Analysis of Gender Differences in the Rotational Alignment of the Distal Femur in Kinematically Aligned and Mechanically Aligned Total Knee Arthroplasty
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Recruitment
2.2. Three-Dimensional Model Reconstruction
2.3. Measurement Methods
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anouchi, Y.S.; Whiteside, L.; Kaiser, A.D.; Milliano, M.T. The effects of axial rotational alignment of the femoral component on knee stability and patellar tracking in total knee arthroplasty demonstrated on autopsy specimens. Clin. Orthop. Relat. Res. 1993, 287, 170–177. [Google Scholar] [CrossRef]
- Olcott, C.W.; Scott, R.D. The ranawat award. Femoral component rotation during total knee arthroplasty. Clin. Orthop. Relat. Res. 1999, 367, 39–42. [Google Scholar] [CrossRef]
- Whiteside, L.A.; Arima, J. The anteroposterior axis for femoral rotational alignment in valgus total knee arthroplasty. Clin. Orthop. Relat. Res. 1995, 321, 168–172. [Google Scholar] [CrossRef]
- Siston, R.A.; Patel, J.J.; Goodman, S.B.; Delp, S.L.; Giori, N.J. The variability of femoral rotational alignment in total knee arthroplasty. JBJS 2005, 87, 2276–2280. [Google Scholar]
- Lee, Y.S.; Howell, S.M.; Won, Y.-Y.; Lee, O.-S.; Lee, S.H.; Vahedi, H.; Teo, S.H. Kinematic alignment is a possible alternative to mechanical alignment in total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 3467–3479. [Google Scholar] [CrossRef] [PubMed]
- Howell, S.M.; Papadopoulos, S.; Kuznik, K.T.; Hull, M.L. Accurate alignment and high function after kinematically aligned tka performed with generic instruments. Knee Surg. Sports Traumatol. Arthrosc. 2013, 21, 2271–2280. [Google Scholar] [CrossRef]
- Park, A.; Duncan, S.T.; Nunley, R.M.; Keeney, J.A.; Barrack, R.L.; Nam, D. Relationship of the posterior femoral axis of the “kinematically aligned” total knee arthroplasty to the posterior condylar, transepicondylar, and anteroposterior femoral axes. Knee 2014, 21, 1120–1123. [Google Scholar] [CrossRef] [Green Version]
- Griffin, F.M.; Math, K.; Scuderi, G.R.; Insall, J.N.; Poilvache, P.L. Anatomy of the epicondyles of the distal femur: Mri analysis of normal knees. J. Arthroplast. 2000, 15, 354–359. [Google Scholar] [CrossRef]
- Iranpour, F.; Merican, A.M.; Dandachli, W.; Amis, A.A.; Cobb, J.P. The geometry of the trochlear groove. Clin. Orthop. Relat. Res. 2010, 468, 782–788. [Google Scholar] [CrossRef] [Green Version]
- Jabalameli, M.; Moradi, A.; Bagherifard, A.; Radi, M.; Mokhtari, T. Evaluation of distal femoral rotational alignment with spiral ct scan before total knee arthroplasty (a study in iranian population). Arch. Bone Jt. Surg 2016, 4, 122–127. [Google Scholar]
- Koh, Y.G.; Nam, J.H.; Chung, H.S.; Kim, H.J.; Lee, H.Y.; Kang, K.T. Gender differences exist in rotational anatomy of the distal femur in osteoarthritic knees using mri. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 2990–2997. [Google Scholar] [CrossRef]
- Luyckx, T.; Zambianchi, F.; Catani, F.; Bellemans, J.; Victor, J. Coronal alignment is a predictor of the rotational geometry of the distal femur in the osteo-arthritic knee. Knee Surg. Sports Traumatol. Arthrosc. 2013, 21, 2331–2337. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.K.; Chen, J.Y.; Yeh, J.Z.Y.; Ho, J.P.Y.; Merican, A.M.; Yeo, S.J. Distal femoral rotation correlates with proximal tibial joint line obliquity: A consideration for kinematic total knee arthroplasty. J. Arthroplast. 2018, 33, 1936–1944. [Google Scholar] [CrossRef]
- Patel, A.R.; Talati, R.K.; Yaffe, M.A.; McCoy, B.W.; Stulberg, S.D. Femoral component rotation in total knee arthroplasty: An mri-based evaluation of our options. J. Arthroplast. 2014, 29, 1666–1670. [Google Scholar] [CrossRef] [PubMed]
- Pun, T.B.; Krishnamoorthy, V.P.; Korula, R.J.; Poonnoose, P.M. Distal femoral rotational alignment in the indian population—An important consideration in total knee arthroplasty. J. Clin. Orthop. Trauma 2015, 6, 240–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Twiggs, J.G.; Dickison, D.M.; Kolos, E.C.; Wilcox, C.E.; Roe, J.P.; Fritsch, B.A.; McMahon, S.J.; Miles, B.P.; Ruys, A.J. Patient variation limits use of fixed references for femoral rotation component alignment in total knee arthroplasty. J. Arthroplast. 2018, 33, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Victor, J.; Van Doninck, D.; Labey, L.; Van Glabbeek, F.; Parizel, P.; Bellemans, J. A common reference frame for describing rotation of the distal femur: A ct-based kinematic study using cadavers. J. Bone Jt. Surg. Br. Vol. 2009, 91, 683–690. [Google Scholar] [CrossRef] [Green Version]
- White, D.; Chelule, K.L.; Seedhom, B.B. Accuracy of mri vs ct imaging with particular reference to patient specific templates for total knee replacement surgery. Int. J. Med. Robot. 2008, 4, 224–231. [Google Scholar] [CrossRef]
- Park, A.; Nam, D.; Friedman, M.V.; Duncan, S.T.; Hillen, T.J.; Barrack, R.L. Inter-observer precision and physiologic variability of mri landmarks used to determine rotational alignment in conventional and patient-specific tka. J. Arthroplast. 2015, 30, 290–295. [Google Scholar] [CrossRef] [Green Version]
- Conley, S.; Rosenberg, A.; Crowninshield, R. The female knee: Anatomic variations. JAAOS-J. Am. Acad. Orthop. Surg. 2007, 15, S31–S36. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.-C.; Bae, J.-H.; Yoon, J.-Y.; Kim, S.-J.; Kim, J.-G.; Lee, J.-M. Gender differences of the morphology of the distal femur and proximal tibia in a korean population. Knee 2013, 20, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Yu, J.-K.; Zheng, Z.-Z.; Lu, Z.-H.; Zhang, J.-Y. Comparative study of sex differences in distal femur morphology in osteoarthritic knees in a chinese population. PLoS ONE 2014, 9, e89394. [Google Scholar] [CrossRef] [PubMed]
- Yip, D.K.; Zhu, Y.; Chiu, K.; Ng, T. Distal rotational alignment of the chinese femur and its relevance in total knee arthroplasty. J. Arthroplast. 2004, 19, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, R.; Levine, A.; Fitzgerald, S.; Kolaczko, J.; DeMaio, M.; Marcus, R.; Cooperman, D. Gender differences in the anatomy of the distal femur. J. Bone Jt. Surg. Br. Vol. 2011, 93, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Rossi, R.; Rosso, F.; Cottino, U.; Dettoni, F.; Bonasia, D.E.; Bruzzone, M. Total knee arthroplasty in the valgus knee. Int. Orthop. 2014, 38, 273–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshino, N.; Takai, S.; Ohtsuki, Y.; Hirasawa, Y. Computed tomography measurement of the surgical and clinical transepicondylar axis of the distal femur in osteoarthritic knees. J. Arthroplast. 2001, 16, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Ohmori, T.; Kabata, T.; Kajino, Y.; Taga, T.; Hasegawa, K.; Inoue, D.; Yamamoto, T.; Takagi, T.; Yoshitani, J.; Ueno, T. The accuracy of the “projected surgical transepicondylar axis” relative to the “true surgical transepicondylar axis” in total knee arthroplasty. Knee 2017, 24, 1428–1434. [Google Scholar] [CrossRef]
- Cohen, D.A.; Gursel, A.C.; Low, A.K. How coronal alignment affects distal femoral anatomy: An mri-based comparison of varus and valgus knees. J. Orthop. Surg. Res. 2019, 14, 92. [Google Scholar] [CrossRef]
- Li, G.; Park, S.E.; DeFrate, L.E.; Schutzer, M.E.; Ji, L.; Gill, T.J.; Rubash, H.E. The cartilage thickness distribution in the tibiofemoral joint and its correlation with cartilage-to-cartilage contact. Clin. Biomech. 2005, 20, 736–744. [Google Scholar] [CrossRef]
- Howell, S.M.; Howell, S.J.; Kuznik, K.T.; Cohen, J.; Hull, M.L. Does a kinematically aligned total knee arthroplasty restore function without failure regardless of alignment category? Clin. Orthop. Relat. Res. 2013, 471, 1000–1007. [Google Scholar] [CrossRef] [Green Version]
- Eckhoff, D.; Hogan, C.; DiMatteo, L.; Robinson, M.; Bach, J. An abjs best paper: Difference between the epicondylar and cylindrical axis of the knee. Clin. Orthop. Relat. Res. 2007, 461, 238–244. [Google Scholar] [CrossRef]
- Eckhoff, D.G.; Bach, J.M.; Spitzer, V.M.; Reinig, K.D.; Bagur, M.M.; Baldini, T.H.; Flannery, N.M. Three-dimensional mechanics, kinematics, and morphology of the knee viewed in virtual reality. JBJS 2005, 87, 71–80. [Google Scholar]
- Blaha, J.D.; Mancinelli, C.A.; Simons, W.H. Using the transepicondylar axis to define the sagittal morphology of the distal part of the femur. JBJS 2002, 84, S48–S55. [Google Scholar] [CrossRef]
- Kim, K.-K.; Howell, S.M.; Won, Y.-Y. Kinematically aligned total knee arthroplasty with patient-specific instrument. Yonsei Med. J. 2020, 61, 201. [Google Scholar] [CrossRef]
- Rivière, C.; Iranpour, F.; Harris, S.; Auvinet, E.; Aframian, A.; Chabrand, P.; Cobb, J. The kinematic alignment technique for tka reliably aligns the femoral component with the cylindrical axis. Orthop. Traumatol. Surg. Res. 2017, 103, 1069–1073. [Google Scholar] [CrossRef] [PubMed]
- Koh, Y.-G.; Nam, J.-H.; Chung, H.-S.; Kim, H.-J.; Baek, C.; Kang, K.-T. Gender difference exists in sagittal curvature of the distal femoral condyle morphology for osteoarthritic population. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 3740–3746. [Google Scholar] [CrossRef] [PubMed]
- Howell, S.M.; Howell, S.J.; Hull, M.L. Assessment of the radii of the medial and lateral femoral condyles in varus and valgus knees with osteoarthritis. JBJS 2010, 92, 98–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuda, S.; Miura, H.; Nagamine, R.; Urabe, K.; Hirata, G.; Iwamoto, Y. Effect of femoral and tibial component position on patellar tracking following total knee arthroplasty: 10-year follow-up of miller-galante i knees. Am. J. Knee Surg. 2001, 14, 152–156. [Google Scholar]
- Merican, A.; Ghosh, K.; Iranpour, F.; Deehan, D.; Amis, A.A. The effect of femoral component rotation on the kinematics of the tibiofemoral and patellofemoral joints after total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2011, 19, 1479–1487. [Google Scholar] [CrossRef]
- Kawahara, S.; Okazaki, K.; Matsuda, S.; Nakahara, H.; Okamoto, S.; Iwamoto, Y. Internal rotation of femoral component affects functional activities after tka—Survey with the 2011 knee society score. J. Arthroplast. 2014, 29, 2319–2323. [Google Scholar] [CrossRef]
- Varadarajan, K.M.; Gill, T.J.; Freiberg, A.A.; Rubash, H.E.; Li, G. Gender differences in trochlear groove orientation and rotational kinematics of human knees. J. Orthop. Res. 2009, 27, 871–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh, Y.G.; Nam, J.H.; Chung, H.S.; Kim, H.J.; Chun, H.J.; Kang, K.T. Gender differences in morphology exist in posterior condylar offsets of the knee in korean population. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 2019, 27, 1628–1634. [Google Scholar] [CrossRef]
- Chappell, J.D.; Yu, B.; Kirkendall, D.T.; Garrett, W.E. A comparison of knee kinetics between male and female recreational athletes in stop-jump tasks. Am. J. Sports Med. 2002, 30, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Mendiguchia, J.; Ford, K.R.; Quatman, C.E.; Alentorn-Geli, E.; Hewett, T.E. Sex differences in proximal control of the knee joint. Sports Med. 2011, 41, 541–557. [Google Scholar] [CrossRef] [Green Version]
- Wise, B.L.; Niu, J.; Yang, M.; Lane, N.E.; Harvey, W.; Felson, D.T.; Hietpas, J.; Nevitt, M.; Sharma, L.; Torner, J. Patterns of compartment involvement in tibiofemoral osteoarthritis in men and women and in whites and african americans. Arthritis Care Res. 2012, 64, 847–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, D.; Lin, K.M.; Howell, S.M.; Hull, M.L. Femoral bone and cartilage wear is predictable at 0 and 90 in the osteoarthritic knee treated with total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2014, 22, 2975–2981. [Google Scholar] [CrossRef] [PubMed]
- Berger, R.A.; Rubash, H.E.; Seel, M.J.; Thompson, W.H.; Crossett, L.S. Determining the rotational alignment of the femoral component in total knee arthroplasty using the epicondylar axis. Clin. Orthop. Relat. Res. 1993, 286, 40–47. [Google Scholar] [CrossRef]
Parameters | Whole Patients (n = 1273) | Female (n = 942) | Male (n = 331) | p-Value | Power |
---|---|---|---|---|---|
Age | 70.08 ± 6.66 (41, 89) | 70.32 ± 6.53 (41, 87) | 69.39 ± 6.96 (49, 89) | n.s. | |
sTEA-KAA (°) | 2.73 ± 4.10 (−9.87, 14.81) | 4.02 ± 3.38 (−9.87, 14.81) | −0.56 ± 4.11 (−7.1, 11.79) | <0.05 | 1.00 |
PCA-KAA (°) | 5.18 ± 4.32 (−5.81,18.09) | 6.50 ± 3.64 (−5.81, 18.09) | 1.78 ± 4.20 (−3.9, 14.32) | <0.05 | 1.00 |
APA-KAA (°) | 91.00 ± 4.59 (71.2, 105.9) | 92.66 ± 1.94 (86.8, 98.4) | 86.65 ± 6.61 (71.2, 105.9) | <0.05 | 1.00 |
sTEA-APA (°) | 91.73 ± 3.38 (69.1, 105) | 91.36 ± 2.79 (81.43, 101.53) | 92.79 ± 4.51 (69.1, 105) | <0.05 | 1.00 |
PCA-APA (°) | 94.18 ± 3.52 (71.9, 107.3) | 93.84 ± 2.93 (81.45, 104.29) | 95.13 ± 4.67 (71.9, 107.3) | <0.05 | 1.00 |
PCA-sTEA (°) | 2.44 ± 1.62 (−8.95, 13.29) | 2.48 ± 1.73 (−8.95, 13.29) | 2.34 ± 1.23 (−8.23, 3.91) | <0.05 | 0.426 |
MPCD (mm) | 40.62 ± 5.00 (24.76, 56.9) | 39.17 ± 4.52 (24.76, 56.9) | 44.73 ± 3.92 (35.6, 54.2) | <0.05 | 1.00 |
LPCD (mm) | 40.55 ± 4.95 (25.67, 60.75) | 39.01 ± 4.31 (25.67, 60.75) | 44.92 ± 3.92 (34.33, 54.27) | <0.05 | 1.00 |
MPCD/AP | 0.693 ± 0.080 (0.438, 1.032) | 0.680 ± 0.079 (0.438, 1.032) | 0.728 ± 0.071 (0.549, 0.964) | <0.05 | 1.00 |
LPCD/AP | 0.692 ± 0.082 (0.452, 1.019) | 0.677 ± 0.078 (0.452, 1.019) | 0.731 ± 0.081 (0.542, 1.015) | <0.05 | 1.00 |
Parameters | Whole Patients (n = 1273) | Varus (n = 848) | Valgus (n = 425) | p-Value | Power |
---|---|---|---|---|---|
Age | 70.08 ± 6.66 (41, 89) | 70.19 ± 6.39 (49, 88) | 69.85 ± 7.16 (41, 89) | n.s. | |
sTEA-KAA (°) | 2.87 ± 4.11 (−9.87, 14.81) | 2.80 ± 4.11 (−9.87, 14.81) | 3.01 ± 4.12 (−5.8, 14.52) | n.s. | |
PCA-KAA (°) | 5.31 ± 4.33 (−5.81,18.09) | 5.22 ± 4.29 (−5.81,18.09) | 5.48 ± 4.41 (−4.48,17.65) | n.s. | |
APA-KAA (°) | 89.01 ± 4.59 (74.1, 108.8) | 88.83 ± 4.51 (74.1, 105.7) | 89.05 ± 4.75 (79.8, 108.8) | n.s. | |
sTEA-APA (°) | 91.73 ± 3.38 (69.1, 105) | 91.63 ± 3.37 (69.1, 105) | 91.94 ± 3.41 (77.5, 104) | n.s. | |
PCA-APA (°) | 94.18 ± 3.52 (71.9, 107.3) | 94.06 ± 3.49 (71.9, 105.7) | 94.42 ± 3.56 (79.8, 107.3) | n.s. | |
PCA-sTEA (°) | 2.44 ± 1.62 (−8.95, 13.29) | 2.42 ± 1.49 (−8.95, 13.18) | 2.49 ± 1.84 (−7.15, 13.29) | <0.05 | 0.173 |
MPCD (mm) | 40.62 ± 5.00 (24.76, 56.9) | 40.67 ± 5.04 (24.76, 56.9) | 40.51 ± 4.94 (29.17, 54.2) | n.s. | |
LPCD (mm) | 40.55 ± 4.95 (25.67, 60.75) | 40.57 ± 5.02 (25.67, 60.75) | 40.49 ± 4.81 (28.88, 53.4) | n.s. | |
MPCD/AP | 0.693 ± 0.080 (0.438, 1.032) | 0.694 ± 0.079 (0.438, 0.964) | 0.690 ± 0.081 (0.492, 1.032) | n.s. | |
LPCD/AP | 0.692 ± 0.082 (0.452, 1.019) | 0.693 ± 0.084 (0.471, 1.019) | 0.689 ± 0.078 (0.452, 0.993) | n.s. |
Parameters | MPCD (mm) | LPCD (mm) | Deference (mm) | p-Value |
---|---|---|---|---|
Whole | 40.62 ± 5.00 | 40.55 ± 4.95 | 0.07 | 0.304 |
Divided by gender | ||||
Male | 44.73 ± 3.92 | 44.92 ± 3.92 | 0.19 | 0.225 |
Female | 39.17 ± 4.52 | 39.01 ± 4.31 | 0.16 | 0.303 |
Divided by lower limb alignment | ||||
Varus | 40.67 ± 5.04 | 40.57 ± 5.02 | 0.1 | 0.355 |
Valgus | 40.51 ± 4.94 | 40.49 ± 4.81 | 0.02 | 0.473 |
Population | Cases | Female (%) | Age | Modality | sTEA-APA (°) | PCA-APA (°) | PCA-sTEA (°) | sTEA-KAA (°) | PCA-KAA (°) | APA-KAA (°) | |
---|---|---|---|---|---|---|---|---|---|---|---|
Our study | Korea | 1273 | 74.0 | 70.1 | MRI | 91.73 ± 3.38 | 94.18 ± 3.52 | 2.44 ± 1.62 | 2.73 ± 4.10 | 5.18 ± 4.32 | 91.00 ± 4.59 |
Koh et al. [11] | Korea | 1522 | 85.3 | 68.9 | MRI | 91.2 ± 2.8 | 93.7 ± 3.0 | 2.2 ± 1.0 | |||
Patel et al. [37] | USA | 557 | 61.8 | 66.5 | MRI | 90.361 ±2.2 | 2.38 ± 1.62 | ||||
Park et al. [7] | USA | 114 | 56.1 | 64 | MRI | 92.4 ± 3.5 | 96.9 ± 3.2 | 4.5 ± 2.4 | −4.0 ± 2.5 | 0.5 ± 1.8 | 83.6 ± 3.1 |
Griffin et al. [8] | USA | 104 | 60.6 | 42.8 | MRI | 3.11 ± 1.75 | |||||
Pun et al. [8] | India | 40 | 29.5 | MRI | 92.7 ± 1.32 | 4.67 ±1.36 | |||||
Twiggs et al. [16] | Australia | 726 | 57.0 | 69.1 | CT | 90.69 ± 5.26 | 92.54 ±5.11 | 1.85 ± 1.834 | |||
Luyckx et al. [12] | Belgium | 231 | 65.4 | 68.8 | CT | 94.8 ± 3.3 | 1.6 ± 1.9 | ||||
Jabalameli et al. [10] | Iran | 108 | 60.2 | 65.2 | CT | 93.7 ± 2.1 | 1.6 ± 1.7 | ||||
Ng et al. [13] | Asian | 50 | 38 | 64 | CT | 94.4 ± 3.5 | 1.9 ± 1.8 | ||||
Yip et al. [23] | China | 41 | 17.1 | 78 | Cadaver | 97.0 ± 2.5 |
sTEA-APA (°) | PCA-APA (°) | PCA-sTEA (°) | |||||||
---|---|---|---|---|---|---|---|---|---|
Female | Male | p-Value | Female | Male | p-Value | Female | Male | p-Value | |
Our study | 91.36 ± 2.79 | 92.79 ± 4.51 | <0.05 | 93.84 ± 2.93 | 95.13 ± 4.67 | <0.05 | 2.48 ± 1.73 | 2.34 ± 1.23 | <0.05 † |
Koh et al. [11] | 91.3 ± 2.8 | 90.7 ± 2.7 | <0.05 | 93.8 ± 3.0 | 93.1 ± 2.7 | <0.05 | 2.2 ± 1.1 | 2.0 ± 1.0 | <0.05 |
Patel et al. [37] | 90.245 ± 2.35 | 90.5484 ± 2.16 | n.s | 2.56 ± 1.59 | 2.08 ± 1.62 | <0.05 | |||
Griffin et al. [8] | 3.33 ± 1.82 | 2.75 ± 1.61 | n.s. | ||||||
Luyckx et al. [12] | 94.6 ± 3.6 | 95.0 ± 3.3 | n.s | 1.7 ± 2.0 | 1.3 ± 1.8 | n.s. | |||
Berger et al. [47] | 0.3 ± 1.2 | 3.5 ± 1.2 | <0.05 | ||||||
Yip et al. [23] | 92.36 ± 1.6 | 1.59 ± 2.8 | n.s | 98.24 ± 2.4 | 6.73 ± 2.5 | n.s | 5.8 ± 1.8 | 5.1 ± 1.9 | <0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, B.-W.; Hong, H.-T.; Koh, Y.-G.; Choi, J.; Park, K.-K.; Kang, K.-T. Analysis of Gender Differences in the Rotational Alignment of the Distal Femur in Kinematically Aligned and Mechanically Aligned Total Knee Arthroplasty. J. Clin. Med. 2021, 10, 3691. https://doi.org/10.3390/jcm10163691
Cho B-W, Hong H-T, Koh Y-G, Choi J, Park K-K, Kang K-T. Analysis of Gender Differences in the Rotational Alignment of the Distal Femur in Kinematically Aligned and Mechanically Aligned Total Knee Arthroplasty. Journal of Clinical Medicine. 2021; 10(16):3691. https://doi.org/10.3390/jcm10163691
Chicago/Turabian StyleCho, Byung-Woo, Hyoung-Taek Hong, Yong-Gon Koh, Jeehoon Choi, Kwan-Kyu Park, and Kyoung-Tak Kang. 2021. "Analysis of Gender Differences in the Rotational Alignment of the Distal Femur in Kinematically Aligned and Mechanically Aligned Total Knee Arthroplasty" Journal of Clinical Medicine 10, no. 16: 3691. https://doi.org/10.3390/jcm10163691
APA StyleCho, B.-W., Hong, H.-T., Koh, Y.-G., Choi, J., Park, K.-K., & Kang, K.-T. (2021). Analysis of Gender Differences in the Rotational Alignment of the Distal Femur in Kinematically Aligned and Mechanically Aligned Total Knee Arthroplasty. Journal of Clinical Medicine, 10(16), 3691. https://doi.org/10.3390/jcm10163691