Novel Advances to Post-Stroke Aphasia Pharmacology and Rehabilitation
Abstract
:1. Introduction
2. Assessment and Aphasia Outcomes
3. Methods
4. Standard Care of Aphasia
4.1. Constraint-Induced Aphasia Therapy (CIAT)
4.2. Cognitive Neurorehabilitation
4.3. Telerehabilitation
4.4. Computer-Based Management
4.5. Melodic Intonation Therapy (MIT)
5. Pharmacotherapy as an SLT Enhancer
6. Non-Invasive Brain Stimulation (NIBS) as an SLT Enhancer
6.1. Transcranial Magnetic Stimulation (TMS)
6.2. Transcranial Direct Current Stimulation (tDCS)
7. Limitation/Discussion
8. General Conclusions
Funding
Conflicts of Interest
References
- Fridriksson, J.; Hillis, A.E. Current Approaches to the Treatment of Post-Stroke Aphasia. J. Stroke 2021, 23, 183–201. [Google Scholar] [CrossRef]
- McNeil, M.R.; Pratt, S.R. Defining aphasia: Some theoretical and clinical implications of operating from a formal definition. Aphasiology 2001, 15, 901–911. [Google Scholar] [CrossRef]
- Grossman, M.; Irwin, D.J. Primary Progressive Aphasia and Stroke Aphasia. Continuum 2018, 24, 745–767. [Google Scholar] [CrossRef]
- Osa García, A.; Brambati, S.M.; Brisebois, A.; Désilets-Barnabé, M.; Houzé, B.; Bedetti, C.; Rochon, E.; Leonard, C.; Desautels, A.; Marcotte, K. Predicting Early Post-stroke Aphasia Outcome From Initial Aphasia Severity. Front. Neurol. 2020, 11, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cramer, S.C. Treatments to Promote Neural Repair after Stroke. J. Stroke 2018, 20, 57–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Wang, X.; O’Connor, M.; Wang, G.; Han, F. Brain-Derived Neurotrophic Factor and Its Potential Therapeutic Role in Stroke Comorbidities. Neural Plast. 2020, 2020, 1969482. [Google Scholar] [CrossRef]
- Picano, C.; Quadrini, A.; Pisano, F.; Marangolo, P. Adjunctive Approaches to Aphasia Rehabilitation: A Review on Efficacy and Safety. Brain Sci. 2021, 11, 41. [Google Scholar] [CrossRef] [PubMed]
- Kreisel, S.H.; Bazner, H.; Hennerici, M.G. Pathophysiology of stroke rehabilitation: Temporal aspects of neuro-functional recovery. Cerebrovasc. Dis. 2006, 21, 6–17. [Google Scholar] [CrossRef]
- Crinion, J.T.; Leff, A.P. Recovery and treatment of aphasia after stroke: Functional imaging studies. Curr. Opin. Neurol. 2007, 20, 667–673. [Google Scholar] [CrossRef]
- Saur, D.; Lange, R.; Baumgaertner, A.; Schraknepper, V.; Willmes, K.; Rijntjes, M.; Weiller, C. Dynamics of language reorganization after stroke. Brain 2006, 129, 1371–1384. [Google Scholar] [CrossRef] [Green Version]
- El Hachioui, H.; Lingsma, H.F.; van de Sandt-Koenderman, M.E.; Dippel, D.W.; Koudstaal, P.J.; Visch-Brink, E.G. Recovery of aphasia after stroke: A 1-year follow-up study. J. Neurol. 2013, 260, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Rohde, A.; Worrall, L.; Godecke, E.; O’Halloran, R.; Farrell, A.; Massey, M. Diagnosis of aphasia in stroke populations: A systematic review of language tests. PLoS ONE 2018, 13, e0194143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier, E.L.; Sheppard, S.M.; Goldberg, E.B.; Head, C.R.; Ubellacker, D.M.; Walker, A.; Hillis, A.E. Naming errors and dysfunctional tissue metrics predict language recovery after acute left hemisphere stroke. Neuropsychologia 2020, 148, 107651. [Google Scholar] [CrossRef]
- El Hachioui, H.; Visch-Brink, E.G.; de Lau, L.M.; van de Sandt-Koenderman, M.W.; Nouwens, F.; Koudstaal, P.J.; Dippel, D.W. Screening tests for aphasia in patients with stroke: A systematic review. J. Neurol. 2017, 264, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Brady, M.C.; Kelly, H.; Godwin, J.; Enderby, P.; Campbell, P. Speech and language therapy for aphasia following stroke. Cochrane Database Syst. Rev. 2016, CD000425. [Google Scholar] [CrossRef] [Green Version]
- Kiran, S.; Thompson, C.K. Neuroplasticity of Language Networks in Aphasia: Advances, Updates, and Future Challenges. Front. Neurol. 2019, 10, 295. [Google Scholar] [CrossRef] [Green Version]
- Stephens, M. The Effectiveness of Speech and Language Therapy for Poststroke Aphasia. Am. J. Nurs. 2017, 117, 19. [Google Scholar] [CrossRef]
- Bhogal, S.K.; Teasell, R.; Speechley, M. Intensity of aphasia therapy, impact on recovery. Stroke 2003, 34, 987–993. [Google Scholar] [CrossRef] [PubMed]
- Thiel, L.; Sage, K.; Conroy, P. Comparing uni-modal and multi-modal therapies for improving writing in acquired dysgraphia after stroke. Neuropsychol. Rehabil. 2016, 26, 345–373. [Google Scholar] [CrossRef] [Green Version]
- Baliki, M.N.; Babbitt, E.M.; Cherney, L.R. Brain network topology influences response to intensive comprehensive aphasia treatment. NeuroRehabilitation 2018, 43, 63–76. [Google Scholar] [CrossRef]
- Galletta, E.E.; Barrett, A.M. Impairment and Functional Interventions for Aphasia: Having it All. Curr. Phys. Med. Rehabil. Rep. 2014, 2, 114–120. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, J.; Bao, Y.; Xie, Q.; Xu, Y.; Wang, P. Constraint-induced aphasia therapy in post-stroke aphasia rehabilitation: A systematic review and meta-analysis of randomized controlled trials. PLoS ONE 2017, 12, e0183349. [Google Scholar] [CrossRef] [PubMed]
- Barker-Collo, S.L.; Feigin, V.L.; Lawes, C.M.; Parag, V.; Senior, H.; Rodgers, A. Reducing attention deficits after stroke using attention process training: A randomized controlled trial. Stroke 2009, 40, 3293–3298. [Google Scholar] [CrossRef] [Green Version]
- Loetscher, T.; Potter, K.J.; Wong, D.; das Nair, R. Cognitive rehabilitation for attention deficits following stroke. Cochrane Database Syst. Rev. 2019, CD002842. [Google Scholar] [CrossRef]
- Niendam, T.A.; Laird, A.R.; Ray, K.L.; Dean, Y.M.; Glahn, D.C.; Carter, C.S. Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn. Affect. Behav. Neurosci. 2012, 12, 241–268. [Google Scholar] [CrossRef] [PubMed]
- Andreassen, H.K.; Kjekshus, L.E.; Tjora, A. Survival of the project: A case study of ICT innovation in health care. Soc. Sci. Med. 2015, 132, 62–69. [Google Scholar] [CrossRef]
- Brennan, D.M.; Barker, L.M. Human factors in the development and implementation of telerehabilitation systems. J. Telemed. Telecare 2008, 14, 55–58. [Google Scholar] [CrossRef]
- Palmer, R.; Witts, H.; Chater, T. What speech and language therapy do community dwelling stroke survivors with aphasia receive in the UK? PLoS ONE 2018, 13, e0200096. [Google Scholar] [CrossRef] [Green Version]
- Breitenstein, C.; Grewe, T.; Flöel, A.; Ziegler, W.; Springer, L.; Martus, P.; Huber, W.; Willmes, K.; Ringelstein, E.B.; Haeusler, K.G.; et al. Intensive speech and language therapy in patients with chronic aphasia after stroke: A randomised, open-label, blinded-endpoint, controlled trial in a health-care setting. Lancet 2017, 389, 1528–1538. [Google Scholar] [CrossRef] [Green Version]
- Diener, B.L.; Bischof-Rosarioz, J.A. Determining decision-making capacity in individuals with severe communication impairments after stroke: The role of augmentative-alternative communication (AAC). Top. Stroke Rehabil. 2004, 11, 84–88. [Google Scholar] [CrossRef]
- Haro-Martínez, A.M.; Lubrini, G.; Madero-Jarabo, R.; Díez-Tejedor, E.; Fuentes, B. Melodic intonation therapy in post-stroke nonfluent aphasia: A randomized pilot trial. Clin. Rehabil. 2019, 33, 44–53. [Google Scholar] [CrossRef]
- Van der Meulen, I.; van de Sandt-Koenderman, W.M.; Heijenbrok-Kal, M.H.; Visch-Brink, E.G.; Ribbers, G.M. The Efficacy and Timing of Melodic Intonation Therapy in Subacute Aphasia. Neurorehabilit. Neural Repair 2014, 28, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Rose, M.L.; Copland, D.; Nickels, L.; Togher, L.; Meinzer, M.; Rai, T.; Cadilhac, D.A.; Kim, J.; Foster, A.; Carragher, M.; et al. Constraint-induced or multi-modal personalized aphasia rehabilitation (COMPARE): A randomized controlled trial for stroke-related chronic aphasia. Int. J. Stroke 2019, 14, 972–976. [Google Scholar] [CrossRef] [PubMed]
- Dignam, J.; Copland, D.; McKinnon, E.; Burfein, P.; O’Brien, K.; Farrell, A.; Rodriguez, A.D. Intensive Versus Distributed Aphasia Therapy: A Nonrandomized, Parallel-Group, Dosage-Controlled Study. Stroke 2015, 46, 2206–2211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuksanović, J.; Milovanović, T.; Konstantinović, L.; Filipović, S.R. Effect of type of language therapy on expressive language skills in patients with post-stroke aphasia. Int. J. Lang. Commun. Disord. 2018, 53, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Nenert, R.; Allendorfer, J.B.; Martin, A.M.; Banks, C.; Ball, A.; Vannest, J.; Dietz, A.R.; Szaflarski, J.P. Neuroimaging Correlates of Post-Stroke Aphasia Rehabilitation in a Pilot Randomized Trial of Constraint-Induced Aphasia Therapy. Med. Sci. Monit. 2017, 23, 3489–3507. [Google Scholar] [CrossRef]
- Godecke, E.; Hird, K.; Lalor, E.E.; Rai, T.; Phillips, M.R. Very early poststroke aphasia therapy: A pilot randomized controlled efficacy trial. Int. J. Stroke 2012, 7, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Meinzer, M.; Mohammadi, S.; Kugel, H.; Schiffbauer, H.; Flöel, A.; Albers, J.; Kramer, K.; Menke, R.; Baumgärtner, A.; Knecht, S.; et al. Integrity of the hippocampus and surrounding white matter is correlated with language training success in aphasia. Neuroimage 2010, 53, 283–290. [Google Scholar] [CrossRef]
- Pulvermüller, F.; Neininger, B.; Elbert, T.; Mohr, B.; Rockstroh, B.; Koebbel, P.; Taub, E. Constraint-induced therapy of chronic aphasia after stroke. Stroke 2001, 32, 1621–1626. [Google Scholar] [CrossRef]
- Pulvermüller, F.; Berthier, M.L. Aphasia therapy on a neuroscience basis. Aphasiology 2008, 22, 563–599. [Google Scholar] [CrossRef]
- Pierce, J.E.; Menahemi-Falkov, M.; O’Halloran, R.; Togher, L.; Rose, M.L. Constraint and multimodal approaches to therapy for chronic aphasia: A systematic review and meta-analysis. Neuropsychol. Rehabil. 2019, 29, 1005–1041. [Google Scholar] [CrossRef]
- Barbay, M.; Diouf, M.; Roussel, M.; Godefroy, O.; GRECOGVASC Study Group. Systematic Review and Meta-Analysis of Prevalence in Post-Stroke Neurocognitive Disorders in Hospital-Based Studies. Dement. Geriatr. Cogn. Disord. 2018, 46, 322–334. [Google Scholar] [CrossRef]
- Ballard, C.; Rowan, E.; Stephens, S.; Kalaria, R.; Kenny, R.A. Prospective follow-up study between 3 and 15 months after stroke: Improvements and decline in cognitive function among dementia-free stroke survivors >75 years of age. Stroke 2003, 34, 2440–2444. [Google Scholar] [CrossRef] [PubMed]
- Sachdev, P.S.; Chen, X.; Brodaty, H.; Thompson, C.; Altendorf, A.; Wen, W. The determinants and longitudinal course of post-stroke mild cognitive impairment. J. Int. Neuropsychol. Soc. 2009, 15, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Ghafar, M.; Miptah, H.N.; O’Caoimh, R. Cognitive screening instruments to identify vascular cognitive impairment: A systematic review. Int. J. Geriatr. Psychiatry 2019, 34, 1114–1127. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Bai, Y. A Review of Exercise-Induced Neuroplasticity in Ischemic Stroke: Pathology and Mechanisms. Mol. Neurobiol. 2020, 57, 4218–4231. [Google Scholar] [CrossRef]
- De Lima, M.F.R.; Cavendish, B.A.; de Deus, J.S.; Buratto, L.G. Retrieval Practice in Memory- and Language-Impaired Populations: A Systematic Review. Arch. Clin. Neuropsychol. 2020, 35, 1078–1093. [Google Scholar] [CrossRef]
- Das Nair, R.; Cogger, H.; Worthington, E.; Lincoln, N.B. Cognitive rehabilitation for memory deficits after stroke. Cochrane Database Syst. Rev. 2016, 9, CD002293. [Google Scholar] [CrossRef]
- Cummings, J.L. Frontal-subcortical circuits and human behavior. Arch. Neurol. 1993, 50, 873–880. [Google Scholar] [CrossRef]
- Cicerone, K.D.; Goldin, Y.; Ganci, K.; Rosenbaum, A.; Wethe, J.V.; Langenbahn, D.M.; Malec, J.F.; Bergquist, T.F.; Kingsley, K.; Nagele, D.; et al. Evidence-Based Cognitive Rehabilitation: Systematic Review of the Literature from 2009 through 2014. Arch. Phys. Med. Rehabil. 2019, 100, 1515–1533. [Google Scholar] [CrossRef] [Green Version]
- Macoir, J.; Sauvageau, V.M.; Boissy, P.; Tousignant, M. In-Home Synchronous Telespeech Therapy to Improve Functional Communication in Chronic Poststroke Aphasia: Results from a Quasi-Experimental Study. Telemed. E Health 2017, 23, 630–639. [Google Scholar] [CrossRef]
- Woolf, C.; Caute, A.; Haigh, Z.; Galliers, J.; Wilson, S.; Kessie, A.; Hirani, S.; Hegarty, B.; Marshall, J. A comparison of remote therapy, face to face therapy and an attention control intervention for people with aphasia: A quasi-randomised controlled feasibility study. Clin. Rehabil. 2016, 30, 359–373. [Google Scholar] [CrossRef]
- Pugliese, M.; Wolff, A. The Value of Communication, Education, and Self-Management in Providing Guideline-Based Care: Lessons Learned from Musculoskeletal Telerehabilitation During the COVID-19 Crisis. HSS J. 2020, 16 (Suppl. 1), 160–163. [Google Scholar] [CrossRef]
- Øra, H.P.; Kirmess, M.; Brady, M.C.; Partee, I.; Hognestad, R.B.; Johannessen, B.B.; Thommessen, B.; Becker, F. The effect of augmented speech-language therapy delivered by telerehabilitation on poststroke aphasia-a pilot randomized controlled trial. Clin. Rehabil. 2020, 34, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Agostini, M.; Garzon, M.; Benavides-Varela, S.; De Pellegrin, S.; Bencini, G.; Rossi, G.; Rosadoni, S.; Mancuso, M.; Turolla, A.; Meneghello, F.; et al. Telerehabilitation in poststroke anomia. Biomed. Res. Int. 2014, 2014, 706909. [Google Scholar] [CrossRef] [PubMed]
- Meyer, A.M.; Getz, H.R.; Brennan, D.M.; Hu, T.M.; Friedman, R.B. Telerehabilitation of Anomia in Primary Progressive Aphasia. Aphasiology 2016, 30, 483–507. [Google Scholar] [CrossRef] [Green Version]
- Øra, H.P.; Kirmess, M.; Brady, M.C.; Sørli, H.; Becker, F. Technical Features, Feasibility, and Acceptability of Augmented Telerehabilitation in Post-stroke Aphasia-Experiences from a Randomized Controlled Trial. Front. Neurol. 2020, 11, 671. [Google Scholar] [CrossRef]
- Palmer, R.; Dimairo, M.; Cooper, C.; Enderby, P.; Brady, M.; Bowen, A.; Latimer, N.; Julious, S.; Cross, E.; Alshreef, A.; et al. Self-managed, computerised speech and language therapy for patients with chronic aphasia post-stroke compared with usual care or attention control (Big CACTUS): A multicentre, single-blinded, randomised controlled trial. Lancet Neurol. 2019, 18, 821–833. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.; Lynch, L.; Taylor, N. Effect of computer therapy in aphasia: A systematic review. Aphasiology 2016, 30, 211–244. [Google Scholar] [CrossRef]
- Van Der Meulen, I.; Van De Sandt-Koenderman, M.W.; Heijenbrok, M.H.; Visch-Brink, E.; Ribbers, G.M. Melodic Intonation Therapy in Chronic Aphasia: Evidence from a Pilot Randomized Controlled Trial. Front. Hum. Neurosci. 2016, 10, 533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saur, D.; Kreher, B.W.; Schnell, S.; Kümmerer, D.; Kellmeyer, P.; Vry, M.S.; Umarova, R.; Musso, M.; Glauche, V.; Abel, S.; et al. Ventral and dorsal pathways for language. Proc. Natl. Acad. Sci. USA 2008, 105, 18035–18040. [Google Scholar] [CrossRef] [Green Version]
- Chang, E.F.; Raygor, K.P.; Berger, M.S. Contemporary model of language organization: An overview for neurosurgeons. J. Neurosurg. 2015, 122, 250–261. [Google Scholar] [CrossRef]
- Simonyan, K.; Herscovitch, P.; Horwitz, B. Speech-induced striatal dopamine release is left lateralized and coupled to functional striatal circuits in healthy humans: A combined PET, fMRI and DTI study. Neuroimage 2013, 70, 21–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, S.K.; Leff, A.P. Dopaminergic therapy in aphasia. Aphasiology 2012, 28, 155–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Shu, B.; Zhang, D.; Huang, L.; Fu, Q.; Du, G. The Efficacy and Safety of Pharmacological Treatments for Post-stroke Aphasia. CNS Neurol. Disord. Drug Targets 2018, 17, 509–521. [Google Scholar] [CrossRef] [PubMed]
- Berthier, M.L.; Green, C.; Higueras, C.; Fernández, I.; Hinojosa, J.; Martín, M.C. A randomized, placebo-controlled study of donepezil in poststroke aphasia. Neurology 2006, 67, 1687–1689. [Google Scholar] [CrossRef]
- Woodhead, Z.V.; Crinion, J.; Teki, S.; Penny, W.; Price, C.J.; Leff, A.P. Auditory training changes temporal lobe connectivity in ‘Wernicke’s aphasia’: A randomised trial. J. Neurol. Neurosurg. Psychiatry 2017, 88, 586–594. [Google Scholar] [CrossRef]
- Berthier, M.L.; Green, C.; Lara, J.P.; Higueras, C.; Barbancho, M.A.; Dávila, G.; Pulvermüller, F. Memantine and constraint-induced aphasia therapy in chronic poststroke aphasia. Ann. Neurol. 2009, 65, 577–585. [Google Scholar] [CrossRef]
- Barbancho, M.A.; Berthier, M.L.; Navas-Sánchez, P.; Dávila, G.; Green-Heredia, C.; García-Alberca, J.M.; Ruiz-Cruces, R.; López-González, M.V.; Dawid-Milner, M.S.; Pulvermüller, F.; et al. Bilateral brain reorganization with memantine and constraint-induced aphasia therapy in chronic post-stroke aphasia: An ERP study. Brain Lang. 2015, 145, 1–10. [Google Scholar] [CrossRef]
- Walker-Batson, D.; Curtis, S.; Natarajan, R.; Ford, J.; Dronkers, N.; Salmeron, E.; Lai, J.; Unwin, D.H. A double-blind, placebo-controlled study of the use of amphetamine in the treatment of aphasia. Stroke 2001, 32, 2093–2098. [Google Scholar] [CrossRef] [Green Version]
- Keser, Z.; Dehgan, M.W.; Shadravan, S.; Yozbatiran, N.; Maher, L.M.; Francisco, G.E. Combined Dextroamphetamine and Transcranial Direct Current Stimulation in Poststroke Aphasia. Am. J. Phys. Med. Rehabil. 2017, 96, S141–S145. [Google Scholar] [CrossRef] [PubMed]
- Whiting, E.; Chenery, H.; Chalk, J.; Darnell, R.; Copland, D. Dexamphetamine enhances explicit new word learning for novel objects. Int. J. Neuropsychopharmacol. 2007, 10, 805–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNeil, M.R.; Doyle, P.J.; Spencer, K.A.; Goda, A.J.; Flores, D.; Small, S.L. A double-blind, placebo-controlled study of pharmacological and behavioural treatment of lexical-semantic deficits in aphasia. Aphasiology 1997, 11, 385–400. [Google Scholar] [CrossRef] [Green Version]
- De Deyn, P.P.; Reuck, J.D.; Deberdt, W.; Vlietinck, R.; Orgogozo, J.M. Treatment of acute ischemic stroke with piracetam. Members of the Piracetam in Acute Stroke Study (PASS) Group. Stroke 1997, 28, 2347–2352. [Google Scholar] [CrossRef] [PubMed]
- Huber, W. The role of piracetam in the treatment of acute and chronic aphasia. Pharmacopsychiatry 1999, 32 (Suppl. 1), 38–43. [Google Scholar] [CrossRef] [PubMed]
- Orgogozo, J.M. Piracetam in the treatment of acute stroke. Pharmacopsychiatry 1999, 32 (Suppl. 1), 25–32. [Google Scholar] [CrossRef]
- Kessler, J.; Thiel, A.; Karbe, H.; Heiss, W.D. Piracetam improves activated blood flow and facilitates rehabilitation of poststroke aphasic patients. Stroke 2000, 31, 2112–2116. [Google Scholar] [CrossRef] [Green Version]
- Seniów, J.; Litwin, M.; Litwin, T.; Leśniak, M.; Członkowska, A. New approach to the rehabilitation of post-stroke focal cognitive syndrome: Effect of levodopa combined with speech and language therapy on functional recovery from aphasia. J. Neurol. Sci. 2009, 283, 214–218. [Google Scholar] [CrossRef]
- Breitenstein, C.; Korsukewitz, C.; Baumgärtner, A.; Flöel, A.; Zwitserlood, P.; Dobel, C.; Knecht, S. L-dopa does not add to the success of high-intensity language training in aphasia. Restor. Neurol. Neurosci. 2015, 33, 115–120. [Google Scholar] [CrossRef]
- Leemann, B.; Laganaro, M.; Chetelat-Mabillard, D.; Schnider, A. Crossover trial of subacute computerized aphasia therapy for anomia with the addition of either levodopa or placebo. Neurorehabilit. Neural Repair 2011, 25, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.R.; Mlcoch, A.G.; Scolaro, C.; Moritz, T. Bromocriptine treatment of nonfluent aphasia. Neurology 1995, 45, 2170–2173. [Google Scholar] [CrossRef] [PubMed]
- Sabe, L.; Salvarezza, F.; García Cuerva, A.; Leiguarda, R.; Starkstein, S. A randomized, double-blind, placebo-controlled study of bromocriptine in nonfluent aphasia. Neurology 1995, 45, 2272–2274. [Google Scholar] [CrossRef]
- Ashtary, F.; Janghorbani, M.; Chitsaz, A.; Reisi, M.; Bahrami, A. A randomized, double-blind trial of bromocriptine efficacy in nonfluent aphasia after stroke. Neurology 2006, 66, 914–916. [Google Scholar] [CrossRef]
- Bragoni, M.; Altieri, M.; Di Piero, V.; Padovani, A.; Mostardini, C.; Lenzi, G.L. Bromocriptine and speech therapy in non-fluent chronic aphasia after stroke. Neurol. Sci. 2000, 21, 19–22. [Google Scholar] [CrossRef]
- Brefel-Courbon, C.; Payoux, P.; Ory, F.; Sommet, A.; Slaoui, T.; Raboyeau, G.; Lemesle, B.; Puel, M.; Montastruc, J.L.; Demonet, J.F.; et al. Clinical and imaging evidence of zolpidem effect in hypoxic encephalopathy. Ann. Neurol. 2007, 62, 102–105. [Google Scholar] [CrossRef] [PubMed]
- Cohen, L.; Chaaban, B.; Habert, M.O. Transient improvement of aphasia with zolpidem. N. Engl. J. Med. 2004, 350, 949–950. [Google Scholar] [CrossRef] [Green Version]
- Chollet, F.; Tardy, J.; Albucher, J.F.; Thalamas, C.; Berard, E.; Lamy, C.; Bejot, Y.; Deltour, S.; Jaillard, A.; Niclot, P.; et al. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): A randomised placebo-controlled trial. Lancet Neurol. 2011, 10, 123–130. [Google Scholar] [CrossRef]
- Jorge, R.E.; Acion, L.; Moser, D.; Adams, H.P.; Robinson, R.G. Escitalopram and enhancement of cognitive recovery following stroke. Arch. Gen. Psychiatry 2010, 67, 187–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collaboration, E.T. Safety and efficacy of fluoxetine on functional recovery after acute stroke (EFFECTS): A randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2020, 19, 661–669. [Google Scholar] [CrossRef]
- Whiting, E.; Chenery, H.J.; Chalk, J.; Copland, D.A. Dexamphetamine boosts naming treatment effects in chronic aphasia. J. Int. Neuropsychol. Soc. 2007, 13, 972–979. [Google Scholar] [CrossRef]
- Enderby, P.; Broeckx, J.; Hospers, W.; Schildermans, F.; Deberdt, W. Effect of piracetam on recovery and rehabilitation after stroke: A double-blind, placebo-controlled study. Clin. Neuropharmacol. 1994, 17, 320–331. [Google Scholar] [CrossRef]
- Güngör, L.; Terzi, M.; Onar, M.K. Does long term use of piracetam improve speech disturbances due to ischemic cerebrovascular diseases? Brain Lang. 2011, 117, 23–27. [Google Scholar] [CrossRef]
- Hong, J.M.; Shin, D.H.; Lim, T.S.; Lee, J.S.; Huh, K. Galantamine administration in chronic post-stroke aphasia. J. Neurol. Neurosurg. Psychiatry 2012, 83, 675–680. [Google Scholar] [CrossRef]
- Tsikunov, S.G.; Belokoskova, S.G. Psychophysiological analysis of the influence of vasopressin on speech in patients with post-stroke aphasias. Span. J. Psychol. 2007, 10, 178–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beversdorf, D.Q.; Sharma, U.K.; Phillips, N.N.; Notestine, M.A.; Slivka, A.P.; Friedman, N.M.; Schneider, S.L.; Nagaraja, H.N.; Hillier, A. Effect of propranolol on naming in chronic Broca’s aphasia with anomia. Neurocase 2007, 13, 256–259. [Google Scholar] [CrossRef] [PubMed]
- Martins, I.P.; Fonseca, J.; Morgado, J.; Leal, G.; Farrajota, L.; Fonseca, A.C.; Melo, T.P. Language improvement one week after thrombolysis in acute stroke. Acta Neurol. Scand. 2017, 135, 339–345. [Google Scholar] [CrossRef]
- Yamada, N.; Kakuda, W.; Yamamoto, K.; Momosaki, R.; Abo, M. Atomoxetine administration combined with intensive speech therapy for post-stroke aphasia: Evaluation by a novel SPECT method. Int. J. Neurosci. 2016, 126, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Khatoonabadi, A.R. The Effect of Pharmacotherapy Combined with Speech Therapy on Functional Recovery from Aphasia. Austin J. Clin. Neurol. 2017, 4, 1125. [Google Scholar] [CrossRef]
- Shah, P.P.; Szaflarski, J.P.; Allendorfer, J.; Hamilton, R.H. Induction of neuroplasticity and recovery in post-stroke aphasia by non-invasive brain stimulation. Front. Hum. Neurosci. 2013, 7, 888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chieffo, R.; Giatsidis, F.; Santangelo, R.; Alyagon, U.; Comola, M.; Zangen, A.; Comi, G.; Leocani, L. Repetitive Transcranial Magnetic Stimulation with H-Coil Coupled with Cycling for Improving Lower Limb Motor Function After Stroke: An Exploratory Study. Neuromodulation 2020, 24, 916–922. [Google Scholar] [CrossRef]
- Kim, W.S.; Kwon, B.S.; Seo, H.G.; Park, J.; Paik, N.J. Low-Frequency Repetitive Transcranial Magnetic Stimulation Over Contralesional Motor Cortex for Motor Recovery in Subacute Ischemic Stroke: A Randomized Sham-Controlled Trial. Neurorehabilit. Neural Repair 2020, 34, 856–867. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yin, M.; Luo, J.; Huang, L.; Zhang, S.; Pan, C.; Hu, X. Effects of transcranial magnetic stimulation on the performance of the activities of daily living and attention function after stroke: A randomized controlled trial. Clin. Rehabil. 2020, 34, 1465–1473. [Google Scholar] [CrossRef] [PubMed]
- Zanardi, R.; Poletti, S.; Prestifilippo, D.; Attanasio, F.; Barbini, B.; Colombo, C. Transcranial direct current stimulation: A novel approach in the treatment of vascular depression. Brain Stimul. 2020, 13, 1559–1565. [Google Scholar] [CrossRef]
- Chang, M.C.; Choo, Y.J.; Park, D. The effect of Repetitive Transcranial Magnetic Stimulation on Motor Recovery Can be Different According to Post-Stroke Periods. Am. J. Phys. Med. Rehabil. 2020, 100, e34–e36. [Google Scholar] [CrossRef]
- Rossi, S.; Hallett, M.; Rossini, P.M.; Pascual-Leone, A.; Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 2009, 120, 2008–2039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lefaucheur, J.P.; Aleman, A.; Baeken, C.; Benninger, D.H.; Brunelin, J.; Di Lazzaro, V.; Filipović, S.R.; Grefkes, C.; Hasan, A.; Hummel, F.C.; et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clin. Neurophysiol. 2020, 131, 474–528. [Google Scholar] [CrossRef] [PubMed]
- Berube, S.; Hillis, A.E. Advances and Innovations in Aphasia Treatment Trials. Stroke 2019, 50, 2977–2984. [Google Scholar] [CrossRef]
- Li, T.; Zeng, X.; Lin, L.; Xian, T.; Chen, Z. Effects of repetitive transcranial magnetic stimulation with different frequencies on post-stroke aphasia: A PRISMA-compliant meta-analysis. Medicine 2020, 99, e20439. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qu, Y.; Yuan, M.; Du, T. Low-frequency repetitive transcranial magnetic stimulation for patients with aphasia after stoke: A meta-analysis. J. Rehabil. Med. 2015, 47, 675–681. [Google Scholar] [CrossRef] [Green Version]
- Bucur, M.; Papagno, C. Are transcranial brain stimulation effects long-lasting in post-stroke aphasia? A comparative systematic review and meta-analysis on naming performance. Neurosci. Biobehav. Rev. 2019, 102, 264–289. [Google Scholar] [CrossRef]
- Buchwald, A.; Khosa, N.; Rimikis, S.; Duncan, E.S. Behavioral and neurological effects of tDCS on speech motor recovery: A single-subject intervention study. Brain Lang. 2020, 210, 104849. [Google Scholar] [CrossRef] [PubMed]
- Webster, B.R.; Celnik, P.A.; Cohen, L.G. Noninvasive brain stimulation in stroke rehabilitation. NeuroRx 2006, 3, 474–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bikson, M.; Grossman, P.; Thomas, C.; Zannou, A.L.; Jiang, J.; Adnan, T.; Mourdoukoutas, A.P.; Kronberg, G.; Truong, D.; Boggio, P.; et al. Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016. Brain Stimul. 2016, 9, 641–661. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wu, D.; Cheng, Y.; Song, W.; Yuan, Y.; Zhang, X.; Zhang, D.; Zhang, T.; Wang, Z.; Tang, J.; et al. Effects of Transcranial Direct Current Stimulation on Apraxia of Speech and Cortical Activation in Patients with Stroke: A Randomized Sham-Controlled Study. Am. J. Speech Lang. Pathol. 2019, 28, 1625–1637. [Google Scholar] [CrossRef] [PubMed]
- Pestalozzi, M.I.; Di Pietro, M.; Martins Gaytanidis, C.; Spierer, L.; Schnider, A.; Chouiter, L.; Colombo, F.; Annoni, J.M.; Jost, L.B. Effects of Prefrontal Transcranial Direct Current Stimulation on Lexical Access in Chronic Poststroke Aphasia. Neurorehabilit. Neural Repair 2018, 32, 913–923. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.R.D.; Mac-Kay, A.P.M.G.; Chao, J.C.; Santos, M.D.D.; Gagliadi, R.J. Transcranial direct current stimulation: A study on naming performance in aphasic individuals. Codas 2018, 30, e20170242. [Google Scholar] [CrossRef] [Green Version]
- Fridriksson, J.; Rorden, C.; Elm, J.; Sen, S.; George, M.S.; Bonilha, L. Transcranial Direct Current Stimulation vs. Sham Stimulation to Treat Aphasia After Stroke: A Randomized Clinical Trial. JAMA Neurol. 2018, 75, 1470–1476. [Google Scholar] [CrossRef]
- Santos, M.D.D.; Cavenaghi, V.B.; Mac-Kay, A.P.M.G.; Serafim, V.; Venturi, A.; Truong, D.Q.; Huang, Y.; Boggio, P.S.; Fregni, F.; Simis, M.; et al. Non-invasive brain stimulation and computational models in post-stroke aphasic patients: Single session of transcranial magnetic stimulation and transcranial direct current stimulation. A randomized clinical trial. Sao Paulo Med. J. 2017, 135, 475–480. [Google Scholar] [CrossRef]
- Elsner, B.; Kugler, J.; Mehrholz, J. Transcranial direct current stimulation (tDCS) for improving aphasia after stroke: A systematic review with network meta-analysis of randomized controlled trials. J. NeuroEngineering Rehabil. 2020, 17, 88. [Google Scholar] [CrossRef]
- Elsner, B.; Kugler, J.; Pohl, M.; Mehrholz, J. Transcranial direct current stimulation (tDCS) for improving aphasia in adults with aphasia after stroke. Cochrane Database Syst. Rev. 2019, 5, CD009760. [Google Scholar] [CrossRef]
- Rosso, C.; Arbizu, C.; Dhennain, C.; Lamy, J.C.; Samson, Y. Repetitive sessions of tDCS to improve naming in post-stroke aphasia: Insights from an individual patient data (IPD) meta-analysis. Restor. Neurol. Neurosci. 2018, 36, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Shah-Basak, P.P.; Wurzman, R.; Purcell, J.B.; Gervits, F.; Hamilton, R. Fields or flows? A comparative metaanalysis of transcranial magnetic and direct current stimulation to treat post-stroke aphasia. Restor. Neurol. Neurosci. 2016, 34, 537–558. [Google Scholar] [CrossRef]
- Biou, E.; Cassoudesalle, H.; Cogné, M.; Sibon, I.; De Gabory, I.; Dehail, P.; Aupy, J.; Glize, B. Transcranial direct current stimulation in post-stroke aphasia rehabilitation: A systematic review. Ann. Phys. Rehabil. Med. 2019, 62, 104–121. [Google Scholar] [CrossRef]
- Cherney, L.R.; van Vuuren, S. Telerehabilitation, virtual therapists, and acquired neurologic speech and language disorders. Semin. Speech Lang. 2012, 33, 243–257. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.J.; Chun, M.H. Combination transcranial direct current stimulation and virtual reality therapy for upper extremity training in patients with subacute stroke. Arch. Phys. Med. Rehabil. 2014, 95, 431–438. [Google Scholar] [CrossRef]
- Cassani, R.; Novak, G.S.; Falk, T.H.; Oliveira, A.A. Virtual reality and non-invasive brain stimulation for rehabilitation applications: A systematic review. J. Neuroeng. Rehabil. 2020, 17, 147. [Google Scholar] [CrossRef]
- Yao, X.; Cui, L.; Wang, J.; Feng, W.; Bao, Y.; Xie, Q. Effects of transcranial direct current stimulation with virtual reality on upper limb function in patients with ischemic stroke: A randomized controlled trial. J. Neuroeng. Rehabil 2020, 17, 73. [Google Scholar] [CrossRef] [PubMed]
- Sheehy, L.; Taillon-Hobson, A.; Sveistrup, H.; Bilodeau, M.; Yang, C.; Welch, V.; Hossain, A.; Finestone, H. Home-based virtual reality training after discharge from hospital-based stroke rehabilitation: A parallel randomized feasibility trial. Trials 2019, 20, 333. [Google Scholar] [CrossRef] [PubMed]
Scale | Time of Examination | Tested Language Functions | Identifiable Types of Aphasia |
---|---|---|---|
FAST (The Frenchay Aphasia Screening Test) | 5–10 min | understanding spoken language production, reading, writing | presence of aphasia |
MAST (The Mississippi Aphasia Screening Test) | 5–15 min | understanding spoken language production, reading, writing | presence of aphasia |
BDAE (Boston Diagnostic Aphasia Examination) | 20–45 min (for the shortened version) 2–6 h (for the extended version) | understanding spoken language production, reading, writing | all types of aphasia: Broca’s aphasia, Wernicke’s aphasia, anomic aphasia, global aphasia, isolation, transcortical motor aphasia, transcortical sensory aphasia, conduction aphasia |
WAB (The Western Aphasia Battery) | 30–60 min | understanding spoken language production, reading, writing | all types of aphasia |
PALPA (The Psycholinguistic Assessments of Language Processing) | difficult to estimate, depends on the choice of subtest | understanding reading, writing | assess language processing abilities in aphasic patients |
BNT (The Boston Naming Test) | 20 min | picture naming | all types of aphasia |
TOKEN TEST | 10–30 min | understanding | all types of aphasia |
CAT (The Comprehensive Aphasia Test) | 90–120 min | understanding spoken language production, reading, writing | all types of aphasia |
Methods | Major Characteristics | Advantages | Limitations | ||
---|---|---|---|---|---|
SLT (Speech and language therapy) | Conventional SLT | Facilitating communication with the environment in everyday life situations. | The most common rehabilitation method of PSA. If treatment is not conducted from the early phase of the stroke, then optimal benefits for the patient can be achieved in the chronic phase. | The optimal intensity and dose of STL has not been determined. There is no consensus on the timing of treatment initiation and its continuation. | [17,18] |
M-MAT (Multi-Modal Aphasia Therapy) | The use of all verbal and non-verbal strategies available to the patient to increase the effectiveness of communicating with the environment. | Applied in the treatment of severe motor aphasia and/or transcortical sensory aphasia. | The need for further clinical trials on a larger group of PSA. | [19] | |
ICAP (The Intensive Comprehensive Aphasia Program) | Applied in mild to moderate aphasias, from the subacute to the chronic stroke phase. | Intensive exercises individually adjusted to the disturbed functions, as well as exercises of speech functionality. Variety of techniques, including computer programs, psychoeducational techniques, and group activities. | The need for further clinical trials on a larger group of PSA. | [20] | |
LIBT (Language Impairment-Based Therapy) | Progressive training of impaired linguistic functions related to the level depending on the patient’s clinical picture (semantic, phonological, syntactic, lexical, and motor speech realization). | Applied in the treatment of various types of aphasia in each stage of the disease (from subacute to chronic). | The need for further clinical trials on a larger group of PSA. | [21] | |
CIAT (Constraint-induced aphasia therapy) | Communicating only with the use of language, without the use of non-verbal forms of communication. Time-limited, intensive form of therapy that is conducted for 3–4 h a day for several days or weeks. | Applied in the treatment of aphasia with partially preserved expressive language skills, regardless of the stage of the stroke (from subacute to chronic). | The need for further clinical trials on a larger group of PSA. | [22] | |
Cognitive neurorehabilitation | Cognitive disorders, in particular memory and concentration disorders, are related to language functions. | A beneficial effect on the independence of the PSA. | [23,24,25] | ||
Telerehabilitation | Using videoconference or telephone conversation in PSA therapy. | Important therapeutic tool for people who have limited access to conventional therapy for health; geographic or financial reasons. Strongly recommended in the literature, due to the increase in both the availability and effectiveness of therapy. | Designing a therapeutic program using telerehabilitation requires consulting the skills and needs of PSA in order to eliminate all potential barriers related to technology. | [26,27] | |
Computer based management | The use of IT tools to conduct PSA therapy. | Variety of short- and long-term therapy. Low costs and effectiveness. Enabling therapy not only under the supervision of speech therapists, but also at home, under the supervision of people from the immediate surroundings. | The need for further clinical trials on a larger group of PSA. | [28,29] | |
AAC (Augmentative and Alternative Communication) | Non-verbal communication strategies due to the inability to communicate verbally. | Applied temporarily during the early stroke when the aphasic disorder is most severe, or for a longer period during the chronic stroke phase, when the language impairment is deeply established. Used in severe aphasia, mainly in motor, but also in sensory aphasia. | The need for further clinical trials on a larger group of PSA. | [30] | |
MIT (melodic intonation therapy) | Main emphasis on the prosody of speech by using the extra-linguistic features of spoken language, such as intonation, rhythm and emphasis | Applied in all phases of stroke, mainly in non-fluent Broca's aphasia, most often in patients with left hemispheric ischemic damage Reducing left hemisphere dependence by involving the right cerebral hemisphere, in particular pars traingularis and the sensorimotor region by tapping rhythmically with the left hand, which helps to better control mouth movements | The need for further clinical trials on a larger group of PSA | [31,32] |
Drug | Positive Effect on PSA Observed | Negative or No Positive Effect on PSA Observed | Adverse Effects |
---|---|---|---|
DONEPEZIL | Zhang et al.; meta-analysis of 5 studies with 277 patient [65] Berthier et al.; randomized controlled trial; n = 13; chronic stage, dose up to 10 mg; period 16 weeks [66] | Woodhead et al.; baseline-controlled, crossover study, n = 20; chronic stage, period 5 weeks [67] |
|
MEMANTINE | Berthier et al.; randomized, double-blind, placebo-controlled, n = 28; dose 20 mg; period 16 weeks; chronic stage [68] Barbarancho et al.; randomized, double-blinded study, n = 27; dose, period, chronic stage [69] | ||
AMPHETAMINE | Keser et al.; randomized study, n = 10, period 1 day, chronic stage [71] Walker-Batson et al.; prospective, double-blinded study, n = 21; dose:10 mg; period 5 weeks; subacute stroke [70] Whiting et al.; double-blind, placebo-controlled, crossover design; n = 2, chronic stage [90] | McNeil et al.; crossover, multiple-baseline study; n = 2, chronic stage [73] |
|
LEVODOPA | Seniów et al.; randomized study; n = 39; dose: 5 × 100 mg; period: 3 weeks; subacute stroke [78] | Breitenstein et al.; double-blind randomized placebo controlled study; n = 10, chronic stage, period 10 days [79] Leemann et al.; double-blind multiple case study, n = 12, subacute stage, dose 100 mg, period 2 weeks [80] |
|
PIRACETAM | Huber et al., Orgogozo et al.; post-hoc analysis of multicenter double-blind trial; n = 927; dose 12 g; period 8 weeks, acute stage [75,76] Enderby et al.; double-blind placebo-controlled randomized study, n = 158, period 12 weeks; acute stage [91] Kessler et al.; prospective, double-blind, placebo-controlled study, n = 24, dose 2,4 g, period 6 weeks; post-acute/chronic stage [77] | De Deyn et al.; multicenter double-blind trial; n = 927; dose 12 g; period 8 weeks, acute stage [74] Güngör et al.; randomized, double-blind study, n = 30, dose 4,8g, period 6 months, chronic stage [92] |
|
FLUOXETINE | EFFECTS 2020; randomized, double-blind placebo controlled trial, n = 1500; dose 20 mg, period 6 months, acute stage [89] |
| |
BROMOCRIPTINE | Bragoni et al.; prospective, double-blind, placebo-controlled study; n = 11, chronic stage; dose: up to 30 mg; period 60 days [84] | Ashtary et al.; double-blind, placebo controlled study, n = 38, dose 10 mg, period 4 months, acute stage [83] |
|
GALANTAMINE | Hong et al.; prospective study; n = 45, dose up to 16 mg; period 12 weeks; chronic stage [93] |
| |
DESMOPRESIN | Tsikunov and Belekoskova; (intranasal usage); single cohort crossover design study, n = 26, chronic stage [94] |
| |
PROPRANOLOL | Beversdorf et al.; double-blind crossover study, dose 40 mg; chronic stage [95] |
| |
tPA (TISSUE PLASMINOGEN ACTIVATOR) | Martins et al.; prospective study, n = 228; intravenous thrombolysis bolus dose depended on weight; acute stage [96] | ||
ATOMOXETINE | Yamada et al.; clinical study; n = 4, dose 120 mg, 3 weeks, subacute stages [97] |
| |
CITICOLINE | Alizadeh et al.; case report, 3 weeks, post-acute stage [98] |
|
Methods | Major Characteristics | Advantages | Limitations | |
---|---|---|---|---|
rTMS (repetitive transcranial magnetic stimulation) | Based on generating a magnetic pulse that induces power in various regions of the cerebral cortex. The rTMS procedure consists of regularly applied pulses of a given frequency within approximately 15 min. Depending on the frequency used, there is low-frequency stimulation (<1 Hz), which inhibits cortical excitability, and high-frequency stimulation (>1 Hz), which increases cortical excitability. | Balance the excitability of both hemispheres, as well as realign the linguistic network. | The need to establish the optimal treatment protocol and to take into account individual variability. | [100,101,102] |
tDCS (transcranial direct current stimulation) | Non-invasive and safe therapeutic technique for stimulating the brain. This enables the polarization of the cell membranes of neurons, increasing or decreasing the level of cortical excitation. The nature of the induced cortical lesion depends on the electrode pole. | Normalization of brain activity promotes self-recovery. | The need for further clinical trials on a larger group of PSA. | [103] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cichon, N.; Wlodarczyk, L.; Saluk-Bijak, J.; Bijak, M.; Redlicka, J.; Gorniak, L.; Miller, E. Novel Advances to Post-Stroke Aphasia Pharmacology and Rehabilitation. J. Clin. Med. 2021, 10, 3778. https://doi.org/10.3390/jcm10173778
Cichon N, Wlodarczyk L, Saluk-Bijak J, Bijak M, Redlicka J, Gorniak L, Miller E. Novel Advances to Post-Stroke Aphasia Pharmacology and Rehabilitation. Journal of Clinical Medicine. 2021; 10(17):3778. https://doi.org/10.3390/jcm10173778
Chicago/Turabian StyleCichon, Natalia, Lidia Wlodarczyk, Joanna Saluk-Bijak, Michal Bijak, Justyna Redlicka, Leslaw Gorniak, and Elzbieta Miller. 2021. "Novel Advances to Post-Stroke Aphasia Pharmacology and Rehabilitation" Journal of Clinical Medicine 10, no. 17: 3778. https://doi.org/10.3390/jcm10173778
APA StyleCichon, N., Wlodarczyk, L., Saluk-Bijak, J., Bijak, M., Redlicka, J., Gorniak, L., & Miller, E. (2021). Novel Advances to Post-Stroke Aphasia Pharmacology and Rehabilitation. Journal of Clinical Medicine, 10(17), 3778. https://doi.org/10.3390/jcm10173778