Novel Iron Parameters in Patients with Type 2 Diabetes Mellitus in Relation to Kidney Function
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zager, R.A. Parenteral iron compounds: Potent oxidants but mainstays of anemia management in chronic renal disease. Clin. J. Am. Soc. Nephrol. 2006, 1, S24–S31. [Google Scholar] [CrossRef]
- Hentze, M.W.; Muckenthaler, M.U.; Galy, B.; Camaschella, C. Two to tango: Regulation of mammalian iron metabolism. Cell 2010, 142, 24–38. [Google Scholar] [CrossRef] [Green Version]
- Mazur, A.; Feillet-Coudray, C.; Romier, B.; Bayle, D.; Gueux, E.; Ruivard, M.; Coudray, C.; Rayssiguier, Y. Dietary iron regulates hepatic hepcidin 1 and 2 mRNAs in mice. Metabolism 2003, 52, 1229–1231. [Google Scholar] [CrossRef]
- Nemeth, E.; Valore, E.V.; Territo, M.; Schiller, G.; Lichtenstein, A.; Ganz, T. Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood 2003, 101, 2461–2463. [Google Scholar] [CrossRef]
- Shah, Y.M.; Xie, L. Hypoxia-inducible factors link iron homeostasis and erythropoiesis. Gastroenterology 2014, 146, 630–642. [Google Scholar] [CrossRef] [Green Version]
- Silvestri, L.; Pagani, A.; Camaschella, C. Furin-mediated release of soluble hemojuvelin: A new link between hypoxia and iron homeostasis. Blood 2008, 111, 924–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolas, G.; Chauvet, C.; Viatte, L.; Danan, J.L.; Bigard, X.; Devaux, I.; Beaumont, C.; Kahn, A.; Vaulont, S. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J. Clin. Investig. 2002, 110, 1037–1044. [Google Scholar] [CrossRef]
- Medalie, J.H.; Papier, C.M.; Goldbourt, U.; Herman, J.B. Major factors in the development of diabetes mellitus in 10,000 men. Arch. Intern. Med. 1975, 135, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Wilson, P.W.; McGee, D.L.; Kannel, W.B. Obesity, very low density lipoproteins and glucose intolerance over fourteen years: The framingham study. Am. J. Epidemiol. 1981, 114, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Catalano, C.; Muscelli, E.; Quiñones, A.; Baldi, S.; Ciociaro, D.; Seghieri, G.; Ferrannini, E. Reciprocal association between insulin sensitivity and the hematocrit in man (Abstract). Eur. J. Clin. Investig. 1997, 27, 634–637. [Google Scholar] [CrossRef] [PubMed]
- Wannamethee, S.G.; Perry, I.J.; Shaper, A.G. Hematocrit and risk of NIDDM. Diabetes 1996, 45, 576–579. [Google Scholar] [CrossRef] [PubMed]
- Salonen, J.T.; Tuomainen, T.-P.; Nyyssönen, K.; Lakka, H.-M.; Punnonen, K. Relation between iron stores and noninsulin dependent diabetes in men: Case-control study. BMJ 1998, 317, 727–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ford, E.S.; Cogswell, M.E. Diabetes and serum ferritin concentration among U.S. adults. Diabetes Care 1999, 22, 1978–1983. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, M.; Ragno, E.; Benvenuti, E.; Zito, G.A.; Corsi, A.; Ferrucci, L.; Paolisso, G. New aspects of the insulin resistance syndrome: Impact on haematological parameters. Diabetologia 2001, 44, 1232–1237. [Google Scholar] [CrossRef] [Green Version]
- Lao, T.T.; Tam, K.-F.F. Maternal serum ferritin and gestational impaired glucose tolerance. Diabetes Care 1997, 20, 1368–1369. [Google Scholar] [CrossRef]
- Lao, T.T.; Chan, P.L.; Tam, K.F. Gestational diabetes mellitus in the last trimester: A feature of maternal iron excess? Diabet. Med. 2021, 18, 218–223. [Google Scholar] [CrossRef]
- Simcox, J.A.; McClain, D.A. Iron and diabetes risk. Cell Metab. 2013, 17, 329–341. [Google Scholar] [CrossRef] [Green Version]
- Vogiatzi, M.G.; Macklin, E.; Trachtenberg, F.L.; Fung, E.B.; Cheung, A.M.; Vichinsky, E.; Olivieri, N.; Kirby, M.; Kwiatkowski, J.L.; Cunningham, M.; et al. Differences in the prevalence of growth, endocrine and vitamin D abnormalities among the various thalassaemia syndromes in North America. Br. J. Haematol. 2009, 146, 546–556. [Google Scholar] [CrossRef] [Green Version]
- Ascherio, A.; Rimm, E.B.; Giovannucci, E.; Willett, W.C.; Stampfer, M.J. Blood donations and risk of coronary heart disease in men. Circulation 2001, 103, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Dymock, I.; Cassar, J.; Pyke, D.; Oakley, W.; Williams, R. Observations on the pathogenesis, complications and treatment of diabetes in 115 cases of haemochromatosis. Am. J. Med. 1972, 52, 203–210. [Google Scholar] [CrossRef]
- Platis, O.; Anagnostopoulos, G.; Farmaki, K.; Posantzis, M.; Gotsis, E.; Tolis, G. Glucose metabolism disorders improvement in patients with thalassaemia major after 24–36 months of intensive chelation therapy. Pediatr. Endocrinol. Rev. 2004, 22, 279–281. [Google Scholar]
- Fernandez-Real, J.M.; Penarroja, G.; Castro, A.; Garcia-Bragado, F.; Hernandez-Aguado, I.; Ricart, W. Blood letting in high-ferritin type 2 diabetes: Effects on insulin sensitivity and beta-cell function. Diabetes 2002, 51, 1000–1004. [Google Scholar] [CrossRef] [Green Version]
- Hua, N.W.; Stoohs, R.A.; Facchini, F.S. Low iron status and enhanced insulin sensitivity in lacto-ovo vegetarians. Br. J. Nutr. 2001, 86, 515–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pradhan, A.D.; Manson, J.E.; Rifai, N.; Buring, J.E.; Ridker, P.M. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 2001, 286, 327–334. [Google Scholar] [CrossRef]
- Wish, J.B. Assessing iron status: Beyond serum ferritin and transferrin saturation. Clin. J. Am. Soc. Nephrol. 2006, 1, S4–S8. [Google Scholar] [CrossRef] [PubMed]
- Gabrielsen, J.S.; Gao, Y.; Simcox, J.; Huang, J.; Thorup, D.; Jones, D.; Cooksey, R.C.; Gabrielsen, D.; Adams, T.D.; Hunt, S.C.; et al. Adipocyte iron regulates adiponectin and insulin sensitivity. J. Clin. Investig. 2012, 122, 3529–3540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 2004, 27, 1047–1053. [Google Scholar] [CrossRef] [Green Version]
- Foley, R.N.; Collins, A.J. End-stage renal disease in the United States: An update from the United States renal data system. J. Am. Soc. Nephrol. 2007, 18, 2644–2648. [Google Scholar] [CrossRef] [Green Version]
- Stengel, B.; Billon, S.; van Dijk, P.C.; Jager, K.J.; Dekker, F.; Simpson, K.; Briggs, J.D. Trends in the incidence of renal replacement therapy for end-stage renal disease in Europe, 1990–1999. Nephrol. Dial. Transplant. 2003, 18, 1824–1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villar, E.; Chang, S.H.; McDonald, S.P. Incidences, treatments, outcomes, and sex effect on survival in patients with end-stage renal disease by diabetes status in Australia and New Zealand (1991–2005). Diabetes Care 2007, 30, 3070–3076. [Google Scholar] [CrossRef] [Green Version]
- Astor, B.C.; Muntner, P.; Levin, A.; Eustace, J.A.; Coresh, J. Association of kidney function with anemia: The third national health and nutrition examination survey (1988–1994). Arch. Intern. Med. 2002, 162, 1401–1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossert, J.; Froissart, M. Role of anemia in progression of chronic kidney disease. Semin. Nephrol. 2006, 26, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Krikorian, S.; Shafai, G.; Shamim, K. Managing iron deficiency anemia of CKD with IV iron. US Pharm. 2013, 8, 22–26. [Google Scholar]
- McFarlane, S.I.; Chen, S.C.; Whaley-Connell, A.T.; Sowers, J.R.; Vassalotti, J.A.; Salifu, M.O.; Li, S.; Wang, C.; Bakris, G.; McCullough, P.A.; et al. Prevalence and associations of anemia of CKD: Kidney Early Evaluation Program (KEEP) and National Health and Nutrition Examination Survey (NHANES) 1999–2004. Am. J. Kidney Dis. 2008, 51, S46–S55. [Google Scholar] [CrossRef] [Green Version]
- Stauffer, M.E.; Fan, T. Prevalence of anemia in chronic kidney disease in the United States. PLoS ONE 2014, 9, e84943. [Google Scholar] [CrossRef] [Green Version]
- Aso, Y.; Suganuma, R.; Wakabayashi, S.; Hara, K.; Nakano, T.; Suetsugu, M.; Matsumoto, S.; Nakamachi, T.; Takebayashi, K.; Morita, K.; et al. Anemia is associated with an elevated serum level of high-molecular-weight adiponectin in patients with type 2 diabetes independently of renal dysfunction. Transl. Res. 2009, 154, 175–182. [Google Scholar] [CrossRef]
- McFarlane, S.I.; Salifu, M.O.; Makaryus, J.; Sowers, J.R. Anemia and cardiovascular disease in diabetic nephropathy. Curr. Diabetes Rep. 2006, 6, 213–218. [Google Scholar] [CrossRef]
- van der Meer, I.M.; Ruggenenti, P.; Remuzzi, G. The diabetic CKD patient—A major cardiovascular challenge. J. Ren. Care 2010, 36, 34–46. [Google Scholar] [CrossRef]
- Gjata, M.; Nelaj, E.; Sadiku, E.; Collaku, E.; Tase, M. Prevalence of anemia in early stage of diabetic nephropathy (chronic kidney disease stage II) and its impact on the progression of renal function: PP.17.123. J. Hypertens. 2010, 28, e288. [Google Scholar] [CrossRef]
- Pappa, M.; Dounousi, E.; Duni, A.; Katopodis, K.P. Less known pathophysiological mechanisms of anemia in patients with diabetic nephropathy. Int. Urol. Nephrol. 2015, 47, 1365–1372. [Google Scholar] [CrossRef] [PubMed]
- Introduction: Standards of medical care in diabetes—2021. Diabetes Care 2021, 44, S1–S2. [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO) Blood Pressure Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2013, 3, 1–150. [Google Scholar]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- World Health Organization. Nutritional anemias: Report of a WHO scientific group. World Health Organ. Tech. Rep. Ser. 1968, 405, 5–37. [Google Scholar]
- Hayder, Z.S.; Kareem, Z.S. Resistin hormone in diabetic kidney disease and its relation to iron status and hepcidin. Int. Urol. Nephrol. 2020, 52, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Małyszko, J.; Koc-Żórawska, E.; Levin-Iaina, N.; Małyszko, J.; Koźmiński, P.; Kobus, G.; Myśliwiec, M. New parameters in iron me-tabolism and functional iron deficiency in patients on maintenance hemodialysis. Pol. Arch. Med. Wewn. 2012, 122, 537–542. [Google Scholar]
- Peters, H.P.; Rumjon, A.; Bansal, S.S.; Laarakkers, C.M.; Brand, J.V.D.; Sarafidis, P.; Musto, R.; Malyszko, J.; Swinkels, D.W.; Wetzels, J.F.; et al. Intra-individual variability of serum hepcidin-25 in haemodialysis patients using mass spectrometry and ELISA. Nephrol. Dial. Transplant. 2012, 27, 3923–3929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malyszko, J.; Malyszko, J.S.; Pawlak, K.; Mysliwiec, M. Hepcidin, iron status, and renal function in chronic renal failure, kidney transplantation, and hemodialysis. Am. J. Hematol. 2006, 81, 832–837. [Google Scholar] [CrossRef]
- Zumbrennenbullough, K.B.; Babitt, J.L. The iron cycle in chronic kidney disease (CKD): From genetics and experimental models to CKD patients. Nephrol. Dial. Transplant. 2014, 29, 263–273. [Google Scholar] [CrossRef] [Green Version]
- Kuragano, T.; Shimonaka, Y.; Kida, A.; Furuta, M.; Nanami, M.; Otaki, Y.; Hasuike, Y.; Nonoguchi, H.; Nakanishi, T. Determinants of hepcidin in patients on maintenance hemodialysis: Role of inflammation. Am. J. Nephrol. 2010, 31, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Tessitore, N.; Girelli, D.; Campostrini, N.; Bedogna, V.; Solero, G.P.; Castagna, A.; Melilli, E.; Mantovani, W.; De Matteis, G.; Olivieri, O.; et al. Hepcidin is not useful as a biomarker for iron needs in haemodialysis patients on maintenance erythropoiesis-stimulating agents. Nephrol. Dial. Transplant. 2010, 25, 3996–4002. [Google Scholar] [CrossRef] [Green Version]
- van der Weerd, N.C.; Grooteman, M.P.; Bots, M.L.; van den Dorpel, M.A.; den Hoedt, C.H.; Mazairac, A.H.; Nubé, M.J.; Penne, E.L.; Gaillard, C.A.; Wetzels, J.F.M.; et al. Hepcidin-25 in chronic hemodialysis patients is related to residual kidney function and not to treatment with erythropoiesis stimulating agents. PLoS ONE 2012, 7, e39783. [Google Scholar] [CrossRef] [Green Version]
- Lukaszyk, E.; Lukaszyk, M.; Koc-Żórawska, E.; Bodzenta-Lukaszyk, A.; Malyszko, J. Zonulin, inflammation and iron status in patients with early stages of chronic kidney disease. Int. Urol. Nephrol. 2017, 50, 121–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, M.; Ashby, D.R.; Kurtz, C.; Alam, A.; Busbridge, M.; Raff, U.; Zimmermann, J.; Heuschmann, P.U.; Wanner, C.; Schramm, L. Hepcidin-25 in diabetic chronic kidney disease is predictive for mortality and progression to end stage renal disease. PLoS ONE 2015, 10, e0123072. [Google Scholar] [CrossRef] [PubMed]
- Lukaszyk, E.; Lukaszyk, M.; Koc-Zorawska, E.; Bodzenta-Lukaszyk, A.; Malyszko, J. GDF-15, iron, and inflammation in early chronic kidney disease among elderly patients. Int. Urol. Nephrol. 2016, 48, 839–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breit, S.N.; Johnen, H.; Cook, A.; Tsai, V.W.W.; Mohammad, M.; Kuffner, T.; Zhang, H.P.; Marquis, C.; Jiang, L.; Lockwood, G.; et al. The TGF-β superfamily cytokine, MIC-1/GDF15: A pleotrophic cytokine with roles in inflammation, cancer and metabolism. Growth Factors 2011, 29, 187–195. [Google Scholar] [CrossRef]
- Lukaszyk, E.; Lukaszyk, M.; Koc-Zorawska, E.; Bodzenta-Lukaszyk, A.; Malyszko, J. Fibroblast growth factor 23, iron and inflammation—are they related in early stages of chronic kidney disease? Arch. Med. Sci. 2017, 13, 845–850. [Google Scholar] [CrossRef] [Green Version]
- Cook, J.D.; Skikne, B.S.; Baynes, R.D. Serum transferrin receptor. Annu. Rev. Med. 1993, 44, 63–74. [Google Scholar] [CrossRef]
- Belo, L.; Rocha, S.; Valente, M.J.; Coimbra, S.; Catarino, C.; Bronze-Da-Rocha, E.; Rocha-Pereira, P.; Sameiro-Faria, M.D.; Oliveira, J.G.; Madureira, J.; et al. Hepcidin and diabetes are independently related with soluble transferrin receptor levels in chronic dialysis patients. Ren. Fail. 2019, 41, 662–672. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, B.J.; Skikne, B.S.; Simpson, K.M.; Baynes, R.D.; Cook, J.D. Serum transferrin receptor distinguishes the anemia of chronic disease from iron deficiency anemia. J. Lab. Clin. Med. 1992, 119, 385–390. [Google Scholar]
- Pfeiffer, C.M.; Looker, A.C. Laboratory methodologies for indicators of iron status: Strengths, limitations, and analytical challenges. Am. J. Clin. Nutr. 2017, 106, 1606S–1614S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semenza, G.L. Oxygen sensing, homeostasis, and disease. N. Engl. J. Med. 2011, 365, 537–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mastrogiannaki, M.; Matak, P.; Mathieu, J.R.; Delga, S.; Mayeux, P.; Vaulont, S.; Peyssonnaux, C. Hepatic hypoxia-inducible factor-2 down-regulates hepcidin expression in mice through an erythropoietin-mediated increase in erythropoiesis. Haematologica 2011, 97, 827–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shutov, E.; Sułowicz, W.; Esposito, C.; Tataradze, A.; Andric, B.; Reusch, M.; Valluri, U.; Dimkovic, N. Roxadustat for the treatment of anemia in chronic kidney disease patients not on dialysis: A Phase 3, randomized, double-blind, placebo-controlled study (ALPS). Nephrol. Dial. Transplant. 2021. [Google Scholar] [CrossRef]
Study Participants (N = 80) | Control Cohort (N = 23) | p for the Comparison between Study Participants and the Control Cohort | |
---|---|---|---|
Age, years; Median (IQR) | 70 (11) | 51 (8.6) | <0.001 |
eGFR by CKD-EPI, mL/min/1.73 m2; Mean (SD) | 70.3 (20.8) | 85.9 (15.3) | <0.001 |
Hemoglobin, g/dL; Mean (SD) | 12.9 (1.3) | 13.1 (1.4) | <0.001 |
Hepcidin, mg/mL; Median (IQR) | 4.6 (5.3) | 2.5 (1.2) | <0.001 |
sTfR, nmol/L; Mean (SD) | 23.7 (7) | 8.6 (2) | <0.001 |
GDF-15, pg/mL; Median (IQR) | 1514 (1232) | 584 (324) | <0.001 |
HIF-1 alpha, mg/mL; Median (IQR) | 0 (0) | 102.6 (112) | 0.09 |
Fe, µg/dL; Mean (SD) | 78.7 (24.9) | 95.6 (24.7) | 0.005 |
Ferritin, µg/L; Median (IQR) | 99.6 (92.5) | 104 (90.2) | 0.57 |
Study Participants (N = 80) | eGFR < 60 mL/min/1.72 m2 (N = 24) | eGFR > 60 mL/min/1.72 m2 (N = 56) | p | |
---|---|---|---|---|
Age, years; Median (IQR) | 70 (11) | 73.5 (11.3) | 69 (9.3) | 0.03 |
Male; % (N) | 73 (58) | 75.0 (18) | 71.4 (40) | 0.75 |
BMI, kg/m2; Median (IQR) | 30.6 (4.9) | 33.3 (5.7) | 30.4 (4.2) | 0.08 |
Atrial fibrillation; % (N) | 26 (21) | 29 (7) | 25 (14) | 0.70 |
Hypertension; % (N) | 91.3 (73) | 92 (22) | 91 (51) | 0.93 |
Chronic heart failure; % (N) | 34 (27) | 33.3 (8) | 34 (19) | 0.96 |
Chronic coronary syndrome; % (N) | 80 (64) | 75 (18) | 82.1 (46) | 0.46 |
Acute coronary syndrome; % (N) | 40 (32) | 45.8 (11) | 37.5 (21) | 0.44 |
MAP, mmHg; Mean (SD) | 94.3 (18.4) | 96.4 (12.9) | 93.4 (20.2) | 0.49 |
Heart rate, beats per minute; Mean (SD) | 73 (12.6) | 71 (11.8) | 70 (13) | 0.98 |
Low-density lipoprotein cholesterol, mg/dL; Mean (SD) | 86.4 (32.2) | 88.1 (38) | 82.2 (27.5) | 0.46 |
High-density lipoprotein cholesterol, mg/dL; Mean (SD) | 41.8 (11.4) | 35 (15.5) | 43.5 114) | 0.04 |
TG, mg/dL; Mean (SD) | 143 (56.6) | 154.5 (53.5) | 126 (61) | 0.24 |
eGFR by CKD-EPI, mL/min/1.73 m2; Mean (SD) | 70.3 (20.8) | 50 (18) | 81 (21.3) | <0.001 |
RBC 106/mm3; Mean (SD) | 4.3 (0.5) | 4.2 (0.63) | 4.3 (0.42) | 0.09 |
Hemoglobin, g/dL; Mean (SD) | 12.9 (1.3) | 12.5 (1.5) | 13.1 (1.3) | <0.001 |
BNP, pg/mL; Median (IQR) | 246.3 (406.5) | 454 (3877) | 139 (186) | <0.001 |
Hepcidin, mg/mL; Median (IQR) | 4.6 (5.3) | 4.6 (4.9) | 4.6 (5.4) | 0.93 |
sTfR, nmol/L; Mean (SD) | 23.7 (7) | 26.3 (5.3) | 23 (8.7) | 0.08 |
GDF-15, pg/mL; Median (IQR) | 1514 (1232) | 1906 (1485) | 1351 (1013) | 0.1 |
HIF-1 alpha, mg/mL; Median (IQR) | 0 (0) | 0 (11.7) | 0 (0) | 0.02 |
Fe, µg/dL; Mean (SD) | 78.7 (24.9) | 75.5 (29.5) | 78 (33.8) | 0.28 |
Ferritin, µg/L; Median (IQR) | 99.6 (92.5) | 78 (49.6) | 117 (108) | 0.03 |
Diuretics medication prescribed at discharge; % (N) | 77.5 (62) | 83.3 (20) | 75 (42) | 0.36 |
Calcium channel blockers prescribed at discharge; % (N) | 30 (24) | 33.3 (8) | 32 (18) | 0.54 |
ACE medication prescribed at discharge; % (N) | 84 (67) | 88 (21) | 82 (46) | 0.47 |
BB medication prescribed at discharge; % (N) | 88.8 (71) | 96 (23) | 86 (48) | 0.09 |
Statin medication prescribed at discharge; % (N) | 77.5 (62) | 83 (20) | 75 (42) | 0.36 |
Hepcidin mg/mL | −0.03 (p = 0.9) | 0.09 (p = 0.69) | 0.34 (p = 0.1) | 0.25 (p = 0.24) | −0.01 (p = 0.95) | 0.3 (p = 0.16) | 0.26 (p = 0.22) | −0.29 (p = 0.17) |
0.04 (p = 0.74) | Age, years | −0.22 (p = 0.31) | −0.02 (p = 0.93) | 0.19 (p = 0.37) | −0.03 (p = 0.9) | 0.01 (p = 0.99) | 0.12 (p = 0.58) | 0.22 (p = 0.3) |
−0.11 (p = 0.4) | −0.32 (p = 0.01) | eGFR, mL/min/1.73 m2 | 0.44 (p = 0.03) | −0.11 (p = 0.62) | −0.13 (p = 0.55) | −0.11 (p = 0.61) | −0.09 (p = 0.66) | −0.28 (p = 0.19) |
0.33 (p = 0.01) | −0.28 (p = 0.04) | 0.35 (p = 0.01) | HGB, g/dL | 0.13 (p = 0.55) | 0.01 (p = 0.99) | −0.12 (p = 0.59) | −0.16 (p = 0.46) | −0.15 (p = 0.47) |
0.47 (p < 0.001) | −0.13 (p = 0.35) | 0.05 (p = 0.72) | 0.31 (p = 0.02) | Ferritin, µg/L | −0.08 (p = 0.69) | 0.25 (p = 0.24) | 0.11 (p = 0.06) | 0.05 (p = 0.82) |
−0.01 (p = 0.46) | 0.01 (p = 0.99) | 0.08 (p = 0.57) | 0.17 (p = 0.21) | 0.27 (p = 0.04) | Fe, µg/dl | 0.09 (p = 0.66) | −0.07 (p = 0.72) | −0.25 (p = 0.23) |
−0.05 (p = 0.72) | −0.43 (p < 0.001) | −0.02 (p = 0.91) | −0.02 (p = 0.9) | 0.12 (p = 0.39) | 0.05 (p = 0.7) | HIF-1 alpha pg, mg/mL | −0.16 (p = 0.45) | −0.11 (p = 0.61) |
0.28 (p = 0.04) | 0.38 (p < 0.001) | −0.18 (p = 0.18) | 0.01 (p = 0.99) | 0.09 (p = 0.53) | 0.05 (p = 0.73) | −0.14 (p = 0.31) | GDF−15, pg/mL | 0.07 (p = 0.74) |
−0.32 (p = 0.01) | 0.33 (p = 0.01) | −0.24 (p = 0.07) | −0.06 (p = 0.65) | −0.29 (p = 0.03) | −0.15 (p = 0.27) | −0.15 (p = 0.28) | 0.12 (p = 0.38) | sTfR, nmol/L |
Variables | β | (95% CI) | p | |
---|---|---|---|---|
sTfR | −0.239 | −0.431 | −0.047 | 0.015 |
GDF-15 | 0.267 | 0.082 | 0.453 | 0.005 |
HIF-1 alpha | 0.109 | −0.074 | 0.292 | 0.239 |
Fe | −0.239 | −0.416 | −0.062 | 0.009 |
Ferritin | 0.393 | 0.203 | 0.582 | <0.0001 |
Hemoglobin | 0.335 | 0.143 | 0.527 | 0.001 |
eGFR by CKD-EPI | −0.159 | −0.368 | 0.050 | 0.134 |
Age | 0.162 | −0.039 | 0.362 | 0.113 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zapora-Kurel, A.; Kuźma, Ł.; Zakrzewska, M.; Żórawski, M.; Dobrzycki, S.; Twardowska-Kawalec, M.; Małyszko, J. Novel Iron Parameters in Patients with Type 2 Diabetes Mellitus in Relation to Kidney Function. J. Clin. Med. 2021, 10, 3732. https://doi.org/10.3390/jcm10163732
Zapora-Kurel A, Kuźma Ł, Zakrzewska M, Żórawski M, Dobrzycki S, Twardowska-Kawalec M, Małyszko J. Novel Iron Parameters in Patients with Type 2 Diabetes Mellitus in Relation to Kidney Function. Journal of Clinical Medicine. 2021; 10(16):3732. https://doi.org/10.3390/jcm10163732
Chicago/Turabian StyleZapora-Kurel, Agnieszka, Łukasz Kuźma, Magdalena Zakrzewska, Marcin Żórawski, Sławomir Dobrzycki, Małgorzata Twardowska-Kawalec, and Jolanta Małyszko. 2021. "Novel Iron Parameters in Patients with Type 2 Diabetes Mellitus in Relation to Kidney Function" Journal of Clinical Medicine 10, no. 16: 3732. https://doi.org/10.3390/jcm10163732
APA StyleZapora-Kurel, A., Kuźma, Ł., Zakrzewska, M., Żórawski, M., Dobrzycki, S., Twardowska-Kawalec, M., & Małyszko, J. (2021). Novel Iron Parameters in Patients with Type 2 Diabetes Mellitus in Relation to Kidney Function. Journal of Clinical Medicine, 10(16), 3732. https://doi.org/10.3390/jcm10163732