Incidence and Outcomes of Hemorrhagic Stroke among Adults in Spain (2016–2018) According to Sex: A Retrospective, Cohort, Observational, Propensity Score Matched Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data Source
2.2. Study Population
2.3. Study Variables
2.4. Matching Method
2.5. Statistical Analysis
2.6. Sensitivity Analysis
2.7. Ethical Aspects
3. Results
3.1. Incidence of Hemorrhagic Stroke According to Sex
3.2. Clinical Characteristics and Hospital Outcomes According to Sex
3.3. Factors Associated with IHM during Admission for Hemorrhagic Stroke
3.4. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Asch, C.J.; Luitse, M.J.; Rinkel, G.J.; van der Tweel, I.; Algra, A.; Klijn, C.J. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: A systematic review and meta-analysis. Lancet Neurol. 2010, 9, 167–176. [Google Scholar] [CrossRef]
- Rincon, F.; Mayer, S.A. The epidemiology of intracerebral hemorrhage in the United States from 1979 to 2008. Neurocrit. Care 2013, 19, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, M.; Wilsgaard, T.; Johnsen, S.H.; Vangen-Lønne, A.M.; Løchen, M.L.; Njølstad, I.; Mathiesen, E.B. Temporal trends in incidence and case fatality of intracerebral hemorrhage: The Tromsø Study 1995-2012. Cerebrovasc. Dis. Extra 2016, 6, 40–49. [Google Scholar] [CrossRef]
- Krishnamurthi, R.V.; Moran, A.E.; Forouzanfar, M.H.; Bennett, D.A.; Mensah, G.A.; Lawes, C.M.; Barker-Collo, S.; Connor, M.; Roth, G.A.; Sacco, R.; et al. The global burden of hemorrhagic stroke: A summary of findings from the GBD 2010 study. Glob. Heart 2014, 9, 10106. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, O.G.; Lindgren, A.; Ståhl, N.; Brandt, L.; Säveland, H. Incidence of intracerebral and subarachnoid haemorrhage in southern Sweden. J. Neurol. Neurosurg. Psychiatry 2000, 69, 601–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, I.; Volbers, B.; Kloska, S.; Doerfler, A.; Schwab, S.; Staykov, D. Sex differences in perihemorrhagic edema evolution after spontaneous intracerebral hemorrhage. Eur. J. Neurol. 2012, 19, 1477–1481. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.S.; Huang, Y.; Wang, J.G.; Arima, H.; Neal, B.; Peng, B.; Heeley, E.; Skulina, C.; Parsons, M.W.; Kim, J.S.; et al. Intensive blood pressure reduction in acute cerebral haemorrhage trial (INTERACT): A randomised pilot trial. Lancet Neurol. 2008, 7, 391–399. [Google Scholar] [CrossRef]
- Gokhale, S.; Caplan, L.R.; James, M.L. Sex differences in incidence, pathophysiology, and outcome of primary intracerebral hemorrhage. Stroke 2015, 46, 886–892. [Google Scholar] [CrossRef] [Green Version]
- Roquer, J.; Rodríguez-Campello, A.; Jiménez-Conde, J.; Cuadrado-Godia, E.; Giralt-Steinhauer, E.; Vivanco Hidalgo, R.M.; Soriano, C.; Ois, A. Sex-related differences in primary intracerebral hemorrhage. Neurology 2016, 87, 257–262. [Google Scholar] [CrossRef] [Green Version]
- Rubin, D.B. Matching to Remove Bias in Observational Studies. Biometrics 1973, 29, 159. [Google Scholar] [CrossRef]
- Ministerio de Sanidad, Servicios Sociales e Igualdad. Real Decreto 69/2015, de 6 de Febrero, Por el Que se Regula el Registro de Actividad de Atención Sanitaria Especializada. BOE 2015, 35, 10789–10809. Available online: https://www.mscbs.gob.es/estadEstudios/estadisticas/docs/BOE_RD_69_2015_RAE_CMBD.pdf (accessed on 12 November 2020).
- De Miguel-Yanes, J.M.; Jiménez-García, R.; Hernandez-Barrera, V.; de Miguel-Díez, J.; Muñoz-Rivas, N.; Méndez-Bailón, M.; Pérez-Farinós, N.; López-Herranz, M.; Lopez-de-Andres, A. Sex Differences in the Incidence and Outcomes of Acute Myocardial Infarction in Spain, 2016-2018: A Matched-Pair Analysis. J. Clin. Med. 2021, 10, 1795. [Google Scholar] [CrossRef] [PubMed]
- Spanish National Statistics Institute. Instituto Nacional de Estadistica, INE Populations by Year, Sex and Age Group. Available online: https://www.ine.es/jaxi/Tabla.htm?path=/t20/e245/p08/l0/&file=03003.px&L=0 (accessed on 6 April 2021).
- Sundararajan, V.; Henderson, T.; Perry, C.; Muggivan, A.; Quan, H.; Ghali, W.A. New ICD-10 version of the Charlson comorbidity index predicted in-hospital mortality. J. Clin. Epidemiol. 2004, 57, 1288–1294. [Google Scholar] [CrossRef] [PubMed]
- De Miguel-Yanes, J.M.; Jiménez-García, R.; Hernández-Barrera, V.; de Miguel-Díez, J.; Méndez-Bailón, M.; Muñoz-Rivas, N.; Pérez-Farinós, N.; López-de-Andrés, A. Infective endocarditis according to type 2 diabetes mellitus status: An observational study in Spain, 2001-2015. Cardiovasc. Diabetol. 2019, 18, 161. [Google Scholar] [CrossRef] [PubMed]
- Ministerio de Sanidad, Consumo y Bienestar Social. Solicitud de Extracción de Datos–Extraction Request (Spanish National Hospital Discharge Database). Available online: https://www.mscbs.gob.es/estadEstudios/estadisticas/estadisticas/estMinisterio/SolicitudCMBDdocs/2018_Formulario_Peticion_Datos_RAE_CMBD.pdf (accessed on 12 November 2020).
- Appelros, P.; Stegmayr, B.; Terént, A. Sex differences in stroke epidemiology: A systematic review. Stroke 2009, 40, 1082–1090. [Google Scholar] [CrossRef]
- Petrea, R.E.; Beiser, A.S.; Seshadri, S.; Kelly-Hayes, M.; Kase, C.S.; Wolf, P.A. Gender differences in stroke incidence and poststroke disability in the Framingham heart study. Stroke 2009, 40, 1032–1037. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, J.T.; Ang, B.T.; Ng, Y.P.; Allen, J.C.; King, N.K.K. Comparison of gender differences in intracerebral hemorrhage in a multi-ethnic Asian population. PLoS ONE 2016, 11, e0152945. [Google Scholar] [CrossRef] [Green Version]
- Khoury, S.; Yarows, S.A.; O’Brien, T.K.; Sowers, J.R. Ambulatory blood pressure monitoring in a nonacademic setting: Effects of age and sex. Am. J. Hypertens. 1992, 5, 616–623. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, M.J.; Xavier, D.; Liu, L.; Zhang, H.; Chin, S.L.; Rao-Melacini, P.; Rangarajan, S.; Islam, S.; Pais, P.; McQueen, M.J.; et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): A case-control study. Lancet 2010, 376, 112–123. [Google Scholar] [CrossRef]
- Feldmann, E.; Broderick, J.P.; Kernan, W.N.; Viscoli, C.M.; Brass, L.M.; Brott, T.; Morgenstern, L.B.; Wilterdink, J.L.; Horwitz, R.I. Major risk factors for intracerebral hemorrhage in the young are modifiable. Stroke 2005, 36, 1881–1885. [Google Scholar] [CrossRef] [Green Version]
- Regan, R.F.; Guo, Y. Estrogens attenuate neuronal injury due to hemoglobin, chemical hypoxia, and excitatory amino acids in murine cortical cultures. Brain Res. 1997, 764, 133–140. [Google Scholar] [CrossRef]
- Muñoz-Rivas, N.; Méndez-Bailón, M.; Hernández-Barrera, V.; de Miguel-Yanes, J.M.; Jiménez-García, R.; Esteban-Hernández, J.; López-de-Andrés, A. Type 2 diabetes and hemorrhagic stroke: A population-based study in Spain from 2003 to 2012. J. Stroke Cerebrovasc. Dis. 2016, 25, 1431–1443. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, S.; Wada, K.; Nagatani, K.; Otani, N.; Mori, K. Decompressive hemicraniectomy for spontaneous intracerebral hemorrhage. Neurosurg. Focus 2013, 34, E5. [Google Scholar] [CrossRef] [PubMed]
- Decompressive Hemicraniectomy in Intracerebral Hemorrhage (SWITCH). Clinical Trial. Available online: https://www.clinicaltrials.gov/ct2/show/NCT02258919 (accessed on 16 May 2021).
- Hoffman, H.; Jalal, M.S.; Furst, T.; Chin, L.S. The obesity paradox in spontaneous intracerebral hemorrhage: Results from a retrospective analysis of the nationwide inpatient sample. Neurocrit. Care 2020, 32, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Oesch, L.; Tatlisumak, T.; Arnold, M.; Sarikaya, H. Obesity paradox in stroke. Myth or reality? A systematic review. PLoS ONE 2017, 12, e0171334. [Google Scholar] [CrossRef]
- Inohara, T.; Xian, Y.; Liang, L.; Matsouaka, R.A.; Saver, J.L.; Smith, E.E.; Schwamm, L.H.; Reeves, M.J.; Hernandez, A.F.; Bhatt, D.L.; et al. Association of Intracerebral Hemorrhage Among Patients Taking Non-Vitamin K Antagonist vs Vitamin K Antagonist Oral Anticoagulants With In-Hospital Mortality. JAMA 2018, 319, 463–473. [Google Scholar] [CrossRef] [Green Version]
- Apostolaki-Hansson, T.; Ullberg, T.; Pihlsgård, M.; Norrving, B.; Petersson, J. Prognosis of Intracerebral Hemorrhage Related to Antithrombotic Use: An Observational Study From the Swedish Stroke Register (Riksstroke). Stroke 2021, 52, 966–974. [Google Scholar] [CrossRef]
- Thompson, B.B.; Béjot, Y.; Caso, V.; Castillo, J.; Christensen, H.; Flaherty, M.L.; Foerch, C.; Ghandehari, K.; Giroud, M.; Greenberg, S.M.; et al. Prior antiplatelet therapy and outcome following intracerebral hemorrhage: A systematic review. Neurology 2010, 75, 1333–1342. [Google Scholar] [CrossRef] [Green Version]
- Xian, Y.; Zhang, S.; Inohara, T.; Grau-Sepulveda, M.; Matsouaka, R.A.; Peterson, E.D.; Piccini, J.P.; Smith, E.E.; Sheth, K.N.; Bhatt, D.L.; et al. Clinical Characteristics and Outcomes Associated With Oral Anticoagulant Use Among Patients Hospitalized With Intracerebral Hemorrhage. JAMA Netw. Open 2021, 4, e2037438. [Google Scholar] [CrossRef]
- Franco, L.; Paciaroni, M.; Enrico, M.L.; Scoditti, U.; Guideri, F.; Chiti, A.; De Vito, A.; Terruso, V.; Consoli, D.; Vanni, S.; et al. Mortality in patients with intracerebral hemorrhage associated with antiplatelet agents, oral anticoagulants or no antithrombotic therapy. Eur. J. Intern. Med. 2020, 75, 35–43. [Google Scholar] [CrossRef]
- Law, Z.K.; Desborough, M.; Roberts, I.; Al-Shahi Salman, R.; England, T.J.; Werring, D.J.; Robinson, T.; Krishnan, K.; Dineen, R.; Laska, A.C.; et al. Outcomes in Antiplatelet-Associated Intracerebral Hemorrhage in the TICH-2 Randomized Controlled Trial. J Am. Heart Assoc. 2021, 10, e019130. [Google Scholar] [CrossRef]
- Sandset, E.C.; Wang, X.; Carcel, C.; Sato, S.; Delcourt, C.; Arima, H.; Stapf, C.; Robinson, T.; Lavados, P.; Chalmers, J.; et al. Sex differences in treatment, radiological features and outcome after intracerebral haemorrhage: Pooled analysis of intensive blood pressure reduction in acute cerebral haemorrhage trials 1 and 2. Eur. Stroke J. 2020, 5, 345–350. [Google Scholar] [CrossRef]
- Rosenberg, G.A.; Mun-Bryce, S.; Wesley, M.; Kornfeld, M. Collagenase-induced intracerebral hemorrhage in rats. Stroke 1990, 21, 801–807. [Google Scholar] [CrossRef] [Green Version]
- Baron, J.C. Mapping the ischaemic penumbra with PET: Implications for acute stroke treatment. Cerebrovasc. Dis. 1999, 9, 193–201. [Google Scholar] [CrossRef]
- Tschoe, C.; Bushnell, C.D.; Duncan, P.W.; Alexander-Miller, M.A.; Wolfe, S.Q. Neuroinflammation after intracerebral hemorrhage and potential therapeutic targets. J. Stroke 2020, 22, 29–46. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-F.; Massey, J.; Osherov, A.; Angenendt da Costa, L.H.; Sansing, L.H. Bexarotene enhances macrophage erythrophagocytosis and hematoma clearance in experimental intracerebral hemorrhage. Stroke 2020, 51, 612–618. [Google Scholar] [CrossRef]
- Yu, A.Y.; Holodinsky, J.K.; Zerna, C.; Svenson, L.W.; Jetté, N.; Quan, H.; Hill, M.D. Use and Utility of Administrative Health Data for Stroke Research and Surveillance. Stroke 2016, 47, 1946–1952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ung, D.; Kim, J.; Thrift, A.G.; Cadilhac, D.A.; Andrew, N.E.; Sundararajan, V.; Kapral, M.K.; Reeves, M.; Kilkenny, M.F. Promising Use of Big Data to Increase the Efficiency and Comprehensiveness of Stroke Outcomes Research. Stroke 2019, 50, 1302–1309. [Google Scholar] [CrossRef] [PubMed]
- McCormick, N.; Bhole, V.; Lacaille, D.; Avina-Zubieta, J.A. Validity of diagnostic codes for acute stroke in administrative databases: A systematic review. PLoS ONE 2015, 10, e0135834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kokotailo, R.A.; Hill, M.D. Coding of stroke and stroke risk factors using international classification of diseases, revisions 9 and 10. Stroke 2005, 36, 1776–1781. [Google Scholar] [CrossRef] [Green Version]
- Hemphill, J.C., 3rd; Bonovich, D.C.; Besmertis, L.; Manley, G.T.; Johnston, S.C. The ICH score: A simple, reliable grading scale for intracerebral hemorrhage. Stroke 2001, 32, 891–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunt, W.E.; Hess, R.M. Surgical risk as related to time of intervention in the repair of intracranial aneurysms. J. Neurosurg. 1968, 28, 14–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sedova, P.; Brown, R.D., Jr.; Zvolsky, M.; Kadlecova, P.; Bryndziar, T.; Volny, O.; Weiss, V.; Bednarik, J.; Mikulik, R. Validation of stroke diagnosis in the national registry of hospitalized patients in the Czech Republic. J. Stroke Cerebrovasc. Dis. 2015, 24, 2032–2038. [Google Scholar] [CrossRef]
- Park, T.H.; Choi, J.C. Validation of stroke and thrombolytic therapy in Korean National Health Insurance claim data. J. Clin. Neurol. 2016, 12, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Hald, S.M.; Kring Sloth, C.; Hey, S.M.; Madsen, C.; Nguyen, N.; García Rodríguez, L.A.; Al-Shahi Salman, R.; Möller, S.; Poulsen, F.R.; Pottegård, A.; et al. Intracerebral hemorrhage: Positive predictive value of diagnosis codes in two nationwide Danish registries. Clin. Epidemiol. 2018, 10, 941–948. [Google Scholar] [CrossRef] [Green Version]
- Ryan, O.F.; Riley, M.; Cadilhac, D.A.; Andrew, N.E.; Breen, S.; Paice, K.; Shehata, S.; Sundararajan, V.; Lannin, N.A.; Kim, J.; et al. Factors associated with stroke coding quality: A comparison of registry and administrative data. J. Stroke Cerebrovasc. Dis. 2021, 30, 105469. [Google Scholar] [CrossRef]
- Medrano, I.H.; Guillán, M.; Masjuan, J.; Alonso Cánovas, A.; Gogorcena, M.A. Reliability of the minimum basic dataset for diagnoses of cerebrovascular disease. Neurologia 2017, 32, 74–80. [Google Scholar] [CrossRef]
- Khan, S.U.; Khan, M.Z.; Khan, M.U.; Khan, M.S.; Mamas, M.A.; Rashid, M.; Blankstein, R.; Virani, S.S.; Johansen, M.C.; Shapiro, M.D.; et al. Clinical and Economic Burden of Stroke Among Young, Midlife, and Older Adults in the United States, 2002–2017. Mayo Clin. Proc. Innov. Qual. Outcomes 2021, 5, 431–441. [Google Scholar] [CrossRef]
- George, M.G.; Tong, X.; Bowman, B.A. Prevalence of Cardiovascular Risk Factors and Strokes in Younger Adults. JAMA Neurol. 2017, 74, 695–703. [Google Scholar] [CrossRef]
- Tong, X.; George, M.G.; Gillespie, C.; Merritt, R. Trends in hospitalizations and cost associated with stroke by age, United States 2003–2012. Int. J. Stroke 2016, 11, 874–881. [Google Scholar] [CrossRef] [Green Version]
- Eyding, J.; Bartig, D.; Weber, R.; Katsanos, A.H.; Weimar, C.; Hacke, W.; Krogias, C. Inpatient TIA and stroke care in adult patients in Germany-retrospective analysis of nationwide administrative data sets of 2011 to 2017. Neurol. Res. Pract. 2019, 1, 39. [Google Scholar] [CrossRef] [Green Version]
- Hyeraci, G.; Spini, A.; Roberto, G.; Gini, R.; Bartolini, C.; Lucenteforte, E.; Corrao, G.; Rea, F. A Systematic Review of Case-Identification Algorithms Based on Italian Healthcare Administrative Databases for Three Relevant Diseases of the Cardiovascular System: Acute Myocardial Infarction, Ischemic Heart Disease, and Stroke. Epidemiol. Prev. 2019, 43, 37–50. [Google Scholar] [CrossRef]
- Lecoffre, C.; de Peretti, C.; Gabet, A.; Grimaud, O.; Woimant, F.; Giroud, M.; Béjot, Y.; Olié, V. National Trends in Patients Hospitalized for Stroke and Stroke Mortality in France, 2008 to 2014. Stroke 2017, 48, 2939–2945. [Google Scholar] [CrossRef]
- Roussot, A.; Cottenet, J.; Gadreau, M.; Giroud, M.; Béjot, Y.; Quantin, C. The use of national administrative data to describe the spatial distribution of in-hospital mortality following stroke in France, 2008–2011. Int. J. Health Geogr. 2016, 15, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Women | Men | ||
---|---|---|---|
Age Groups | n (Inc/105 Women) | n (Inc/105 Men) | p-Value |
18–54 years | 3787 (10.8) | 5134 (14.5) | <0.001 |
55–69 years | 4948 (38.9) | 8256 (68.8) | <0.001 |
70–84 years | 10,540 (123.7) | 13,469 (201.8) | <0.001 |
≥85 years | 6084 (213.0) | 5009 (346.3) | <0.001 |
All age groups | 25,359 (43.0) | 31,868 (57.3) | <0.001 |
Variables | Before PSM | After PSM | ||||
---|---|---|---|---|---|---|
Women | Men | p-Value | Women | Men | p-Value | |
Nontraumatic subarachnoid hemorrhage, n (%) | 6382 (25.2) | 4642 (14.6) | <0.001 | 6382 (25.2) | 4422 (17.44) | <0.001 |
Nontraumatic intracerebral hemorrhage, n (%) | 13,730 (54.1) | 17,759 (55.7) | <0.001 | 13,730 (54.1) | 14,326 (56.5) | <0.001 |
Other and unspecified nontraumatic intracranial hemorrhage, n(%) | 5247 (20.7) | 9467 (29.7) | <0.001 | 5247 (20.7) | 6611 (26.1) | <0.001 |
Age, mean (SD) | 72.74 (15.1) | 70.20 (14.4) | <0.001 | 72.74 (15.1) | 71.50 (13.8) | <0.001 |
18–54 years, n (%) | 3787 (14.9) | 5134 (16.1) | <0.001 | 3787 (14.9) | 3523 (13.9) | <0.001 |
55–69 years, n (%) | 4948 (19.5) | 8256 (25.9) | <0.001 | 4948 (19.5) | 6291 (24.8) | <0.001 |
70–84 years, n (%) | 10,540 (41.6) | 13,469 (42.3) | 0.091 | 10,540 (41.6) | 11,063 (43.6) | <0.001 |
≥85 years, n (%) | 6084 (24.0) | 5009 (15.7) | <0.001 | 6084 (24.0) | 4482 (17.7) | <0.001 |
CCI, mean (SD) | 0.67 (0.7) | 0.85 (0.76) | <0.001 | 0.67 (0.7) | 0.63 (0.6) | <0.001 |
CCI = 0, n (%) | 13,316 (52.5) | 14,202 (44.6) | <0.001 | 13,316 (52.5) | 13,449 (53.0) | 0.237 |
CCI = 1, n (%) | 8224 (32.4) | 10,856 (34.1) | <0.001 | 8224 (32.4) | 8600 (33.9) | <0.001 |
CCI > 1, n (%) | 3819 (15.1) | 6810 (21.4) | <0.001 | 3819 (15.1) | 3310 (13.1) | <0.001 |
Obesity, n (%) | 1377 (5.4) | 1631 (5.1) | 0.097 | 1377 (5.4) | 1159 (4.6) | <0.001 |
Hypertension, n (%) | 13,134 (51.8) | 17,045 (53.5) | <0.001 | 13,134 (51.8) | 13,548 (53.4) | <0.001 |
Lipid metabolism disorders, n (%) | 7374 (29.1) | 9453 (29.7) | 0.127 | 7374 (29.1) | 7092 (28.0) | 0.006 |
Alcohol abuse, n (%) | 411 (1.6) | 2971 (9.3) | <0.001 | 411 (1.6) | 1982 (7.8) | <0.001 |
Use of oral anticoagulants, n (%) | 3478 (13.71) | 4404 (13.82) | 0.718 | 3478 (13.71) | 3467 (13.67) | 0.887 |
Use of antiplatelet agents, n (%) | 1983 (7.82) | 3211 (10.08) | <0.001 | 1983 (7.82) | 2002 (7.89) | 0.754 |
Variables | Before PSM | After PSM | ||||
---|---|---|---|---|---|---|
Women | Men | p-Value | Women | Men | p-Value | |
Acute myocardial infarction, n (%) | 320 (1.3) | 1085 (3.4) | <0.001 | 320 (1.3) | 144 (0.6) | <0.001 |
Congestive heart failure, n (%) | 1020 (4.0) | 1237 (3.9) | 0.391 | 1020 (4.0) | 922 (3.6) | 0.023 |
Peripheral vascular disease, n (%) | 399 (1.6) | 1230 (3.9) | <0.001 | 399 (1.6) | 225 (0.9) | <0.001 |
Dementia, n (%) | 1916 (7.6) | 1390 (4.4) | <0.001 | 1916 (7.6) | 1314 (5.2) | <0.001 |
COPD, n (%) | 1340 (5.3) | 3016 (9.5) | <0.001 | 1340 (5.3) | 1198 (4.7) | 0.004 |
Rheumatoid disease, n (%) | 408 (1.6) | 232 (0.7) | <0.001 | 408 (1.6) | 229 (0.9) | <0.001 |
Peptic ulcer, n (%) | 55 (0.2) | 138 (0.4) | <0.001 | 55 (0.2) | 49 (0.2) | 0.556 |
Diabetes, n (%) | 4475 (17.7) | 7449 (23.4) | <0.001 | 4475 (17.7) | 4884 (19.3) | <0.001 |
Hemiplegia/Paraplegia, n (%) | 4009 (15.8) | 5474 (17.2) | <0.001 | 4009 (15.8) | 4097 (16.2) | 0.286 |
Chronic renal disease, n (%) | 1615 (6.4) | 2619 (8.2) | <0.001 | 1615 (6.4) | 1612 (6.4) | 0.956 |
Chronic liver disease, n (%) | 777 (3.1) | 1670 (5.2) | <0.001 | 777 (3.1) | 778 (3.1) | 0.979 |
Cancer, n (%) | 440 (1.7) | 1113 (3.5) | <0.001 | 440 (1.7) | 344 (1.4) | 0.001 |
Metastatic cancer, n (%) | 251 (1.0) | 448 (1.4) | <0.001 | 251 (1.0) | 269 (1.1) | 0.428 |
AIDS, n (%) | 21 (0.9) | 94 (0.3) | <0.001 | 21 (0.9) | 5 (0.0) | 0.002 |
Atrial fibrillation, n (%) | 4644 (18.3) | 5715 (17.9) | 0.241 | 4644 (18.3) | 4533 (17.9) | 0.200 |
Anemia, n (%) | 726 (2.9) | 626 (2.0) | <0.001 | 726 (2.9) | 563 (2.2) | <0.001 |
Depression, n (%) | 1928 (7.6) | 960 (3.0) | <0.001 | 1928 (7.6) | 938 (3.7) | <0.001 |
Sepsis, n (%) | 254 (1.0) | 462 (1.5) | <0.001 | 254 (1) | 355 (1.4) | <0.001 |
Nosocomial pneumonia, n (%) | 421 (1.7) | 684 (2.2) | <0.001 | 421 (1.7) | 511 (2.0) | 0.003 |
Mechanical ventilation, n (%) | 3227 (12.7) | 4034 (12.7) | 0.811 | 3227 (12.7) | 3044 (12) | 0.014 |
Decompressive craniectomy, n (%) | 1262 (5.0) | 2052 (6.4) | <0.001 | 1262 (5.0) | 1578 (6.2) | <0.001 |
LOHS, median (IQR) | 8 (13) | 7 (12) | <0.001 | 8 (13) | 7 (12) | <0.001 |
In-hospital mortality, n (%) | 7344 (29.0) | 7719 (24.2) | <0.001 | 7344 (29.0) | 6019 (23.7) | <0.001 |
Variables | IHM Before PSM | IHM After PSM | ||||
---|---|---|---|---|---|---|
Women | Men | p-Value | Women | Men | p-Value | |
Nontraumatic subarachnoid hemorrhage, n (%) | 1478 (23.2) | 986 (21.2) | 0.017 | 1478 (23.2) | 912 (20.6) | 0.002 |
Nontraumatic intracerebral hemorrhage, n (%) | 4598 (33.5) | 5180 (29.2) | <0.001 | 4598 (33.5) | 4137 (28.9) | <0.001 |
Other and unspecified nontraumatic intracranial hemorrhage, n (%) | 1268 (24.2) | 1553 (16.4) | <0.001 | 1268 (24.2) | 970 (14.7) | <0.001 |
Age, mean (SD) | 77.55 (12.9) | 74.00 (13.3) | <0.001 | 77.55 (12.9) | 75.48 (12.6) | <0.001 |
18–54 years, n (%) | 544 (14.4) | 799 (15.6) | 0.118 | 544 (14.4) | 490 (13.9) | 0.576 |
55–69 years, n (%) | 1029 (20.8) | 1591 (19.3) | 0.033 | 1029 (20.8) | 1147 (18.2) | 0.001 |
70–84 years, n (%) | 3280 (31.1) | 3548 (26.3) | <0.001 | 3280 (31.1) | 2802 (25.3) | <0.001 |
≥85 years, n (%) | 2491 (40.9) | 1781 (35.6) | <0.001 | 2491 (40.9) | 1580 (35.3) | <0.001 |
CCI, mean (SD) | 0.76 (0.7) | 1.03 (0.9) | <0.001 | 0.76 (0.7) | 0.77 (0.7) | 0.665 |
CCI = 0, n (%) | 3484 (26.2) | 2856 (20.1) | <0.001 | 3484 (26.2) | 2747 (20.4) | <0.001 |
CCI = 1, n (%) | 2539 (30.9) | 2716 (25.0) | <0.001 | 2539 (30.9) | 2204 (25.6) | <0.001 |
CCI > 1, n (%) | 1321 (34.6) | 2147 (31.5) | 0.001 | 1321 (34.6) | 1068 (32.3) | 0.038 |
Obesity, n (%) | 404 (29.3) | 367 (22.5) | <0.001 | 404 (29.3) | 267 (23.0) | <0.001 |
Hypertension, n (%) | 3885 (29.6) | 3976 (23.3) | <0.001 | 3885 (29.6) | 3098 (22.9) | <0.001 |
Lipid metabolism disorders, n (%) | 2123 (28.8) | 2223 (23.5) | <0.001 | 2123 (28.8) | 1625 (22.9) | <0.001 |
Alcohol abuse, n (%) | 111 (27.0) | 703 (23.7) | 0.137 | 111 (27.0) | 443 (22.4) | 0.042 |
Use of oral anticoagulants, n (%) | 1131 (38.27) | 1390 (31.56) | <0.001 | 1131 (38.27) | 1267 (36.42) | 0.111 |
Use of antiplatelet agents, n (%) | 692 (34.89) | 965 (30.10) | 0.001 | 692 (34.89) | 1065 (33.17) | 0201 |
Variables | IHM Before PSM | IHM After PSM | ||||
---|---|---|---|---|---|---|
Women | Men | p-Value | Women | Men | p-Value | |
Acute myocardial infarction, n (%) | 122 (38.1) | 339 (31.2) | 0.021 | 122 (38.1) | 51 (35.4) | 0.577 |
Congestive heart failure, n (%) | 422 (41.4) | 485 (39.2) | 0.297 | 422 (41.4) | 354 (38.4) | 0.181 |
Peripheral vascular disease, n (%) | 113 (28.3) | 381 (31.0) | 0.316 | 113 (28.3) | 80 (35.6) | 0.061 |
Dementia, n (%) | 748 (39.0) | 497 (35.8) | 0.054 | 748 (39.0) | 471 (35.8) | 0.066 |
COPD, n (%) | 406 (30.3) | 900 (29.8) | 0.761 | 406 (30.3) | 387 (32.3) | 0.277 |
Rheumatoid disease, n (%) | 113 (27.7) | 57 (24.6) | 0.389 | 113 (27.7) | 56 (24.5) | 0.374 |
Peptic ulcer, n (%) | 12 (21.8) | 34 (24.6) | 0.678 | 12 (21.8) | 15 (30.6) | 0.309 |
Diabetes, n (%) | 1471 (32.9) | 1970 (26.5) | <0.001 | 1471 (32.9) | 1251 (25.6) | <0.001 |
Hemiplegia/Paraplegia, n (%) | 1032 (25.7) | 1255 (22.9) | 0.002 | 1032 (25.7) | 930 (22.7) | 0.001 |
Chronic renal disease, n (%) | 599 (37.1) | 901 (34.4) | 0.076 | 599 (37.1) | 537 (33.3) | 0.025 |
Chronic liver disease, n (%) | 273 (35.1) | 543 (32.5) | 0.201 | 273 (35.1) | 257 (33.0) | 0.382 |
Cancer, n (%) | 154 (35.0) | 399 (35.9) | 0.753 | 154 (35.0) | 137 (39.8) | 0.165 |
Metastatic cancer, n (%) | 123 (49.0) | 193 (43.1) | 0.131 | 123 (49.0) | 122 (45.4) | 0.405 |
AIDS, n (%) | 9 (42.9) | 30 (31.9) | 0.341 | 9 (42.9) | 2 (40.0) | 0.908 |
Atrial fibrillation, n (%) | 1821 (39.2) | 1991 (34.8) | <0.001 | 1821 (39.2) | 1575 (34.8) | <0.001 |
Anemia, n (%) | 204 (28.1) | 151 (24.1) | 0.098 | 204 (28.1) | 129 (22.9) | 0.035 |
Depression, n (%) | 493 (25.6) | 228 (23.8) | 0.287 | 493 (25.6) | 220 (23.5) | 0.219 |
Sepsis, n (%) | 135 (53.2) | 244 (52.8) | 0.931 | 135 (53.2) | 180 (50.7) | 0.552 |
Nosocomial pneumonia, n (%) | 134 (31.8) | 223 (32.6) | 0.790 | 134 (31.8) | 159 (31.1) | 0.815 |
Mechanical ventilation, n (%) | 1896 (58.8) | 2397 (59.4) | 0.566 | 1896 (58.8) | 1768 (58.1) | 0.589 |
Decompressive craniectomy, n (%) | 262 (20.8) | 321 (15.6) | <0.001 | 262 (20.8) | 225 (14.3) | <0.001 |
LOHS, median (IQR) | 3 (7) | 3 (7) | 0.897 | 3 (7) | 3 (7) | 0.766 |
Women | Men | Both | |
---|---|---|---|
Variables | OR (95% CI) | OR (95% CI) | OR (95% CI) |
18–54 years | 1 | 1 | 1 |
55–69 years | 1.67 (1.48–1.90) | 1.38 (1.24–1.53) | 1.57 (1.43–1.72) |
70–84 years | 4.02 (3.58–4.53) | 2.80 (2.53–3.10) | 3.45 (3.17–3.76) |
≥85 years | 7.73 (6.82–8.76) | 5.38 (4.80–6.04) | 6.72 (6.13–7.36) |
Obesity | 0.87 (0.82–0.93) | 0.88 (0.83–0.93) | 0.88 (0.84–0.92) |
Congestive heart failure | 1.26 (1.10–1.45) | 1.45 (1.27–1.65) | 1.33 (1.20–1.47) |
Peripheral vascular disease | NS | 1.20 (1.05–1.38) | NS |
Dementia | 1.41 (1.27–1.56) | 1.62 (1.44–1.83) | 1.51 (1.40–1.64) |
COPD | NS | 1.17 (1.04–1.41) | NS |
Diabetes | 1.10 (1.02–1.19) | 1.09 (1.02–1.16) | 1.06 (1.01–1.13) |
Chronic renal disease | NS | 1.34 (1.21–1.48) | 1.18 (1.08–1.29) |
Sepsis | 2.50 (1.88–3.32) | 2.83 (2.28–3.51) | 2.58 (2.15–3.11) |
Use of oral anticoagulants | 1.64(1.41–186) | 1.59(1.30–1.70) | 1.62(1.35–1.80) |
Use of antiplatelet agents | 1.36 (1.18–1.60) | 1.31(1.11–1.52) | 1.33 (1.15–1.51) |
Mechanical ventilation | 9.63 (8.77–10.59) | 11.61 (10.68-12.63) | 10.51 (9.82–11.24) |
Decompressive craniectomy | 0.49 (0.42–0.58) | 0.38 (0.33–0.43) | 0.41 (0.36–0.46) |
Women | NA | NA | 1.23 (1.18–1.28) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Miguel-Yanes, J.M.; Lopez-de-Andres, A.; Jimenez-Garcia, R.; Hernandez-Barrera, V.; de Miguel-Diez, J.; Méndez-Bailón, M.; Pérez-Farinós, N.; Muñoz-Rivas, N.; Carabantes-Alarcon, D.; López-Herranz, M. Incidence and Outcomes of Hemorrhagic Stroke among Adults in Spain (2016–2018) According to Sex: A Retrospective, Cohort, Observational, Propensity Score Matched Study. J. Clin. Med. 2021, 10, 3753. https://doi.org/10.3390/jcm10163753
de Miguel-Yanes JM, Lopez-de-Andres A, Jimenez-Garcia R, Hernandez-Barrera V, de Miguel-Diez J, Méndez-Bailón M, Pérez-Farinós N, Muñoz-Rivas N, Carabantes-Alarcon D, López-Herranz M. Incidence and Outcomes of Hemorrhagic Stroke among Adults in Spain (2016–2018) According to Sex: A Retrospective, Cohort, Observational, Propensity Score Matched Study. Journal of Clinical Medicine. 2021; 10(16):3753. https://doi.org/10.3390/jcm10163753
Chicago/Turabian Stylede Miguel-Yanes, Jose M., Ana Lopez-de-Andres, Rodrigo Jimenez-Garcia, Valentin Hernandez-Barrera, Javier de Miguel-Diez, Manuel Méndez-Bailón, Napoleón Pérez-Farinós, Nuria Muñoz-Rivas, David Carabantes-Alarcon, and Marta López-Herranz. 2021. "Incidence and Outcomes of Hemorrhagic Stroke among Adults in Spain (2016–2018) According to Sex: A Retrospective, Cohort, Observational, Propensity Score Matched Study" Journal of Clinical Medicine 10, no. 16: 3753. https://doi.org/10.3390/jcm10163753
APA Stylede Miguel-Yanes, J. M., Lopez-de-Andres, A., Jimenez-Garcia, R., Hernandez-Barrera, V., de Miguel-Diez, J., Méndez-Bailón, M., Pérez-Farinós, N., Muñoz-Rivas, N., Carabantes-Alarcon, D., & López-Herranz, M. (2021). Incidence and Outcomes of Hemorrhagic Stroke among Adults in Spain (2016–2018) According to Sex: A Retrospective, Cohort, Observational, Propensity Score Matched Study. Journal of Clinical Medicine, 10(16), 3753. https://doi.org/10.3390/jcm10163753