Dietary and Physical Activity Habits in Adolescent Girls with Polycystic Ovary Syndrome (PCOS)-HAstudy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Nutritional Evaluation and Anthropometric Assessment
2.3. Biochemical Parameters
2.4. Physical Activity Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
Physical Activity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naz, M.S.G.; Tehrani, F.R.; Majd, H.A.; Ahmadi, F.; Ozgoli, G.; Fakari, F.R.; Ghasemi, V. The prevalence of polycystic ovary syndrome in adolescents: A systematic review and meta-analysis. Int. J. Reprod. Biomed. 2019, 17, 533–542. [Google Scholar] [CrossRef]
- Sam, S.; Dunaif, A. Polycystic ovary syndrome: Syndrome XX? Trends Endocrinol. Metab. 2003, 14, 365–370. [Google Scholar] [CrossRef]
- Zhao, X.; Jiang, Y.; Xi, H.; Chen, L.; Feng, X. Exploration of the Relationship Between Gut Microbiota and Polycystic Ovary Syndrome (PCOS): A Review. Geburtshilfe Frauenheilkd. 2020, 80, 161–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodman, N.F.; Cobin, R.H.; Futterweit, W.; Glueck, J.S.; Legro, R.; Carmina, E. American Association of Clinical Endocrinologists, American College of Endocrinology, and Androgen Excess and PCOS Society Disease State Clinical Review: Guide to the Best Practices in the Evaluation and Treatment of Polycystic Ovary Syndrome—Part 1. Endocr. Pract. 2015, 21, 1291–1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khashchenko, E.; Vysokikh, M.; Uvarova, E.; Krechetova, L.; Vtorushina, V.; Ivanets, T.; Volodina, M.; Tarasova, N.; Sukhanova, I.; Sukhikh, G. Activation of Systemic Inflammation and Oxidative Stress in Adolescent Girls with Polycystic Ovary Syndrome in Combination with Metabolic Disorders and Excessive Body Weight. J. Clin. Med. 2020, 9, 1399. [Google Scholar] [CrossRef] [PubMed]
- Wendland, N.; Opydo-Szymaczek, J.; Mizgier, M.; Jarząbek-Bielecka, G. Subgingival microflora in adolescent females with polycystic ovary syndrome and its association with oral hygiene, gingivitis, and selected metabolic and hormonal parameters. Clin. Oral Investig. 2021, 25, 1485–1496. [Google Scholar] [CrossRef] [PubMed]
- Wendland, N.; Opydo-Szymaczek, J.; Formanowicz, D.; Blacha, A.; Jarząbek-Bielecka, G.; Mizgier, M. Association between metabolic and hormonal profile, proinflammatory cytokines in saliva and gingival health in adolescent females with polycystic ovary syndrome. BMC Oral Health 2021, 21, 193. [Google Scholar] [CrossRef]
- Deans, R. Polycystic Ovary Syndrome in Adolescence. Med. Sci. 2019, 7, 101. [Google Scholar] [CrossRef] [Green Version]
- Rosenfield, R.L.; Ehrmann, D.A. The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypothesis of PCOS as Functional Ovarian Hyperandrogenism Revisited. Endocr. Rev. 2016, 37, 467–520. [Google Scholar] [CrossRef]
- Rosenfield, R.L. The Diagnosis of Polycystic Ovary Syndrome in Adolescents. Pediatrics 2015, 136, 1154–1165. [Google Scholar] [CrossRef] [Green Version]
- Kumari, S.; Pankaj, S.; Kavita, K.; Choudhary, V.; Raghwendra, K.H. Study of Adolescent Girls with Irregularities for Polycystic Ovaries and Insulin Resistance. J. Evol. Med. Dent. Sci. 2015, 4, 5472–5483. [Google Scholar] [CrossRef]
- Dumesic, D.A.; Oberfield, S.E.; Stener-Victorin, E.; Marshall, J.C.; Laven, J.S.; Legro, R.S. Scientific Statement on the Diagnostic Criteria, Epidemiology, Pathophysiology, and Molecular Genetics of Polycystic Ovary Syndrome. Endocr. Rev. 2015, 36, 487–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciebiera, M.; Esfandyari, S.; Siblini, H.; Prince, L.; Elkafas, H.; Wojtyła, C.; Al-Hendy, A.; Ali, M. Nutrition in Gynecological Diseases: Current Perspectives. Nutrients 2021, 13, 1178. [Google Scholar] [CrossRef]
- Greenwood, E.A.; Kao, C.-N.; Cedars, M.I.; Huddleston, H.G. On your feet: Is sitting time linked to adverse metabolic profiles in polycystic ovary syndrome, independent of exercise? Fertil. Steril. 2017, 107, e40–e41. [Google Scholar] [CrossRef] [Green Version]
- Moran, L.J.; Tassone, E.C.; Boyle, J.; Brennan, L.; Harrison, C.L.; Hirschberg, A.L.; Lim, S.; Marsh, K.; Misso, M.L.; Redman, L.; et al. Evidence summaries and recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome: Lifestyle management. Obes. Rev. 2020, 21, e13046. [Google Scholar] [CrossRef]
- Teede, H.J.; Misso, M.L.; Costello, M.F.; Dokras, A.; Laven, J.; Moran, L.; Piltonen, T.; Norman, R.J. International PCOS Network. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum. Reprod. 2018, 33, 1602–1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamets, K.; Taylor, D.S.; Kunselman, A.; Demers, L.M.; Pelkman, C.L.; Legro, R.S. A randomized trial of the effects of two types of short-term hypocaloric diets on weight loss in women with polycystic ovary syndrome. Fertil. Steril. 2004, 81, 630–637. [Google Scholar] [CrossRef]
- Altieri, P.; Cavazza, C.; Pasqui, F.; Morselli, A.M.; Gambineri, A.; Pasquali, R. Dietary habits and their relationship with hormones and metabolism in overweight and obese women with polycystic ovary syndrome. Clin. Endocrinol. 2012, 78, 52–59. [Google Scholar] [CrossRef]
- Teede, H.J.; Joham, A.E.; Paul, E.; Moran, L.; Loxton, D.; Jolley, D.; Lombard, C. Longitudinal weight gain in women identified With polycystic ovary syndrome: Results of an observational study in young women. Obesity 2013, 21, 1526–1532. [Google Scholar] [CrossRef] [PubMed]
- Eleftheriadou, M.; Michala, L.; Stefanidis, K.; Iliadis, I.; Lykeridou, A.; Antsaklis, A. Exercise and Sedentary Habits Among Adolescents with PCOS. J. Pediatr. Adolesc. Gynecol. 2012, 25, 172–174. [Google Scholar] [CrossRef] [PubMed]
- Mizgier, M.; Jarząbek-Bielecka, G.; Opydo-Szymaczek, J.; Wendland, N.; Więckowska, B.; Kędzia, W. Risk Factors of Overweight and Obesity Related to Diet and Disordered Eating Attitudes in Adolescent Girls with Clinical Features of Polycystic Ovary Syndrome. J. Clin. Med. 2020, 9, 3041. [Google Scholar] [CrossRef] [PubMed]
- Mizgier, M.; Jarząbek-Bielecka, G.; Wendland, N.; Jodłowska-Siewert, E.; Nowicki, M.; Brożek, A.; Kędzia, W.; Formanowicz, D.; Opydo-Szymaczek, J. Relation between Inflammation, Oxidative Stress, and Macronutrient Intakes in Normal and Excessive Body Weight Adolescent Girls with Clinical Features of Polycystic Ovary Syndrome. Nutrients 2021, 13, 896. [Google Scholar] [CrossRef]
- Stepto, N.K.; Patten, R.K.; Tassone, E.C.; Misso, M.L.; Brennan, L.; Boyle, J.; Boyle, R.A.; Harrison, C.L.; Hirschberg, A.L.; Marsh, K.; et al. Exercise Recommendations for Women with Polycystic Ovary Syndrome: Is the Evidence Enough? Sports Med. 2019, 49, 1143–1157. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, M.; Hadi, A.; Pierson, R.A.; Lujan, M.E.; Zello, G.A.; Chilibeck, P.D. Effects of Dietary Glycemic Index and Glycemic Load on Cardiometabolic and Reproductive Profiles in Women with Polycystic Ovary Syndrome: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Adv. Nutr. 2021, 12, 161–178. [Google Scholar] [CrossRef]
- Azadi-Yazdi, M.; Karimi-Zarchi, M.; Salehi-Abargouei, A.; Fallahzadeh, H.; Nadjarzadeh, A. Effects of Dietary Approach to Stop Hypertension diet on androgens, antioxidant status and body composition in overweight and obese women with polycystic ovary syndrome: A randomised controlled trial. J.Hum. Nutr.Diet. 2017, 3, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Toscani, M.K.; Mario, F.M.; Bagatini, S.R.; Wiltgen, D.; Matos, M.C.; Spritzer, P.M. Effect of high-protein or normal-protein diet on weight loss, body composition, hormone, and metabolic profile in southern Brazilian women with polycystic ovary syndrome: A randomized study. Gynecol. Endocrinol. 2011, 27, 925–930. [Google Scholar] [CrossRef]
- Asemi, Z.; Samimi, M.; Tabassi, Z.; Shakeri, H.; Sabihi, S.-S.; Esmaillzadeh, A. Effects of DASH diet on lipid profiles and biomarkers of oxidative stress in overweight and obese women with polycystic ovary syndrome: A randomized clinical trial. Nutrition 2014, 30, 1287–1293. [Google Scholar] [CrossRef]
- Johnston, B.C.; Kanters, S.; Bandayrel, K.; Wu, P.; Naji, F.; Siemieniuk, R.A.; Ball, G.D.C.; Busse, J.; Thorlund, K.; Guyatt, G.; et al. Comparison of Weight Loss Among Named Diet Programs in Overweight and Obese Adults. JAMA 2014, 312, 923–933. [Google Scholar] [CrossRef]
- Gardner, C.D.; Trepanowski, J.F.; Del Gobbo, L.C.; Hauser, M.E.; Rigdon, J.; Ioannidis, J.P.; Desai, M.; King, A.C. Effect of Low-Fat vs Low-Carbohydrate Diet on 12-Month Weight Loss in Overweight Adults and the Association With Genotype Pattern or Insulin Secretion. JAMA 2018, 319, 667–679. [Google Scholar] [CrossRef]
- Papavasiliou, K.; Papakonstantinou, E. Nutritional support and dietary interventions for women with polycystic ovary syndrome. Nutr. Diet. Suppl. 2017, 9, 63–85. [Google Scholar] [CrossRef] [Green Version]
- Asemi, Z.; Esmaillzadeh, A. DASH Diet, Insulin Resistance, and Serum hs-CRP in Polycystic Ovary Syndrome: A Randomized Controlled Clinical Trial. Horm. Metab. Res. 2014, 47, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.W.; Kazemi, M.; Jarrett, B.Y.; Brink, H.V.; Hoeger, K.M.; Spandorfer, S.D.; Lujan, M.E. Dietary and Physical Activity Behaviors in Women with Polycystic Ovary Syndrome per the New International Evidence-Based Guideline. Nutrients 2019, 11, 2711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, J.M.W.; Gallagher, M.; Gooding, H.; Feldman, H.A.; Gordon, C.M.; Ludwig, D.; Ebbeling, C.B. A randomized pilot study of dietary treatments for polycystic ovary syndrome in adolescents. Pediatr. Obes. 2016, 11, 210–220. [Google Scholar] [CrossRef] [Green Version]
- Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril 2004, 81, 19–25. [Google Scholar] [CrossRef]
- Kowalkowska, J.; Slowinska, M.A.; Slowinski, D.; Dlugosz, A.; Niedzwiedzka, E.; Wadolowska, L. Comparison of a Full Food-Frequency Questionnaire with the Three-Day Unweighted Food Records in Young Polish Adult Women: Implications for Dietary Assessment. Nutrients 2013, 5, 2747–2776. [Google Scholar] [CrossRef] [Green Version]
- Jarosz, M.; Rychlik, E.; Stoś, K.; Wierzejska, R.; Wojtasik, A.; Charzewska, J.; Mojska, H.; Szponar, L.; Sajór, I.; Kłosiewicz-Latoszek, L.; et al. Normy Zywienia dla Populacji Polski; Instytut Żywności i Żywienia: Warsaw, Poland, 2017. [Google Scholar]
- Gayoso-Diz, P.; Otero-González, A.; Rodriguez-Alvarez, M.X.; Gude, F.; García, F.; De Francisco, A.; Quintela, A.G. Insulin resistance (HOMA-IR) cut-off values and the metabolic syndrome in a general adult population: Effect of gender and age: EPIRCE cross-sectional study. BMC Endocr. Disord. 2013, 13, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowalkowska, J.; Wadolowska, L.; Czarnocinska, J.; Czlapka-Matyasik, M.; Galinski, G.; Jezewska-Zychowicz, M.; Bronkowska, M.; Dlugosz, A.; Loboda, D.; Wyka, J. Reproducibility of a Questionnaire for Dietary Habits, Lifestyle and Nutrition Knowledge Assessment (KomPAN) in Polish Adolescents and Adults. Nutrients 2018, 10, 1845. [Google Scholar] [CrossRef] [Green Version]
- Faghfoori, Z.; Fazelian, S.; Shadnoush, M.; Goodarzi, R. Nutritional management in women with polycystic ovary syndrome: A review study. Diabetes Metab. Syndr. Clin. Res. Rev. 2017, 11, S429–S432. [Google Scholar] [CrossRef] [PubMed]
- Parker, D.R.; Weiss, S.T.; Troisi, R.; Cassano, P.A.; Vokonas, P.S.; Landsberg, L. Relationship of dietary saturated fatty acids and body habitus to serum insulin concentrations: The Normative Aging Study. Am. J. Clin. Nutr. 1993, 58, 129–136. [Google Scholar] [CrossRef]
- Stender, S.; Dyerberg, J. Influence of Trans Fatty Acids on Health. Ann. Nutr. Metab. 2004, 48, 61–66. [Google Scholar] [CrossRef]
- Luo, J.; Rizkalla, S.W.; Boillot, J.; Alamowitch, C.; Chaib, H.; Bruzzo, F.; Desplanque, N.; Dalix, A.M.; Durand, G.; Slama, G. Dietary (n-3) polyunsaturated fatty acids improve adipocyte insulin action and glucose metabolism in insu-lin-resistant rats: Relation to membrane fatty acids. J. Nutr. 1996, 126, 1951–1958. [Google Scholar] [CrossRef]
- Sierra, P.; Ling, P.R.; Istfan, N.W.; Bistrian, B.R. Fish oil feeding improves muscle glucose uptake in tumor necrosis factor-treated rats. Metabolism 1995, 44, 1365–1370. [Google Scholar] [CrossRef]
- Storlien, L.H.; Higgins, J.A.; Thomas, T.C.; Brown, M.A.; Wang, H.Q.; Huang, X.-F.; Else, P. Diet composition and insulin action in animal models. Br. J. Nutr. 2000, 83, S85–S90. [Google Scholar] [CrossRef] [Green Version]
- Zivkovic, A.M.; German, J.B.; Sanyal, A.J. Comparative review of diets for the metabolic syndrome: Implications for nonalcoholic fatty liver disease. Am. J. Clin. Nutr. 2007, 86, 285–300. [Google Scholar] [CrossRef] [PubMed]
- Kasim-Karakas, S.E.; Almario, R.U.; Gregory, L.; Wong, R.; Todd, H.; Lasley, B.L. Metabolic and Endocrine Effects of a Polyunsaturated Fatty Acid-Rich Diet in Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2004, 89, 615–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madigan, C.; Ryan, M.; Owens, D.; Collins, P.; Tomkin, G.H. Dietary unsaturated fatty acids in type 2 diabetes: Higher levels of postprandial lipoprotein on a linoleic acid-rich sunflower oil diet compared with an oleic acid-rich olive oil diet. Diabetes Care 2000, 23, 1472–1477. [Google Scholar] [CrossRef] [Green Version]
- Mizgier, M.; Jarzabek-Bielecka, G.; Mruczyk, K. Maternal diet and gestational diabetes mellitus development. J. Matern. Neonatal Med. 2021, 34, 77–86. [Google Scholar] [CrossRef]
- Mizgier, M.; Jarząbek-Bielecka, G. Diabetes and sexual dysfunctions during menopause and andropause. Arch. Perinat. Med. 2014, 20, 35–39. [Google Scholar]
- Ryan, M.; McInerney, D.; Owens, D.; Collins, P.; Johnson, A.; Tomkin, G. Diabetes and the Mediterranean diet: A beneficial effect of oleic acid on insulin sensitivity, adipocyte glucose transport and endothelium-dependent vasoreactivity. QJM: Int. J. Med. 2000, 93, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Gołąbek, K.D.; Regulska-Ilow, B. Dietary support in insulin resistance: An overview of current scientific reports. Adv. Clin. Exp. Med. 2019, 28, 1577–1585. [Google Scholar] [CrossRef] [PubMed]
- Mirabelli, M.; Chiefari, E.; Arcidiacono, B.; Corigliano, D.M.; Brunetti, F.S.; Maggisano, V.; Russo, D.; Foti, D.P.; Brunetti, A. Mediterranean Diet Nutrients to Turn the Tide against Insulin Resistance and Related Diseases. Nutrients 2020, 12, 1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ginter, E.; Simko, V. Plant polyphenols in prevention of heart disease. Bratisl Lek List. 2012, 113, 476–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirabelli, M.; Russo, D.; Brunetti, A. The Role of Diet on Insulin Sensitivity. Nutrients 2020, 12, 3042. [Google Scholar] [CrossRef] [PubMed]
- Björck, I.; Elmståhl, H.L. The glycaemic index: Importance of dietary fibre and other food properties. Proc. Nutr. Soc. 2003, 62, 201–206. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services and U.S. Department of Agriculture. 2015–2020 Dietary Guidelines for Americans, 8th ed.; U.S. Department of Health and Human Services and U.S. Department of Agriculture: Wasington, DC, USA, 2015; Volume 8. Available online: https://health.gov/our-work/food-nutrition/previous-dietary-guidelines/2015 (accessed on 10 June 2021).
- Kazemi, M.; Pierson, R.A.; Lujan, M.E.; Chilibeck, P.D.; McBreairty, L.E.; Gordon, J.J.; Serrao, S.B.; Zello, G.A.; Chizen, D.R. Comprehensive Evaluation of Type 2 Diabetes and Cardiovascular Disease Risk Profiles in Reproductive-Age Women with Polycystic Ovary Syndrome: A Large Canadian Cohort. J. Obstet. Gynaecol. Can. 2019, 41, 1453–1460. [Google Scholar] [CrossRef]
- BioCycle Study Group; Gaskins, A.J.; Mumford, S.L.; Zhang, C.; Wactawski-Wende, J.; Hovey, K.M.; Whitcomb, B.W.; Howards, P.P.; Perkins, N.J.; Yeung, E.; et al. Effect of daily fiber intake on reproductive function: The BioCycle Study. Am. J. Clin. Nutr. 2009, 90, 1061–1069. [Google Scholar] [CrossRef]
- Eken, M.K.; Ersoy, G.S.; Abide, C.Y.; Sanverdi, I.; Devranoglu, B.; Kutlu, T.; Cevik, O. Association between circulating neuregulin 4 levels and metabolic, aterogenic, and AMH profile of polycystic ovary syndrome. J. Obstet. Gynaecol. 2019, 39, 975–980. [Google Scholar] [CrossRef] [PubMed]
- Khayyatzadeh, S.S.; Kazemi-Bajestani, S.M.R.; Bagherniya, M.; Mehramiz, M.; Tayefi, M.; Ebrahimi, M.; Ferns, G.A.; Safarian, M.; Ghayour-Mobarhan, M. Serum high C reactive protein concentrations are related to the intake of dietary macronutrients and fiber: Findings from a large representative Persian population sample. Clin. Biochem. 2017, 50, 750–755. [Google Scholar] [CrossRef]
- Buyken, A.E.; Goletzke, J.; Joslowski, G.; Felbick, A.; Cheng, G.; Herder, C.; Brand-Miller, J.C. Association between carbohydrate quality and inflammatory markers: Systematic review of observational and interventional studies. Am. J. Clin. Nutr. 2014, 99, 813–833. [Google Scholar] [CrossRef] [Green Version]
- Szczuko, M.; Zapalowska-Chwyć, M.; Drozd, R. A Low Glycemic Index Decreases Inflammation by Increasing the Concentration of Uric Acid and the Activity of Glutathione Peroxidase (GPx3) in Patients with Polycystic Ovary Syndrome (PCOS). Mol. 2019, 24, 1508. [Google Scholar] [CrossRef] [Green Version]
- Barrea, L.; Marzullo, P.; Muscogiuri, G.; Di Somma, C.; Scacchi, M.; Orio, F.; Aimaretti, G.; Colao, A.; Savastano, S. Source and amount of carbohydrate in the diet and inflammation in women with polycystic ovary syndrome. Nutr. Res. Rev. 2018, 31, 291–301. [Google Scholar] [CrossRef]
- Marzouk, T.M.; Ahmed, W.A.S. Effect of Dietary Weight Loss on Menstrual Regularity in Obese Young Adult Women with Polycystic Ovary Syndrome. J. Pediatr. Adolesc. Gynecol. 2015, 28, 457–461. [Google Scholar] [CrossRef]
- Moran, L.J.; Noakes, M.; Clifton, P.M.; Tomlinson, L.; Norman, R. Dietary Composition in Restoring Reproductive and Metabolic Physiology in Overweight Women with Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2003, 88, 812–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moran, L.J.; Noakes, M.; Clifton, P.; Wittert, G.A.; Williams, G.; Norman, R. Short-term meal replacements followed by dietary macronutrient restriction enhance weight loss in polycystic ovary syndrome. Am. J. Clin. Nutr. 2006, 84, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Soares, N.P.; Dos Santos, A.C.S.; Costa, E.C.; Azevedo, G.D.; Damasceno, D.C.; Fayh, A.P.T.; Lemos, T. Diet-Induced Weight Loss Reduces DNA Damage and Cardiometabolic Risk Factors in Overweight/Obese Women with Polycystic Ovary Syndrome. Ann. Nutr. Metab. 2016, 68, 220–227. [Google Scholar] [CrossRef]
- Marsh, K.A.; Steinbeck, K.S.; Atkinson, F.; Petocz, P.; Brand-Miller, J. Effect of a low glycemic index compared with a conventional healthy diet on polycystic ovary syndrome. Am. J. Clin. Nutr. 2010, 92, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Mehrabani, H.H.; Salehpour, S.; Amiri, Z.; JalaliFarahani, S.; Meyer, B.J.; Tahbaz, F. Beneficial Effects of a High-Protein, Low-Glycemic-Load Hypocaloric Diet in Overweight and Obese Women with Polycystic Ovary Syndrome: A Randomized Controlled Intervention Study. J. Am. Coll. Nutr. 2012, 31, 117–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barr, S.; Reeves, S.; Sharp, K.; Jeanes, Y. An Isocaloric Low Glycemic Index Diet Improves Insulin Sensitivity in Women with Polycystic Ovary Syndrome. J. Acad. Nutr. Diet. 2013, 113, 1523–1531. [Google Scholar] [CrossRef]
- Harrison, C.L.; Lombard, C.; Moran, L.; Teede, H.J. Exercise therapy in polycystic ovary syndrome: A systematic review. Hum. Reprod. Update 2010, 17, 171–183. [Google Scholar] [CrossRef] [Green Version]
- Almenning, I.; Rieber-Mohn, A.; Lundgren, K.M.; Løvvik, T.S.; Garnæs, K.K.; Moholdt, T. Effects of High Intensity Interval Training and Strength Training on Metabolic, Cardiovascular and Hormonal Outcomes in Women with Polycystic Ovary Syndrome: A Pilot Study. PLoS ONE 2015, 10, e0138793. [Google Scholar] [CrossRef] [Green Version]
- Khashchenko, E.P.; Sukhanova, S.A.; Pyataeva, S.V.; Volodina, M.A.; Tarasova, N.V.; Tsvirkun, D.V.; Uvarova, E.V.; Vysokikh, M.Y. Indicators of mitochondrial functioning in adolescent girls with polycystic ovary syndrome with regard to the presence of metabolic disorders and overweight. Akusherstvo Ginekol 2017. [Google Scholar] [CrossRef]
- Thompson, F.E.; Kirkpatrick, S.I.; Subar, A.F.; Reedy, J.; Schap, T.E.; Wilson, M.M.; Krebs-Smith, S.M. The National Cancer Institute’s Dietary Assessment Primer: A Resource for Diet Research. J. Acad. Nutr. Diet. 2015, 115, 1986–1995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarney, R.; Warner, J.; Iliffe, S.; Van Haselen, R.; Griffin, M.; Fisher, P. The Hawthorne Effect: A randomised, controlled trial. BMC Med. Res. Methodol. 2007, 7, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanaya, N.; Vonderfecht, S.; Chen, S. Androgen (dihydrotestosterone)-mediated regulation of food intake and obesity in female mice. J. Steroid Biochem. Mol. Biol. 2013, 138, 100–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | PCOS n = 61 | CONTROL n = 35 | p-Value |
---|---|---|---|
Age (years) | 0.125 | ||
median (25–75%) | 16 (15–17) | 15 (15–17) | |
Body height (m) | 0.876 | ||
mean(sd) | 166.2(6.09) | 166.4(6.17) | |
Body weight (kg) | 0.159 | ||
median (25–75%) | 62.3 (52.8–77.5) | 56.9 (53.25–62.25) | |
BMI categories | 0.001 | ||
Underweight | 2 (3.28%) | 0 | |
Healthy weight | 37 (60.66%) | 34 (97.14%) | |
Overweight/Obesity | 22 (36.07%) | 1 (2.86%) | |
IL-1 (pg/mL) | 0.116 | ||
median (25–75%) | 24.7 (18.93–32.35) | 22.75 (15.09–29.87) | |
IL-6 (ng/L) | 0.189 | ||
median (25–75%) | 28.15 (22.72–36.89) | 24.33 (18.19–43.15) | |
TNF-α (ng/L) | 0.313 | ||
median (25–75%) | 74.54 (56.37–107.8) | 85.16 (64.8–98.2) | |
CRP (mg/L) | 0.010 | ||
median (25–75%) | 0.71 (0.35–1.3) | 0.41 (0.28–0.58) | |
TC (mg/dL) | 0.096 | ||
median (25–75%) | 158 (135.2–174.4) | 145.3 (125.6–165.4) | |
LDL-C (mg/dL) | 0.013 | ||
median (25–75%) | 80.3 (64.3–98.2) | 65.4 (57.6–81.15) | |
HDL-C (mg/dL) | 55.42(10.4) | 58.27(14.07) | 0.300 |
mean(sd) | |||
TG (mg/dl) | 0.228 | ||
median (25–75%) | 84.5 (66.7–117.4) | 75.6 (58.05–106.45) | |
Fasting glucose (mmol/L) | 0.942 | ||
median (25–75%) | 88.1 (84.48–92.5) | 90.4 (81.75–93.75) | |
Fasting insulin (mU/mL) | 0.002 | ||
median (25–75%) | 14.36 (9.35–19.11) | 9.74 (7.73–13.06) | |
HOMA-IR | 0.006 | ||
median (25–75%) | 2.94 (1.87–4.36) | 2.24 (1.64–2.8) | |
WC (cm) | <0.001 | ||
median (25–75%) | 76 (68–87) | 65.5 (64.25–67) |
Variables | PCOS n = 61 | CONTROL n = 35 | p-Value |
---|---|---|---|
Total energy (kcal) | 0.081 | ||
median (25–75%) | 1663.5 (1444.7–1788.4) | 1474.01 (1189.44–1746.39) | |
Total protein (g) | 0.825 | ||
median (25–75%) | 67.3 (53.6–84.3) | 68.81 (61.47–78.69) | |
Total fat (g) | <0.001 | ||
mean(sd) | 62.93(24.68) | 47.42(16.97) | |
Total carbohydrate (g) | 0.709 | ||
median (25–75%) | 213.6 (184.3–231) | 199.91 (165.61–240.1) | |
Fiber (g) | 0.069 | ||
median (25–75%) | 15.3 (11.1–20.2) | 18.08 (14.53–22.2) | |
Added sugars (g) | 0.703 | ||
median (25–75%) | 31.7 (21.6–42.5) | 30.77 (19.79–41.55) | |
Animal protein (g) | 0.223 | ||
median (25–75%) | 37.8 (31.2–50) | 44.39 (37.89–51.6) | |
Plant protein(g) | 0.825 | ||
median (25–75%) | 21.8 (17.2–25.1) | 21.32 (18.94–26.02) | |
SFA og, (g) | 0.034 | ||
mean(sd) | 24.57(10.13) | 20.26(8.15) | |
MUFA (g) | <0.001 | ||
mean(sd) | 22.2(9.73) | 16.32(5.78) | |
PUFA (g) | 0.014 | ||
median (25–75%) | 7.5 (5.2–10.6) | 5.52 (4.71–6.92) | |
Cholesterol (mg) | 0.749 | ||
median (25–75%) | 223.5 (167.7–301.2) | 199.56 (155.52–345.05) | |
GI | 0.030 | ||
low | 14 (22.95%) | 15 (42.86%) | |
medium | 45 (73.77%) | 20 (57.14%) | |
high | 2 (3.28%) | 0 | |
Work/school PA | <0.001 | ||
low | 25 (41.67%) | 2 (6.06%) | |
moderate | 29 (48.33%) | 20 (60.61%) | |
high | 6 (10%) | 11 (33.33%) | |
Leisure PA | 0.003 | ||
low | 20 (32.79%) | 2 (5.71%) | |
moderate | 27 (44.26%) | 18 (51.43%) | |
high | 14 (22.95%) | 15 (42.86%) |
Variables | Total Protein (g) | Total Fat (g) | Total Carbohydrate (g) | Fiber (g) | Plant Protein (g) | SFA (g) | MUFA (g) | PUFA (g) | Cholesterol (mg) | GI |
---|---|---|---|---|---|---|---|---|---|---|
IL-1 p value | 0.580 | 0.371 | 0.690 | 0.465 | 0.919 | 0.503 | 0.225 | 0.436 | 0.372 | 0.560 |
r | −0.057 | 0.092 | −0.041 | −0.076 | 0.011 | 0.069 | 0.125 | 0.080 | 0.092 | 0.060 |
IL-6 p value | 0.907 | 0.156 | 0.709 | 0.806 | 0.356 | 0.324 | 0.080 | 0.125 | 0.104 | 0.679 |
r | 0.012 | 0.146 | 0.039 | 0.025 | 0.095 | 0.102 | 0.180 | 0.158 | 0.167 | 0.043 |
TNF-α p value | 0.788 | 0.915 | 0.532 | 0.934 | 0.984 | 0.814 | 0.857 | 0.698 | 0.545 | 0.927 |
r | −0.028 | 0.011 | −0.065 | −0.009 | −0.002 | 0.024 | 0.019 | 0.040 | 0.062 | 0.009 |
CRP p value | 0.238 | 0.978 | 0.424 | 0.140 | 0.454 | 0.825 | 0.622 | 0.996 | 0.542 | 0.079 |
r | −0.121 | −0.003 | −0.082 | −0.152 | −0.077 | −0.023 | 0.051 | −0.001 | 0.063 | 0.180 |
TC p value | 0.680 | 0.811 | 0.310 | 0.308 | 0.404 | 0.665 | 0.793 | 0.845 | 0.544 | 0.055 |
r | −0.043 | 0.025 | −0.105 | −0.105 | −0.086 | 0.045 * | 0.027 | 0.020 | 0.063 | 0.197 |
LDL-C p value | 0.816 | 0.352 | 0.826 | 0.309 | 0.833 | 0.847 | 0.322 | 0.277 | 0.535 | 0.054 |
r | −0.024 | 0.096 | −0.023 | −0.105 | −0.022 | 0.020 | 0.102 | 0.112 | 0.064 | 0.197 |
HDL-C p value | 0.772 | 0.919 | 0.775 | 0.972 | 0.892 | 0.563 | 0.737 | 0.627 | 0.510 | 0.410 |
r | 0.030 | 0.011 | −0.030 | 0.004 | −0.014 | 0.060 * | −0.035 | −0.050 | 0.068 | 0.085 |
TG p value | 0.113 | 0.483 | 0.017 | 0.248 | 0.073 | 0.477 | 0.447 | 0.457 | 0.517 | 0.390 |
r | −0.163 | −0.072 | −0.243 | −0.119 | −0.184 | −0.073 | −0.079 | −0.077 | −0.067 | 0.089 |
Fasting glucose p value | 0.687 | 0.167 | 0.397 | 0.146 | 0.045 | 0.192 | 0.329 | 0.590 | 0.091 | 0.443 |
r | 0.042 | 0.143 | −0.088 | −0.150 | −0.207 | 0.135 | 0.101 | 0.056 | 0.174 | 0.080 |
Fasting insulin p value | 0.218 | 0.721 | 0.122 | <0.001 | 0.006 | 0.866 | 0.654 | 0.959 | 0.864 | 0.003 |
r | −0.127 | 0.037 | −0.159 | −0.366 | −0.276 | −0.017 | 0.046 | 0.005 | −0.018 | 0.302 |
HOMA-IR p value | 0.368 | 0.994 | 0.074 | <0.001 | 0.004 | 0.774 | 0.958 | 0.766 | 0.709 | 0.017 |
r | −0.093 | −0.001 | −0.183 | −0.353 | −0.290 | −0.030 | −0.005 | −0.031 | 0.039 | 0.243 |
WC p value | 0.686 | 0.236 | 0.616 | 0.029 | 0.224 | 0.964 | 0.101 | 0.182 | 0.535 | 0.334 |
r | −0.042 | 0.122 | −0.052 | −0.222 | −0.125 | −0.005 | 0.169 | 0.137 | −0.064 | 0.100 |
Odds Ratio of PCOS | ||||||||
---|---|---|---|---|---|---|---|---|
OR (95% CI) | p-Value | AOR (95% CI)* | p-Value * | AOR (95% CI) ** | p-Value ** | AOR (95% CI) *** | p-Value *** | |
Total protein (per 1 g) | 1.006 (0.987–1.025) | 0.536 | 1.003 (0.983–1.023) | 0.787 | 1.004 (0.983–1.025) | 0.712 | 0.977 (0.934–1.022) | 0.311 |
Total protein (per 10 g) | 1.061 (0.880–1.280) | 0.536 | 1.028 (0.841–1.258) | 0.787 | 1.040 (0.844–1.283) | 0.712 | 0.792 (0.506–1.243) | 0.311 |
Total fat (per 1 g) | 1.036 (1.012–1.060) | 0.003 | 1.034 (1.010–1.059) | 0.006 | 1.043 (1.014–1.074) | 0.004 | 1.062 (1.020–1.106) **** | 0.004 **** |
Total fat (per 10 g) | 1.421 (1.129–1.789) | 0.003 | 1.398 (1.102–1.773) | 0.006 | 1.530 (1.145–2.046) | 0.004 | 1.183 (1.217–2.745) **** | 0.004 **** |
Total carbohydrates (per 1 g) | 1.002 (0.996–1.008) | 0.565 | 1.000 (0.993–1.007) | 0.989 | 1.000 (0.993–1.008) | 0.902 | 0.995 (0.983–1.007) | 0.400 |
Total carbohydrates (per 10 g) | 1.019 (0.957–1.085) | 0.565 | 1.000 (0.933–1.071) | 0.989 | 1.005 (0.932–1.084) | 0.902 | 0.950 (0.843–1.071) | 0.400 |
Fiber (per 1 g) | 0.992 (0.951–1.035) | 0.713 | 0.972 (0.928–1.019) | 0.238 | 0.980 (0.933–1.030) | 0.424 | 0.974 (0.891–1.066) | 0.572 |
Fiber (per 10 g) | 0.923 (0.602–1.415) | 0.713 | 0.755 (0.473–1.204) | 0.238 | 0.818 (0.500–1.339) | 0.424 | 0.772 (0.314–1.895) | 0.572 |
Plant protein (per 1 g) | 1.008 (0.865–1.052) | 0.727 | 0.994 (0.945–1.043) | 0.801 | 1.005 (0.954–1.060) | 0.841 | 0.973 (0.902–1.051) | 0.489 |
Plant protein (per 10 g) | 1.080 (0.702–1.661) | 0.727 | 0.940 (0.579–1.524) | 0.801 | 1.055 (0.624–1.785) | 0.841 | 0.764 (0.356–1.637) | 0.489 |
SFA (per 1 g) | 1.052 (1.003–1.104) | 0.039 | 1.053 (1.000–1.108) | 0.049 | 1.075 (1.011–1.143) | 0.022 | 1.088 (1.001–1.182) ***** | 0.048 ***** |
SFA (per 10 g) | 1.666 (1.027–2.700) | 0.039 | 1.672 (1.002–2.789) | 0.049 | 2.053 (1.112–3.792) | 0.022 | 2.319 (1.009–5.329) ***** | 0.048 ***** |
MUFA (per 1 g) | 1.096 (1.031–1.165) | 0.003 | 1.088 (1.023–1.158) | 0.007 | 1.105 (1.026–1.192) | 0.009 | 1.127 (1.012–1.254) ***** | 0.029 ***** |
MUFA (per 10 g) | 2.506 (1.364–4.604) | 0.003 | 2.331 (1.257–4.322) | 0.007 | 2.725 (1.287–5.768) | 0.009 | 3.296 (1.126–9.648) ***** | 0.029 ***** |
PUFA (per 1 g) | 1.114 (0.996–1.246) | 0.060 | 1.090 (0.968–1.228) | 0.155 | 1.091 (0.968–1.230) | 0.155 | 1.136 (0.976–1.321) ***** | 0.099 ***** |
PUFA (per 10 g) | 2.938 (0.957–9.019) | 0.060 | 2.375 (0.722–7.813) | 0.155 | 2.390 (0.719–7.944) | 0.155 | 3.575 (0.788–16.223) ***** | 0.099 ***** |
Cholesterol (per 1 mg) | 0.999 (0.997–1.002) | 0.661 | 1.000 (0.997–1.002) | 0.793 | 1.000 (0.997–1.003) | 0.946 | 0.997 (0.991–1.003) | 0.315 |
Cholesterol (per 10 mg) | 0.994 (0.970–1.020) | 0.661 | 0.996 (0.970–1.023) | 0.793 | 1.000 (0.972–1.027) | 0.946 | 0.971 (0.916–1.029) | 0.315 |
GI (low) | Reference | Reference | Reference | Reference | ||||
GI (moderate) | 2.411 (0.981–5.923) | 0.055 | 3.035 (1.132–8.138) | 0.027 | 2.437 (0.867–6.850) | 0.091 | 3.68 (0.919–14.754) **** | 0.066 **** |
GI (high) | Not enough data | Not enough data | Not enough data | Not enough data | ||||
Work/school PA (low) | Reference | Reference | Reference | Reference | ||||
Work/school PA (moderate) | 0.116 (0.025–0.546) | 0.006 | 0.127 (0.026–0.618) | 0.011 | 0.174 (0.035–0.859) | 0.032 | 0.655 (0.085–5.031) **** | 0.685 **** |
Work/school PA (high) | 0.044 (0.008–0.251) | 0.0005 | 0.051 (0.008–0.310) | 0.001 | 0.062 (0.010–0.385) | 0.003 | 0.611 (0.060–6.238) **** | 0.677 ***** |
Leisure PA (low) | Reference | Reference | Reference | |||||
Leisure PA (moderate) | 0.150 (0.031–0.722) | 0.018 | 0.143 (0.027–0.748) | 0.021 | 0.172 (0.032–0.916) | 0.039 | 0.162 (0.017–1.563) **** | 0.116 **** |
Leisure PA (high) | 0.093 (0.018–0.474) | 0.004 | 0.058 (0.010–0.340) | 0.002 | 0.080 (0.013–0.478) | 0.006 | 0.030 (0.002–0.438) **** | 0.010 **** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mizgier, M.; Jarząbek-Bielecka, G.; Formanowicz, D.; Jodłowska-Siewert, E.; Mruczyk, K.; Cisek-Woźniak, A.; Kędzia, W.; Opydo-Szymaczek, J. Dietary and Physical Activity Habits in Adolescent Girls with Polycystic Ovary Syndrome (PCOS)-HAstudy. J. Clin. Med. 2021, 10, 3469. https://doi.org/10.3390/jcm10163469
Mizgier M, Jarząbek-Bielecka G, Formanowicz D, Jodłowska-Siewert E, Mruczyk K, Cisek-Woźniak A, Kędzia W, Opydo-Szymaczek J. Dietary and Physical Activity Habits in Adolescent Girls with Polycystic Ovary Syndrome (PCOS)-HAstudy. Journal of Clinical Medicine. 2021; 10(16):3469. https://doi.org/10.3390/jcm10163469
Chicago/Turabian StyleMizgier, Małgorzata, Grażyna Jarząbek-Bielecka, Dorota Formanowicz, Elżbieta Jodłowska-Siewert, Kinga Mruczyk, Angelika Cisek-Woźniak, Witold Kędzia, and Justyna Opydo-Szymaczek. 2021. "Dietary and Physical Activity Habits in Adolescent Girls with Polycystic Ovary Syndrome (PCOS)-HAstudy" Journal of Clinical Medicine 10, no. 16: 3469. https://doi.org/10.3390/jcm10163469
APA StyleMizgier, M., Jarząbek-Bielecka, G., Formanowicz, D., Jodłowska-Siewert, E., Mruczyk, K., Cisek-Woźniak, A., Kędzia, W., & Opydo-Szymaczek, J. (2021). Dietary and Physical Activity Habits in Adolescent Girls with Polycystic Ovary Syndrome (PCOS)-HAstudy. Journal of Clinical Medicine, 10(16), 3469. https://doi.org/10.3390/jcm10163469