESS score ≥ 10), % | 36.6 | 27.0 | 25.0 |
OSA (AHI ≥ 15 events/h), % | 80.6 | 75.7 | 75.0 |
AHI, events/h | 22.5 (15.9–34.9) | 22.2 (9.9–33.1) | 21.7 (4.9–39.2) |
ODI, events/h | 11.2 (4.8–21.7) | 10.2 (3.9–20.2) | 12.5 (3.9–26.4) |
Hypertension | 55.5 | 57.4 | 65.0 |
Lung disease, % | 8.9 | 5.2 | 0 |
Diabetes, % | 21.5 | 17.4 | 25.0 |
Stroke, % | 6.8 | 5.3 | 5.0 |
Depression, % | 4.3 | 1.8 | 5.0 |
Statin use, % | 97.3 | 94.6 | 89.5 |
Plasma TNF-α (pg/mL) | 4.95 (3.25–6.85) | 5.26 (3.90–7.60) | 5.05 (2.87–6.36) |
Standardized β | 95% Confidence Interval for | p Values | ||
---|---|---|---|---|
Lower Bound | Upper Bound | |||
TNF-α A Allele | 0.09 | 0.07 | 1.90 | 0.034 |
TNF-α Genotypes * | 0.13 | 0.13 | 1.90 | 0.024 |
Age, years | 0.07 | −0.02 | 0.11 | 0.201 |
Male sex | 0.06 | −0.67 | 2.31 | 0.279 |
BMI, kg/m2 | 0.03 | −0.10 | 0.18 | 0.607 |
Obesity | −0.00 | −1.27 | 1.25 | 0.988 |
WHR | −0.03 | −2.08 | 1.23 | 0.613 |
AHI, events/h | 0.08 | −0.01 | 0.05 | 0.180 |
ODI, events/h | 0.11 | 0.00 | 0.08 | 0.049 |
OSA, (AHI ≥ 15 events/h) | 0.02 | −1.10 | 1.55 | 0.739 |
ESS score | 0.07 | −0.5 | 0.23 | 0.188 |
EDS, (ESS score ≥ 10) | 0.03 | −0.82 | 1.49 | 0.570 |
Current smoking | 0.06 | −0.70 | 2.27 | 0.300 |
Hypertension | 0.07 | −0.39 | 1.80 | 0.207 |
Diabetes | −0.00 | −1.38 | 1.33 | 0.975 |
Stroke | −0.02 | −2.51 | 1.78 | 0.729 |
Lung disease | 0.00 | −2.11 | 2.21 | 0.963 |
Depression | −0.04 | −4.14 | 1.90 | 0.466 |
Standardized β | 95% Confidence Interval for | p Values | |||
---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||
Model 1 | Genotypes * | 0.12 | 0.07 | 1.99 | 0.035 |
ODI | 0.02 | 0.00 | 0.09 | 0.028 | |
Age | 0.03 | −0.04 | 0.10 | 0.962 | |
Male sex | 0.80 | −0.80 | 2.40 | 0.981 | |
WHR | −0.52 | −2.20 | 1.16 | 0.541 | |
Model 2 | Genotypes * | 0.12 | 0.08 | 1.94 | 0.034 |
ODI | 0.11 | −0.00 | 0.09 | 0.072 | |
Age | 0.06 | −0.03 | 0.11 | 0.294 | |
Male sex | 0.04 | −0.99 | 2.10 | 0.484 | |
BMI | −0.00 | −0.17 | 0.15 | 0.931 | |
Model 3 | TNF-α A allele | 0.08 | 0.00 | 2.00 | 0.048 |
ODI | 0.14 | 0.02 | 0.09 | 0.001 | |
Age | 0.06 | −0.02 | 0.09 | 0.170 | |
Male sex | 0.06 | −0.34 | 2.00 | 0.162 | |
WHR | −0.33 | −1.68 | 0.72 | 0.432 | |
Model 4 | TNF-α A allele | 0.08 | 0.02 | 1.97 | 0.045 |
ODI | 0.12 | 0.12 | 0.08 | 0.008 | |
Age | 0.07 | −0.01 | 0.09 | 0.124 | |
Male sex | 0.04 | −0.55 | 1.72 | 0.312 | |
BMI | −0.00 | −0.12 | 0.12 | 0.989 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Behboudi, A.; Thelander, T.; Yazici, D.; Celik, Y.; Yucel-Lindberg, T.; Thunström, E.; Peker, Y. Association of TNF-α (-308G/A) Gene Polymorphism with Circulating TNF-α Levels and Excessive Daytime Sleepiness in Adults with Coronary Artery Disease and Concomitant Obstructive Sleep Apnea. J. Clin. Med. 2021, 10, 3413. https://doi.org/10.3390/jcm10153413
Behboudi A, Thelander T, Yazici D, Celik Y, Yucel-Lindberg T, Thunström E, Peker Y. Association of TNF-α (-308G/A) Gene Polymorphism with Circulating TNF-α Levels and Excessive Daytime Sleepiness in Adults with Coronary Artery Disease and Concomitant Obstructive Sleep Apnea. Journal of Clinical Medicine. 2021; 10(15):3413. https://doi.org/10.3390/jcm10153413
Chicago/Turabian StyleBehboudi, Afrouz, Tilia Thelander, Duygu Yazici, Yeliz Celik, Tülay Yucel-Lindberg, Erik Thunström, and Yüksel Peker. 2021. "Association of TNF-α (-308G/A) Gene Polymorphism with Circulating TNF-α Levels and Excessive Daytime Sleepiness in Adults with Coronary Artery Disease and Concomitant Obstructive Sleep Apnea" Journal of Clinical Medicine 10, no. 15: 3413. https://doi.org/10.3390/jcm10153413
APA StyleBehboudi, A., Thelander, T., Yazici, D., Celik, Y., Yucel-Lindberg, T., Thunström, E., & Peker, Y. (2021). Association of TNF-α (-308G/A) Gene Polymorphism with Circulating TNF-α Levels and Excessive Daytime Sleepiness in Adults with Coronary Artery Disease and Concomitant Obstructive Sleep Apnea. Journal of Clinical Medicine, 10(15), 3413. https://doi.org/10.3390/jcm10153413