Markers of Inflammation and Vascular Parameters in Selective Progesterone Receptor Modulator (Ulipristal Acetate)-Treated Uterine Fibroids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Groups and Inclusion/Exclusion Criteria
- patients who responded well (n = 20), in which myoma volume decreased by ≥25% after UPA treatment;
- patients who responded weakly (n = 10), in which myoma volume decreased by <25% after UPA treatment;
- patients with no response to treatment (n = 4), in which no decrease or increase in myoma volume observed after UPA treatment.
2.2. Histological Analysis
2.3. Immunohistochemistry
2.4. Quantitative Computer Image Analysis of Immunoexpression of TGFβ, TNFα, IL6, IL10, CD117, CD68, and CD31
2.5. Statistical Analysis
3. Results
3.1. Demographic and Baseline Characteristic
3.2. Immunoexpression of Study Markers
3.3. Quantitative Analysis of TGFβ and TNFα-Positive Cells
3.4. Quantitative Analysis of IL6 and IL10-Positive Cells
3.5. Quantitative Analysis of CD117 and CD68-Positive Cells
3.6. Quantitative Analysis of CD31 Immunoexpression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goad, J.; Rudolph, J.; Wei, J.J.; Bulun, S.E.; Chakravarti, D.; Rajkovic, A. Single Cell atlas of uterine myometrium and leio-myomas reveals diverse and novel cell types of non-monoclonal origin. bioRxiv 2020. [Google Scholar] [CrossRef]
- Tal, R.; Segars, J.H. The role of angiogenic factors in fibroid pathogenesis: Potential implications for future therapy. Hum. Reprod. Update 2013, 20, 194–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciavattini, A.; Di Giuseppe, J.; Stortoni, P.; Montik, N.; Giannubilo, S.R.; Litta, P.; Islam, S.; Tranquilli, A.L.; Reis, F.M.; Ciarmela, P. Uterine Fibroids: Pathogenesis and Interactions with Endometrium and Endomyometrial Junction. Obstet. Gynecol. Int. 2013, 2013, 173184. [Google Scholar] [CrossRef] [PubMed]
- Galindo, L.J.; Hernández-Beeftink, T.; Salas, A.; Jung, Y.; Reyes, R.; de Oca, F.M.; Hernández, M.; Almeida, T.A. HMGA2 and MED12 alterations frequently co-occur in uterine leiomyomas. Gynecol. Oncol. 2018, 150, 562–568. [Google Scholar] [CrossRef] [PubMed]
- Orciani, M.; Caffarini, M.; Biagini, A.; Lucarini, G.; Carpini, G.D.; Berretta, A.; Di Primio, R.; Ciavattini, A. Chronic Inflammation May Enhance Leiomyoma Development by the Involvement of Progenitor Cells. Stem Cells Int. 2018, 2018, 1716246. [Google Scholar] [CrossRef]
- Protic, O.; Toti, P.; Islam, S.; Occhini, R.; Giannubilo, S.R.; Catherino, W.H.; Cinti, S.; Petraglia, F.; Ciavattini, A.; Castellucci, M.; et al. Possible involvement of inflammatory/reparative processes in the development of uterine fibroids. Cell Tissue Res. 2015, 364, 415–427. [Google Scholar] [CrossRef]
- Grings, A.O.; Lora, V.; Ferreira, G.D.; Brum, I.S.; Corleta, H.V.E.; Capp, E. Protein Expression of Estrogen Receptors α and β and Aromatase in Myometrium and Uterine Leiomyoma. Gynecol. Obstet. Investig. 2012, 73, 113–117. [Google Scholar] [CrossRef]
- Ishikawa, H.; Ishi, K.; Serna, V.A.; Kakazu, R.; Bulun, S.E.; Kurita, T. Progesterone Is Essential for Maintenance and Growth of Uterine Leiomyoma. Endocrinology 2010, 151, 2433–2442. [Google Scholar] [CrossRef] [Green Version]
- Kawaguchi, K.; Fujii, S.; Konishi, I.; Nanbu, Y.; Nonogaki, H.; Mori, T. Mitotic activity in uterine leiomyomas during the menstrual cycle. Am. J. Obstet. Gynecol. 1989, 160, 637–641. [Google Scholar] [CrossRef]
- Islam, S.; Ciavattini, A.; Petraglia, F.; Castellucci, M.; Ciarmela, P. Extracellular matrix in uterine leiomyoma pathogenesis: A potential target for future therapeutics. Hum. Reprod. Update 2017, 24, 59–85. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.S.; Protic, O.; Stortoni, P.; Grechi, G.; Lamanna, P.; Petraglia, F.; Castellucci, M.; Ciarmela, P. Complex networks of multiple factors in the pathogenesis of uterine leio-myoma. Fertil Steril. 2013, 100, 178–193. [Google Scholar] [CrossRef]
- Leppert, P.C.; Al-Hendy, A.; Baird, D.D.; Bulun, S.; Catherino, W.; Dixon, D.; Ducharme, M.; Harmon, Q.E.; Jayes, F.L.; Paul, E.; et al. Summary of the proceedings of the Basic Science of Uterine Fibroids meeting: New developments (28 February 2020). F&S Sci. 2021, 2, 88–100. [Google Scholar] [CrossRef]
- Ciebiera, M.; Ali, M.; Prince, L.; Jackson-Bey, T.; Atabiekov, I.; Zgliczyński, S.; Al-Hendy, A. The Evolving Role of Natural Compounds in the Medical Treatment of Uterine Fibroids. J. Clin. Med. 2020, 9, 1479. [Google Scholar] [CrossRef]
- Zannotti, A.; Greco, S.; Pellegrino, P.; Giantomassi, F.; Carpini, G.D.; Goteri, G.; Ciavattini, A.; Ciarmela, P. Macrophages and Immune Responses in Uterine Fibroids. Cells 2021, 10, 982. [Google Scholar] [CrossRef]
- Khan, K.N.; Kitajima, M.; Hiraki, K.; Fujishita, A.; Sekine, I.; Ishimaru, T.; Masuzaki, H. Changes in tissue inflammation, angiogenesis and apoptosis in endometriosis, adenomyosis and uterine myoma after GnRH agonist therapy. Hum. Reprod. 2009, 25, 642–653. [Google Scholar] [CrossRef] [PubMed]
- Donnez, J.; Courtoy, G.E.; Donnez, O.; Dolmans, M.-M. Ulipristal acetate for the management of large uterine fibroids associated with heavy bleeding: A review. Reprod. Biomed. Online 2018, 37, 216–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabe, T.; Saenger, N.; Ebert, A.D.; Roemer, T.; Tinneberg, H.-R.; De Wilde, R.L.; Wallwiener, M. Selective Progesterone Receptor Modulators for the Medical Treatment of Uterine Fibroids with a Focus on Ulipristal Acetate. BioMed Res. Int. 2018, 2018, 1374821. [Google Scholar] [CrossRef] [Green Version]
- Donnez, J.; Donnez, O.; Courtoy, G.E.; Dolmans, M.M. The place of selective progesterone receptor modulators in myoma therapy. Minerva Ginecol. 2016, 68, 313–320. [Google Scholar]
- Ferrero, S.; Vellone, V.G.; Barra, F. Pharmacokinetic drug evaluation of ulipristal acetate for the treatment of uterine fibroids. Expert Opin. Drug Metab. Toxicol. 2017, 14, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Powell, M.; Dutta, D. Esmya® and the PEARL studies: A review. Women’s Health 2016, 12, 544–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, S.; Afrin, S.; Jones, S.I.; Segars, J. Selective Progesterone Receptor Modulators—Mechanisms and Therapeutic Utility. Endocr. Rev. 2020, 41. [Google Scholar] [CrossRef]
- Zhao, Y.; Adjei, A.A. Targeting Angiogenesis in Cancer Therapy: Moving Beyond Vascular Endothelial Growth Factor. Oncologist 2015, 20, 660–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Q.; Ohara, N.; Chen, W.; Liu, J.; Sasaki, H.; Morikawa, A.; Sitruk-Ware, R.; Johansson, E.D.; Maruo, T. Progesterone receptor modulator CDB-2914 down-regulates vascular endothelial growth factor, adrenomedullin and their receptors and modulates progesterone receptor content in cultured human uterine leiomyoma cells. Hum. Reprod. 2006, 21, 2408–2416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tinelli, A.; Mynbaev, O.; Sparic, R.; Vergara, D.; Tommaso, S.; Salzet, M.; Maffia, M.; Malvasi, A. Angiogenesis and Vascularization of Uterine Leiomyoma: Clinical Value of Pseudocapsule Containing Peptides and Neurotransmitters. Curr. Protein Pept. Sci. 2016, 18, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.; Al-Hendy, A. Adipocytes Enhance the Proliferation of Human Leiomyoma Cells via TNF-α Proinflammatory Cytokine. Reprod. Sci. 2011, 18, 1186–1192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciebiera, M.; Włodarczyk, M.; Zgliczyńska, M.; Lukaszuk, K.; Męczekalski, B.; Kobierzycki, C.; Łoziński, T.; Jakiel, G. The Role of Tumor Necrosis Factor α in the Biology of Uterine Fibroids and the Related Symptoms. Int. J. Mol. Sci. 2018, 19, 3869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, S.; Akhtar, M.M.; Ciavattini, A.; Giannubilo, S.R.; Protic, O.; Janjusevic, M.; Procopio, A.D.; Segars, J.H.; Castellucci, M.; Ciarmela, P. Use of dietary phytochemicals to target inflammation, fibrosis, proliferation, and angiogenesis in uterine tissues: Promising options for prevention and treatment of uterine fibroids? Mol. Nutr. Food Res. 2014, 58, 1667–1684. [Google Scholar] [CrossRef] [Green Version]
- Ciebiera, M.; Ali, M.; Zgliczyńska, M.; Skrzypczak, M.; Al-Hendy, A. Vitamins and Uterine Fibroids: Current Data on Pathophysiology and Possible Clinical Relevance. Int. J. Mol. Sci. 2020, 21, 5528. [Google Scholar] [CrossRef]
- Szydłowska, I.; Grabowska, M.; Nawrocka-Rutkowska, J.; Piasecka, M.; Starczewski, A. Markers of Cellular Proliferation, Apoptosis, Estrogen/Progesterone Receptor Expression and Fibrosis in Selective Progesterone Receptor Modulator (Ulipristal Acetate)-Treated Uterine Fibroids. J. Clin. Med. 2021, 10, 562. [Google Scholar] [CrossRef]
- Munro, M.G.; Critchley, H.O.; Fraser, I.S. The FIGO classification of causes of abnormal uterine bleeding in the reproductive years. Fertil. Steril. 2011, 95, 2204–2208. [Google Scholar] [CrossRef]
- Demura, T.A.; Revazova, Z.V.; Kogan, E.A.; Adamyan, L.V. The molecular mechanisms and morphological manifestations of leiomyoma reduction induced by selective progesterone receptor modulators. Arkhiv Patol. 2017, 79, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Tinelli, A.; Kosmas, I.; Mynbaev, O.A.; Malvasi, A.; Sparic, R.; Vergara, D. The Biological Impact of Ulipristal Acetate on Cellular Networks Regulating Uterine Leiomyoma Growth. Curr. Pharm. Des. 2020, 26, 310–317. [Google Scholar] [CrossRef]
- Courtoy, G.; Donnez, J.; Marbaix, E.; Dolmans, M.-M. In vivo mechanisms of uterine myoma volume reduction with ulipristal acetate treatment. Fertil. Steril. 2015, 104, 426–434. [Google Scholar] [CrossRef]
- Cox, J.; Malik, M.; Britten, J.; Lewis, T.; Catherino, W.H. Ulipristal Acetate and Extracellular Matrix Production in Human Leiomyomas In Vivo: A Laboratory Analysis of a Randomized Placebo Controlled Trial. Reprod. Sci. 2017, 25, 198–206. [Google Scholar] [CrossRef]
- Lewis, T.D.; Malik, M.; Britten, J.; Parikh, T.; Cox, J.; Catherino, W.H. Ulipristal acetate decreases active TGF-β3 and its canonical signaling in uterine leiomyoma via two novel mechanisms. Fertil. Steril. 2019, 111, 806–815. [Google Scholar] [CrossRef] [PubMed]
- Yun, B.S.; Seong, S.J.; Cha, D.H.; Kim, J.Y.; Kim, M.-L.; Shim, J.Y.; Park, J.E. Changes in proliferating and apoptotic markers of leiomyoma following treatment with a selective progesterone receptor modulator or gonadotropin-releasing hormone agonist. Eur. J. Obstet. Gynecol. Reprod. Biol. 2015, 191, 62–67. [Google Scholar] [CrossRef]
- Courtoy, G.; Donnez, J.; Ambroise, J.; Arriagada, P.; Luyckx, M.; Marbaix, E.; Dolmans, M.-M. Gene expression changes in uterine myomas in response to ulipristal acetate treatment. Reprod. Biomed. Online 2018, 37, 224–233. [Google Scholar] [CrossRef]
- Courtoy, M.G.; Henriet, P.; Marbaix, E.; De Codt, M.; Luyckx, M.; Donnez, J.; Dolmans, M.-M. Matrix Metalloproteinase Activity Correlates With Uterine Myoma Volume Reduction After Ulipristal Acetate Treatment. J. Clin. Endocrinol. Metab. 2018, 103, 1566–1573. [Google Scholar] [CrossRef] [PubMed]
- Miura, S.; Khan, K.N.; Kitajima, M.; Hiraki, K.; Moriyama, S.; Masuzaki, H.; Samejima, T.; Fujishita, A.; Ishimaru, T. Differential infiltration of macrophages and prostaglandin production by different uterine leiomyomas. Hum. Reprod. 2006, 21, 2545–2554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, K.N.; Kitajima, M.; Hiraki, K.; Fujishita, A.; Nakashima, M.; Masuzaki, H. Decreased expression of human heat shock protein 70 in the endometria and pathological lesions of women with adenomyosis and uterine myoma after GnRH agonist therapy. Eur. J. Obstet. Gynecol. Reprod. Biol. 2015, 187, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Theoharides, T.C.; Alysandratos, K.-D.; Angelidou, A.; Delivanis, D.-A.; Sismanopoulos, N.; Zhang, B.; Asadi, S.; Vasiadi, M.; Weng, Z.; Miniati, A.; et al. Mast cells and inflammation. Biochim. Biophys. Acta 2012, 1822, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X. Role of mast cells in gynecological neoplasms. Front. Biosci. 2013, 18, 773–781. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, M.; Mitsuhashi, T.; Shimizu, Y.; Ishihara, O.; Shimizu, M. Pathological evaluation of uterine leiomyomas treated with gonadotropin-releasing hormone agonist (GnRH-a) therapy: Role of mast cells and a possible mechanism of GnRH-a resistance in leiomyomas. Pathol. Int. 2008, 58, 268–274. [Google Scholar] [CrossRef]
- AlAshqar, A.; Patzkowsky, K.; Afrin, S.; Wild, R.; Taylor, H.S.; Borahay, M. Cardiometabolic Risk Factors and Benign Gynecologic Disorders. Obstet. Gynecol. Surv. 2019, 74, 661–673. [Google Scholar] [CrossRef]
- Ciarmela, P.; Islam, S.; Reis, F.M.; Gray, P.C.; Bloise, E.; Petraglia, F.; Vale, W.; Castellucci, M. Growth factors and myometrium: Biological effects in uterine fibroid and possible clinical implications. Hum. Reprod. Update 2011, 17, 772–790. [Google Scholar] [CrossRef] [Green Version]
- Saraiva, M.; Vieira, P.; O’Garra, A. Biology and therapeutic potential of interleukin-10. J. Exp. Med. 2019, 217. [Google Scholar] [CrossRef] [Green Version]
- Steen, E.H.; Wang, X.; Balaji, S.; Butte, M.J.; Bollyky, P.L.; Keswani, S.G. The Role of the Anti-Inflammatory Cytokine Interleukin-10 in Tissue Fibrosis. Adv. Wound Care 2020, 9, 184–198. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.; Shahin, S.M.; Sabri, N.A.; Al-Hendy, A.; Yang, Q. 1,25 Dihydroxyvitamin D3 Enhances the Antifibroid Effects of Ulipristal Acetate in Human Uterine Fibroids. Reprod. Sci. 2018, 26, 812–828. [Google Scholar] [CrossRef]
- Ciebiera, M.; Jakiel, G.; Nowicka, G.; Laganà, A.S.; Ghezzi, F.; Łoziński, T.; Wojtyła, C.; Włodarczyk, M. The effect of ulipristal acetate on tumor necrosis factor alpha, insulin-like growth factor 1, and plasminogen activator inhibitor-1 serum levels in patients with symptomatic uterine fibroids. Arch. Med Sci. 2020, 16. [Google Scholar] [CrossRef]
- Ciebiera, M.; Włodarczyk, M.; Wrzosek, M.; Wojtyła, C.; Męczekalski, B.; Nowicka, G.; Łukaszuk, K.; Jakiel, G.; Błażej, M. TNF-α serum levels are elevated in women with clinically symptomatic uterine fibroids. Int. J. Immunopathol. Pharmacol. 2018, 32. [Google Scholar] [CrossRef] [Green Version]
- Faraji, A.; Shamsadinimoghadam, R.; Jahromi, M.A.; Namazi, N. TGF-β1 role in uterine leiomyoma and endometrial polyp: An insight to drug-based treatment instead of surgical techniques. Obstet. Gynecol. Sci. 2021, 64, 107–113. [Google Scholar] [CrossRef]
- Arici, A.; Sozen, I. Transforming growth factor-β3 is expressed at high levels in leiomyoma where it stimulates fibronectin expression and cell proliferation. Fertil. Steril. 2000, 73, 1006–1011. [Google Scholar] [CrossRef]
- Ciebiera, M.; Włodarczyk, M.; Wrzosek, M.; Męczekalski, B.; Nowicka, G.; Łukaszuk, K.; Ciebiera, M.; Słabuszewska-Jóźwiak, A.; Jakiel, G. Role of Transforming Growth Factor β in Uterine Fibroid Biology. Int. J. Mol. Sci. 2017, 18, 2435. [Google Scholar] [CrossRef] [Green Version]
- Ciebiera, M.; Włodarczyk, M.; Wrzosek, M.; Słabuszewska-Jóźwiak, A.; Nowicka, G.; Jakiel, G. Ulipristal acetate decreases transforming growth factor β3 serum and tumor tissue concentrations in patients with uterine fibroids. Fertil. Steril. 2018, 109, 501–507. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, S.; Ohara, N.; Xu, Q.; Chen, W.; Wang, J.; Nakabayashi, K.; Sasaki, H.; Morikawa, A.; Maruo, T. Cell-Type Specific Actions of Progesterone Receptor Modulators in the Regulation of Uterine Leiomyoma Growth. Semin. Reprod. Med. 2010, 28, 260–273. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.; Catherino, W.H. Development and validation of a three-dimensional in vitro model for uterine leiomyoma and patient-matched myometrium. Fertil. Steril. 2012, 97, 1287–1293. [Google Scholar] [CrossRef] [PubMed]
- Poncelet, C.; Madelenat, P.; Feldmann, G.; Walker, F.; Darai, E. Expression of von willebrand’s factor, CD34, CD31, and vascular endothelial growth factor in uterine leiomyomas. Fertil. Steril. 2002, 78, 581–586. [Google Scholar] [CrossRef]
- Bereza, T.; Skrzat, J.; Szczepanski, W.; Mitus, J.; Tomaszewski, K.; Depukat, P. Vascular structure of outer myometrial uterine leiomyomata—A preliminary SEM and immunohistochemical study. Folia Med. Crac. 2013, 53, 23–30. [Google Scholar]
- Holdsworth-Carson, S.J.; Zhao, D.; Cann, L.; Bittinger, S.; Nowell, C.J.; Rogers, P.A.W. Differences in the cellular composition of small versus large uterine fibroids. Reproduction 2016, 152, 467–480. [Google Scholar] [CrossRef] [Green Version]
- Di Lieto, A.; De Falco, M.; Pollio, F.; Mansueto, G.; Salvatore, G.; Somma, P.; Ciociola, F.; DE Rosa, G.; Staibano, S. Clinical Response, Vascular Change, and Angiogenesis in Gonadotropin-Releasing Hormone Analogue-Treated Women with Uterine Myomas. J. Soc. Gynecol. Investig. 2005, 12, 123–128. [Google Scholar] [CrossRef]
- Abulafia, O.; Kleinhaus, K.; Levi, G.; Lee, Y.-C.; Sherer, D.M. Effect of gonadotropin-releasing hormone agonist treatment upon angiogenesis in uterine leiomyoma. Gynecol. Obstet. Investig. 2001, 52, 108–113. [Google Scholar] [CrossRef]
- Wei, J.-J.; Zhang, X.-M.; Chiriboga, L.; Yee, H.; Perle, M.A.; Mittal, K. Spatial differences in biologic activity of large uterine leiomyomata. Fertil. Steril. 2006, 85, 179–187. [Google Scholar] [CrossRef]
- Ulipristal Acetate for Uterine Fibroids: EMA Recommends Restricting Use. Available online: https://www.ema.europa.eu/documents/referral/ulipristal-acetate-5mg-medicinal-products-article-31-referral-ulipristal-acetate-uterine-fibroids_en.pdf (accessed on 10 June 2021).
Group | Study Markers Range X ± SD | |||||||
---|---|---|---|---|---|---|---|---|
Age * | Number of Fibroids * | Days between End of Therapy and Surgery | The Volume of Fibroids before Treatment [cm3] * | The Volume of Fibroids after Treatment [cm3] * | Change in the Volume after Treatment [%] | Total Cell Density [Number of Cells/1 mm2] | Type of Surgery * | |
Control (n = 30) | 33–51 41.8 ± 4.6 | 1–4 1.6 ± 0.8 | − | 5.5–267.8 76.4 ± 68.2 | - | - | 130.3–5521.9 1796.8 ± 1964.2 | M/ASH/LSH |
Good response (n = 20) | 33–55 42.1 ± 5.3 | 1–4 1.8 ± 0.8 | 1–7 3.5 ± 1.7 | 16.0–297.8 81.5 ± 71.7 | 0.1–124.2 46.3 a ± 41.8 | −25.4–99.6 −58.6 ± 20.5 | 4096.5–5415.8 4841.9 b ± 489.5 | M/ASH/LSH |
Weak response (n = 10) | 33–47 43.3 ± 5.4 | 1–3 1.7 ± 0.9 | 1–7 3.1 ± 1.9 | 2.9–199.9 38.0 ± 61.3 | 1.2–191.8 33.7 ± 59.0 | −4.0–23.3 −15.6 ± 6.4 | 1725.3–3642.6 2551.0 ± 707.7 | M/ASH/LSH |
No response (n = 4) | 41–45 43.0 ± 1.6 | 1–2 1.5 ± 0.6 | 2–5 3.0 ± 1.4 | 18.1–68.4 45.9 ± 20.8 | 25.9–94.1 67.3 ± 29.4 | +1.6–104.7 +51.5 ± 42.5 | 1535.1–1947.1 1702.6 ± 174.1 | M/LSH |
Group | Study Markers Median (Range) X ± SD | |||||
---|---|---|---|---|---|---|
TGFβ 1 | TNFα | IL6 | IL10 | CD117 | CD68 | |
Control (n = 30) | 27.7 (21.0–38.6) 28.9 ± 4.9 | 35.8 (26.7–43.9) 35.7 ± 4.7 | 39.2 (28.9–53.9) 39.9 ± 5.4 | 27.5 (18.3–40.8) 28.5 ± 5.9 | 0.8 (0.4–1.8) 0.9 ± 0.4 | 3.6 (1.0–5.2) 3.4 ± 1.1 |
Good response (n = 20) | 20.5 a (8.4–43.0) 21.7 ± 8.7 | 33.3 (23.9–37.4) 32.8 ± 3.8 | 31.6 a (23.7–44.3) 33.5 ± 5.8 | 19.9 a,b,c (4.2–27.2) 18.0 ± 7.9 | 0.5 a (0.2–0.9) 0.5 ± 0.2 | 1.3 a,c (0.6–4.7) 1.6 ± 1.0 |
Weak response (n = 10) | 25.5 (16.1–31.2) 24.7 ± 4.6 | 33.5 (27.6–42.3) 34.4 ± 5.4 | 37.2 (31.5–51.5) 38.8 ± 6.5 | 27.4 (19.3–35.6) 27.9 ± 4.5 | 0.7 (0.2–1.0) 0.6 ± 0.3 | 3.0 (1.5–5.6) 3.1 ± 1.2 |
No response (n = 4) | 26.6 (23.9–35.2) 28.1 ± 4.9 | 34.9 (33.1–37.7) 35.2 ± 2.1 | 39.3 (34.8–44.4) 39.5 ± 3.9 | 27.8 (27.7–29.3) 28.2 ± 0.8 | 0.6 (0.4–2.3) 1.0 ± 0.9 | 3.5 (3.0–5.1) 3.8 ± 1.0 |
Group | Vessel Parameters Median (Range) X ± SD | ||
---|---|---|---|
Vessel Density | Mean Vessel Area (µm2) | Mean Vessel Perimeter (µm) | |
Control (n = 30) | 2.5 × 10−5 (3.9 × 10−6–9.7 × 10−5) 3.2 × 10−5 ± 2.9 × 10−5 | 276.2 (220.0–342.2) 277.6 ± 32.9 | 89.9 (71.0–99.5) 89.8 ± 6.3 |
Good response (n = 20) | 2.2 × 10−5 (1.0 × 10−6–8.5 × 10−5) 2.7 × 10−5 ± 2.0 × 10−5 | 296.0 (241.2–341.7) 295.6 ± 28.7 | 89.0 (60.9–96.1) 84.1 ± 11.7 |
Weak response (n = 10) | 3.6 × 10−5 (1.3 × 10−5–1.0 × 10−3) 1.4 × 10−4 ± 3.0 × 10−4 | 289.4 (263.2–350.7) 294.8 ± 29.5 | 87.1 (79.6–96.6) 87.6 ± 5.2 |
No response (n = 4) | 7.3 × 10−5 (2.3 × 10−5–9.3 × 10−5) 6.6 × 10−5 ± 3.1 × 10−5 | 288.3 (262.6–351.4) 297.7 ± 42.6 | 90.7 (85.1–94.5) 90.2 ± 3.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szydłowska, I.; Grabowska, M.; Nawrocka-Rutkowska, J.; Kram, A.; Piasecka, M.; Starczewski, A. Markers of Inflammation and Vascular Parameters in Selective Progesterone Receptor Modulator (Ulipristal Acetate)-Treated Uterine Fibroids. J. Clin. Med. 2021, 10, 3721. https://doi.org/10.3390/jcm10163721
Szydłowska I, Grabowska M, Nawrocka-Rutkowska J, Kram A, Piasecka M, Starczewski A. Markers of Inflammation and Vascular Parameters in Selective Progesterone Receptor Modulator (Ulipristal Acetate)-Treated Uterine Fibroids. Journal of Clinical Medicine. 2021; 10(16):3721. https://doi.org/10.3390/jcm10163721
Chicago/Turabian StyleSzydłowska, Iwona, Marta Grabowska, Jolanta Nawrocka-Rutkowska, Andrzej Kram, Małgorzata Piasecka, and Andrzej Starczewski. 2021. "Markers of Inflammation and Vascular Parameters in Selective Progesterone Receptor Modulator (Ulipristal Acetate)-Treated Uterine Fibroids" Journal of Clinical Medicine 10, no. 16: 3721. https://doi.org/10.3390/jcm10163721
APA StyleSzydłowska, I., Grabowska, M., Nawrocka-Rutkowska, J., Kram, A., Piasecka, M., & Starczewski, A. (2021). Markers of Inflammation and Vascular Parameters in Selective Progesterone Receptor Modulator (Ulipristal Acetate)-Treated Uterine Fibroids. Journal of Clinical Medicine, 10(16), 3721. https://doi.org/10.3390/jcm10163721