Reliability of Pelvic Floor Muscle Assessment with Transabdominal Ultrasound in Young Nulliparous Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. USG of the Pelvic Floor Muscles
2.4. Ultrasound Image Analysis
- -
- horizontal tangent (S) and the highest point at the middle of the bladder base (MC),
- -
- horizontal tangent (S) and the lowest point of the bladder base to the left (LC) and right (RC) of the MC point,
- -
- the distance between the MC to LC and MC to RC points was measured and then, the mean value from two images was calculated. This procedure allowed marking of the three points on the bladder base on resting images at the same location, and to calculate the reliability of resting evaluation at the same points as the reliability of contraction.
- -
- horizontal tangent (S) and the highest point at the middle of the bladder base (MR),
- -
- horizontal tangent (S) and the LR point—located at the base of the bladder to the left of the MR point corresponding to the distance between the points MC–LC on the images from contraction,
- -
- horizontal tangent (S) and the RR point—located at the base of the bladder to the right of the MR point corresponding to the distance between the points MC –RC on the images from contraction.
2.5. Statistical Analysis
3. Results
3.1. The Intra-Rater Reliability of PFM USG at Rest
3.2. The Intra-Rater Reliability of PFM USG during Contraction
3.3. The Test–Retest Reliability of PFM USG at Rest
3.4. The Test-Retest Reliability of PFM USG during Contraction
3.5. The Inter-Rater Reliability of PFM USG at Rest
3.6. The Inter-Rater Reliability of PFM USG during Contraction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Retzkyv, S.S.; Rogers, R.M. Urinary incontinence in women. Clin. Symp. 1995, 47, 2–32. [Google Scholar]
- Sherburn, M.; Bø, K. Evaluation of female pelvic-floor muscle function and strengh. Phys. Ther. 2005, 85, 269–282. [Google Scholar]
- Pool-Goudzwaard, A.L.; Slieker ten Hove, M.C.; Vierhout, M.E.; Mulder, P.H.; Pool, J.J.; Snijders, C.J.; Stoeckart, R. Relations between pregnancy-related low back pain, pelvic floor activity and pelvic floor dysfunction. Int. Urogynecol. J. 2005, 16, 468–474. [Google Scholar] [CrossRef]
- Smith, M.D.; Russell, A.; Hodges, P.W. Is there a relationship between parity, pregnancy, back pain and incontinence? Int. Urogynecol. J. 2008, 19, 205–211. [Google Scholar] [CrossRef]
- Lee, D.G.; Lee, L.J.; McLaughlin, L. Stability, continence and breathing: The role of fascia following pregnancy and delivery. J. Bodyw. Mov. Ther. 2008, 12, 333–348. [Google Scholar] [CrossRef]
- Hodges, P.W.; Eriksson, A.E.M.; Shirley, D.; Gandevia, S.C. Intraabdominal pressure increases stiffness of the lumbar spine. J. Biomech. 2005, 38, 1873–1880. [Google Scholar] [CrossRef]
- Sapsford, R. Rehabilitation of pelvic floor muscle utilizing trunk stabilization. Man. Ther. 2004, 9, 3–12. [Google Scholar] [CrossRef]
- Chehrehrazi, M.; Arab, A.M.; Karimi, N.; Zargham, M. Assessment of pelvic floor muscle contraction in stress urinary incontinent women: Comprasion between transabdominal ultrasound and perinometry. Int. Urogynecol. J. Pelvic Floor Dysfunct. 2009, 20, 1491–1496. [Google Scholar] [CrossRef]
- Finamore, P.S.; Goldstein, H.B.; Whitmore, K.E. Pelvic Floor Muscle Dysfunction. J. Pelvic Med. Surg. 2008, 14, 417–422. [Google Scholar] [CrossRef]
- Messelink, B.; Benson, T.; Berghmans, B.; Corcos, J.; Bø, K.; Fowler, C.; Laycock, J.; Huat-Chye Lim, P.; Lunsen, R.; Lycklama a Nijeholt, G.; et al. Standarization of Terminology of Pelvic Floor Muscle Function and Dysfunction: Report From the Pelvic Floor Clinical Assessment Group of Internationl Continence Society. Neurourol. Urodyn. 2005, 24, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Sapsford, R. The pelvic floor: A Clinical model for function and rehabilitation. Physiotherapy 2001, 87, 620–630. [Google Scholar] [CrossRef]
- Whittaker, J. Abdominal ultrasound imagine of pelvic floor muscle function in individuals with low back pain. J. Man. Manip. Ther. 2004, 14, 44–49. [Google Scholar] [CrossRef]
- Laycock, J.; Jerwood, D. Development of the Bradford perinometer. Physiotherapy 1994, 80, 139–142. [Google Scholar] [CrossRef]
- Auchincloss, C.C.; McLean, L. The reliability of Surface EMG recorded from pelvic floor muscle. J. Neurosci. Methods 2009, 182, 85–96. [Google Scholar] [CrossRef]
- Thompson, J.A.; O’Sullivan, P.B.; Briffa, K.; Neumann, P.; Court, S. Assessment of pelvic floor movement using transabdominal and transperineal ultrasound. Int. Urogynecol. J. 2005, 16, 285–292. [Google Scholar] [CrossRef]
- Oleksy, Ł.; Mika, A.; Kielnar, R.; Grzegorczyk, J.; Marchewka, A. The use of transabdominal ultrasound in pelvic floor muscle evaluation in Physiotherapy. Inżynieria Biomed. 2017, 23, 270–277. [Google Scholar]
- Aukee, P.; Usenius, J.P.; Kirkinen, P. An evaluation of pelvic floor anatomy and function by MRI. Eur. J. Obstet. Gynecol. Reprod. Biol. 2004, 112, 84–88. [Google Scholar] [CrossRef]
- Arab, A.M.; Behbahani, R.B.; Lorestani, L.; Azari, A. Assessment of pelvic floor muscle function in women with and without low back pain using transabdominal ultrasound. Man. Ther. 2010, 15, 235–239. [Google Scholar] [CrossRef]
- Moser, H.; Luginbuehl, H.; Baeyens, J.P.; Radlinger, L. Reliability and validity of pelvic floor muscle displacement measurement during voluntary contractions. Int. Urogynecol. J. 2019, 30, 2093–2100. [Google Scholar] [CrossRef]
- Khorasani, B.; Arab, A.M.; Giliani, M.A.S.; Samadi, V.; Assadi, H. Transabdominal Ultrasound Measurement of Pelvic Floor Muscle Mobility in Men with and Without Chronic Prostatic/Chronic Pelvic Pain Syndrome. Urology 2012, 80, 673–677. [Google Scholar] [CrossRef]
- Murphy, C.; Sherburn, M.; Allen, T. Investigation of transabdominal diagnostic ultrasound as a clinical tool and outcome measure in the conservative management of pelvic floor dysfunction. In Proceedings of the International Continence Society Meeting, Heidelberg, Germany, 28–30 August 2002. [Google Scholar]
- Sherburn, M.; Murphy, C.A.; Carroll, S.; Allen, T.J.; Galea, M.P. Investigation of transabdominal real-time ultrasound to visualize the muscles of the pelvic floor. Aust. J. Physiother. 2005, 51, 167–170. [Google Scholar] [CrossRef] [Green Version]
- Hides, J.; Richardson, C.; Jull, G.; Davies, S. Ultrasound imaging in rehabilitation. Aust. J. Physiother. 1995, 41, 187–193. [Google Scholar] [CrossRef] [Green Version]
- Whittaker, J.L. Ultrasound Imaging for Rehabilitation of the Lumbopelvic Region: A Clinical Approach; Elsevier Health Sciences: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.G. The Pelvic Girdle: An approach to the examination and treatment of the lumbo-pelvic-hip region 3rd. Edinburgh. Churchill Livingstone 2004, 171, 173–174. [Google Scholar]
- Romero-Culleres, G.; Pena-Pitarch, E.; Jena-Feixas, C.; Arnau, A.; Montesinos, J.; Abenoza-Guardiola, M. Intra-Rater Reliability and Diagnostic Accuracy of a New Vaginal Dynamometer to Measure Pelvic Floor Muscle Strength in Women with Urinary Incontinence. Neurourol. Urodynam. 2015, 36, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Brazalez, B.N.; Torres-Lacomba, M.; De la Villa, P.; Sanchez-Sanchez, B.; Prieto-Gomez, V.; Del Barco, A.A.; McLean, L. The evaluation of pelvic floor muscle strength in women with pelvic floor dysfunction: A reliability and correlation study. Neurourol. Urodynam. 2018, 37, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.H.; Barbosa, P.B.; De Oliveira Souza, F.; Antonio, F.I.; Franco, M.M.; Bø, K. Inter-rater reliability study of the modified Oxford Grading Scale and the Peritron manometer. Physiotherapy 2011, 97, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Martinho, N.M.; Maques, J.; Silva, V.R.; Silva, S.L.; Carvahlo, L.C.; Botelho, S. Intra and inter-rater reliability study of pelvic floor muscle dynamometric measurement. Braz. J. Phys. Ther. 2015, 19, 97–104. [Google Scholar] [CrossRef]
- Hundley, A.F.; Wu, J.M.; Visco, A.G. A comprasion of perineometer to Brink score for assessment of pelvic floor muscle strengh. Am. J. Obstet. Gynecol. 2005, 192, 1538–1591. [Google Scholar] [CrossRef]
- Oleksy, Ł.; Mika, A.; Sulowska-Daszyk, I.; Rosłoniec, E.; Kielnar, R.; Stolarczyk, A. The Reliability of Pelvic Floor Muscle Bioelectrical Activity (sEMG) Assessment Using a Multi-Activity Measurement Protocol in Young Women. Int. J. Environ. Res. Public. Health 2021, 18, 765. [Google Scholar] [CrossRef]
- Mabrouk, M.; Raimondo, D.; Del Forno, S.; Baruffini, F.; Arena, A.; Benfenati, A.; Youssef, A.; Martelli, V.; Seracchioli, R. Pelvic floor muscle assessment on three- and four-dimensional transperineal ultrasound in women with ovarian endometriosis with or without retroperitoneal infiltration: A step towards complete functional assessment. Ultrasound Obs. Gynecol. 2018, 52, 265–268. [Google Scholar] [CrossRef]
- Mabrouk, M.; Raimondo, D.; Parisotto, M.; Del Forno, S.; Arena, A.; Seracchioli, R. Pelvic floor dysfunction at transperineal ultrasound and voiding alteration in women with posterior deep endometriosis. Int. Urogynecol. J. 2019, 30, 1527–1532. [Google Scholar] [CrossRef] [PubMed]
Outcome Measure | ICC | r | Mean ± SD (1) | 95% CI (1) | CV (%) (1) | Mean ± SD (2) | 95% CI (2) | CV (%) (2) |
---|---|---|---|---|---|---|---|---|
Day 1; Middle (mm) | 0.99 | 0.98 * | 4.97 ± 1.6 | 4.36–5.58 | 32.8 | 4.99 ± 1.5 | 4.41–5.58 | 31.4 |
Day 1; Left (mm) | 0.99 | 0.98 * | 4.91 ± 1.4 | 4.36–5.46 | 29.8 | 4.90 ± 1.4 | 4.37–5.44 | 29.1 |
Day 1; Right (mm) | 0.99 | 0.98 * | 5.29 ± 1.6 | 4.67–5.91 | 31.2 | 5.33 ± 1.5 | 4.73–5.92 | 29.9 |
Day 2; Middle (mm) | 0.99 | 0.98 * | 5.83 ± 1.7 | 5.17–6.49 | 30.2 | 5.95 ± 1.6 | 5.32–6.58 | 28.3 |
Day 2; Left (mm) | 0.99 | 0.98 * | 5.71 ± 1.5 | 5.14–6.28 | 26.7 | 5.78 ± 1.4 | 5.23–6.34 | 25.7 |
Day 2; Right (mm) | 0.98 | 0.97 * | 5.95 ± 1.6 | 5.32–6.58 | 28.3 | 6.06 ± 1.5 | 5.49–6.64 | 25.4 |
Outcome Measure | ICC | r | Mean ± SD (1) | 95% CI (1) | CV (%) (1) | Mean ± SD (2) | 95% CI (2) | CV (%) (2) |
---|---|---|---|---|---|---|---|---|
Day 1; Middle (mm) | 0.98 | 0.97 * | 5.05 ± 1.5 | 4.47–5.64 | 30.9 | 5.18 ± 1.7 | 4.52–5.84 | 34.1 |
Day 1; Left (mm) | 0.97 | 0.96 * | 5.11 ± 1.3 | 4.61–5.62 | 26.4 | 5.22 ± 1.5 | 4.66–5.79 | 29.0 |
Day 1; Right (mm) | 0.98 | 0.97 * | 5.52 ± 1.6 | 4.90–6.13 | 29.7 | 5.73 ± 1.8 | 5.03–6.43 | 32.7 |
Day 2; Middle (mm) | 0.98 | 0.97 * | 5.87 ± 1.6 | 5.28–6.47 | 27.3 | 5.89 ± 1.6 | 5.26–6.52 | 28.5 |
Day 2; Left (mm) | 0.98 | 0.95 * | 5.92 ± 1.3 | 5.42–6.42 | 22.9 | 5.93 ± 1.3 | 5.43–6.43 | 22.4 |
Day 2; Right (mm) | 0.98 | 0.96 * | 6.25 ± 1.4 | 5.71–6.79 | 23.0 | 6.28 ± 1.4 | 5.75–6.81 | 22.6 |
Outcome Measure | ICC | r | Mean ± SD (1) | 95% CI (1) | CV (%) (1) | Mean ± SD (2) | 95% CI (2) | CV (%) (2) |
---|---|---|---|---|---|---|---|---|
Trial 1; Middle (mm) | 0.61 | 0.44 * | 4.97 ± 1.6 | 4.36–5.58 | 32.8 | 5.83 ± 1.7 | 5.17–6.49 | 30.2 |
Trial 1; Left (mm) | 0.56 | 0.39 * | 4.91 ± 1.4 | 4.36–5.46 | 29.8 | 5.71 ± 1.5 | 5.14–6.28 | 26.7 |
Trial 1; Right (mm) | 0.62 | 0.45 * | 5.29 ± 1.6 | 4.67–5.91 | 31.2 | 5.95 ± 1.6 | 5.32–6.58 | 28.3 |
Trial 2; Middle (mm) | 0.61 | 0.44 * | 4.99 ± 1.5 | 4.41–5.58 | 31.4 | 5.95 ± 1.6 | 5.32–6.58 | 28.3 |
Trial 2; Left (mm) | 0.54 | 0.37 * | 4.90 ± 1.4 | 4.37–5.44 | 29.1 | 5.78 ± 1.4 | 5.23–6.34 | 25.7 |
Trial 2; Right (mm) | 0.58 | 0.41 * | 5.33 ± 1.5 | 4.73–5.92 | 29.9 | 6.06 ± 1.5 | 5.49–6.64 | 25.4 |
Outcome Measure | ICC | r | Mean ± SD (1) | 95% CI (1) | CV (%) (1) | Mean ± SD (2) | 95% CI (2) | CV (%) (2) |
---|---|---|---|---|---|---|---|---|
Trial 1; Middle (mm) | 0.50 | 0.33 | 5.05 ± 1.5 | 4.47–5.64 | 30.9 | 5.87 ± 1.6 | 5.28–6.47 | 27.3 |
Trial 1; Left (mm) | 0.25 | 0.19 | 5.11 ± 1.3 | 4.61–5.62 | 26.4 | 5.92 ± 1.3 | 5.42–6.42 | 22.9 |
Trial 1; Right (mm) | 0.27 | 0.21 | 5.52 ± 1.6 | 4.90–6.13 | 29.7 | 6.25 ± 1.4 | 5.71–6.79 | 23.0 |
Trial 2; Middle (mm) | 0.44 | 0.28 | 5.18 ± 1.7 | 4.52–5.84 | 34.1 | 5.89 ± 1.6 | 5.26–6.52 | 28.5 |
Trial 2; Left (mm) | 0.23 | 0.19 | 5.22 ± 1.5 | 4.66–5.79 | 29.0 | 5.93 ± 1.3 | 5.43–6.43 | 22.4 |
Trial 2; Right (mm) | 0.22 | 0.17 | 5.73 ± 1.8 | 5.03–6.43 | 32.7 | 6.28 ± 1.4 | 5.75–6.81 | 22.6 |
Outcome Measure | ICC | r | Mean ± SD (1) | 95% CI (1) | CV (%) (1) | Mean ± SD (2) | 95% CI (2) | CV (%) (2) |
---|---|---|---|---|---|---|---|---|
Trial 1; Middle (mm) | 0.96 | 0.93 * | 5.83 ± 1.7 | 5.17–6.49 | 30.2 | 6.07 ± 1.5 | 5.49–6.64 | 25.2 |
Trial 1; Left (mm) | 0.95 | 0.91 * | 5.71 ± 1.5 | 5.14–6.28 | 26.7 | 5.99 ± 1.3 | 5.48–6.50 | 22.7 |
Trial 1; Right (mm) | 0.95 | 0.92 * | 5.95 ± 1.6 | 5.32–6.58 | 28.3 | 6.18 ± 1.4 | 5.64–6.72 | 23.3 |
Trial 2; Middle (mm) | 0.95 | 0.93 * | 5.95 ± 1.6 | 5.32–6.58 | 28.3 | 6.07 ± 1.4 | 5.54–6.60 | 23.4 |
Trial 2; Left (mm) | 0.95 | 0.92 * | 5.78 ± 1.4 | 5.23–6.34 | 25.7 | 5.93 ± 1.2 | 5.46–6.41 | 21.3 |
Trial 2; Right (mm) | 0.95 | 0.91 * | 6.06 ± 1.5 | 5.49–6.64 | 25.4 | 6.2 ± 1.4 | 5.66–6.73 | 23.1 |
Outcome Measure | ICC | r | Mean ± SD (1) | 95% CI (1) | CV (%) (1) | Mean ± SD (2) | 95% CI (2) | CV (%) (2) |
---|---|---|---|---|---|---|---|---|
Trial 1; Middle (mm) | 0.87 | 0.78* | 5.87 ± 1.6 | 5.28–6.47 | 27.3 | 6.02 ± 1.3 | 5.68–6.71 | 22.3 |
Trial 1; Left (mm) | 0.86 | 0.76* | 5.92 ± 1.3 | 5.42–6.42 | 22.9 | 6.26 ± 1.1 | 5.83–6.70 | 18.6 |
Trial 1; Right (mm) | 0.82 | 0.70* | 6.25 ± 1.4 | 5.71–6.79 | 23.0 | 6.39 ± 1.4 | 5.86–6.92 | 22.0 |
Trial 2; Middle (mm) | 0.87 | 0.80* | 5.89 ± 1.6 | 5.26–6.52 | 28.5 | 6.24 ± 1.3 | 5.73–6.74 | 21.6 |
Trial 2; Left (mm) | 0.81 | 0.71* | 5.93 ± 1.3 | 5.43–6.43 | 22.4 | 6.26 ± 1.0 | 5.86–6.65 | 16.8 |
Trial 2; Right (mm) | 0.82 | 0.70* | 6.28 ± 1.4 | 5.75–6.81 | 22.6 | 6.49 ± 1.4 | 5.94–7.04 | 22.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zając, B.; Sulowska-Daszyk, I.; Mika, A.; Stolarczyk, A.; Rosłoniec, E.; Królikowska, A.; Rzepko, M.; Oleksy, Ł. Reliability of Pelvic Floor Muscle Assessment with Transabdominal Ultrasound in Young Nulliparous Women. J. Clin. Med. 2021, 10, 3449. https://doi.org/10.3390/jcm10153449
Zając B, Sulowska-Daszyk I, Mika A, Stolarczyk A, Rosłoniec E, Królikowska A, Rzepko M, Oleksy Ł. Reliability of Pelvic Floor Muscle Assessment with Transabdominal Ultrasound in Young Nulliparous Women. Journal of Clinical Medicine. 2021; 10(15):3449. https://doi.org/10.3390/jcm10153449
Chicago/Turabian StyleZając, Bartosz, Iwona Sulowska-Daszyk, Anna Mika, Artur Stolarczyk, Ewelina Rosłoniec, Aleksandra Królikowska, Marian Rzepko, and Łukasz Oleksy. 2021. "Reliability of Pelvic Floor Muscle Assessment with Transabdominal Ultrasound in Young Nulliparous Women" Journal of Clinical Medicine 10, no. 15: 3449. https://doi.org/10.3390/jcm10153449
APA StyleZając, B., Sulowska-Daszyk, I., Mika, A., Stolarczyk, A., Rosłoniec, E., Królikowska, A., Rzepko, M., & Oleksy, Ł. (2021). Reliability of Pelvic Floor Muscle Assessment with Transabdominal Ultrasound in Young Nulliparous Women. Journal of Clinical Medicine, 10(15), 3449. https://doi.org/10.3390/jcm10153449