Computed Tomography in Limb Salvage and Deformity Correction—3D Assessment, Indications, Radiation Exposure, and Safety Considerations
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patients
2.2. CT Evaluation
2.3. Radiation Exposure
2.4. Indications
2.4.1. CT Angiography
2.4.2. Non-Union Evaluation
2.4.3. Axis and Alignment
2.4.4. Surgical Planning
2.4.5. Leg Length Measurement
2.4.6. Rotational CT/Torsion CT
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CT | Computer Tomography |
CTA | Computer Tomography Angiography |
MVA | Motor vehicle accident |
MCA | Motorcycle accident |
IA | Industrial accident |
GSFx | Gunshot fracture |
TSF | Taylor Spatial Frame |
DCO | Damage Control Orthopedics |
tib–fib | tibial–fibular |
Fx | Fracture |
PA | Pseudarthrosis |
ped. | Pedestrian |
m | male |
f | female |
ED | Effective Dose |
DLP | dose length product |
VRT | Volume Rendering Technique |
LLD | Limb length discrepancy |
mSV | Millisievert |
MRI | Magnetic Resonance Imaging |
References
- Koettstorfer, J.; Hofbauer, M.; Wozasek, G.E. Successful limb salvage using the two-staged technique with internal fixation after osteodistraction in an effort to treat large segmental bone defects in the lower extremity. Arch. Orthop. Trauma Surg. 2012, 132, 1399–1405. [Google Scholar] [CrossRef]
- Adibi, A.; Krishnam, M.S.; Dissanayake, S.; Plotnik, A.N.; Mohajer, K.; Arellano, C.; Ruehm, S.G. Computed tomography angiography of lower extremities in the emergency room for evaluation of patients with gunshot wounds. Eur. Radiol. 2014, 24, 1586–1593. [Google Scholar] [CrossRef]
- Braunstein, E.M.; Goldstein, S.A.; Ku, J.; Smith, P.; Matthews, L.S. Computed tomography and plain radiography in experimental fracture healing. Skelet. Radiol. 1986, 15, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Etlik, O.; Temizöz, O.; Doğan, A.; Kayan, M.; Arslan, H.; Unal, O. Three-Dimensional Volume Rendering Imaging in Detection of Bone Fractures. Electron. J. Gen. Med. 2004, 1, 48–52. [Google Scholar] [CrossRef]
- Kopp, A.F.; Klingenbeck-Regn, K.; Heuschmid, M.; Kuttner, A.; Ohnesorge, B.; Flohr, T.; Schaller, S.; Claussen, C.D. Multislice Computed Tomography: Basic Principles and Clinical Applications. Eelectromedica 2000, 2, 94–105. [Google Scholar]
- Busquéts, A.R.; Acosta, J.A.; Colón, E.; Alejandro, K.V.; Rodríguez, P. Helical Computed Tomographic Angiography for the Diagnosis of Traumatic Arterial Injuries of the Extremities. J. Trauma Inj. Infect. Crit. Care 2004, 56, 625–628. [Google Scholar] [CrossRef]
- Bogdan, M.A.; Klein, M.B.; Rubin, G.D.; McAdams, T.R.; Chang, J. CT angiography in complex upper extremity reconstruction. J. Hand Surg. 2004, 29, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Schmidle, G.; Rieger, M.; Klauser, A.; Thauerer, M.; Hoermann, R.; Gabl, M. Intraosseous rotation of the scaphoid: Assessment by using a 3D CT model—An anatomic study. Eur. Radiol. 2014, 24, 1357–1365. [Google Scholar] [CrossRef]
- Mazziotti, S.; Blandino, A.; Gaeta, M.; Bottari, A.; Sofia, C.; D’Angelo, T.; Ascenti, G. Postprocessing in Maxillofacial Multidetector Computed Tomography. Can. Assoc. Radiol. J. 2015, 66, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Kuszyk, B.S.; Heath, D.G.; Bliss, D.F.; Fishman, E.K. Skeletal 3-D CT: Advantages of volume rendering over surface rendering. Skelet. Radiol. 1996, 25, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Chae, M.P.; Lin, F.; Spychal, R.T.; Hunter-Smith, D.; Rozen, W.M. 3D-Printed haptic “Reverse” models for preoperative planning in soft tissue reconstruction: A case report. Microsurgery 2014, 35, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Pretorius, E.S.; Fishman, E.K. Volume-rendered three-dimensional spiral CT: Musculoskeletal applications. Radiographics 1999, 19, 1143–1160. [Google Scholar] [CrossRef] [PubMed]
- Christner, J.A.; Kofler, J.M.; McCollough, C.H. Estimating Effective Dose for CT Using Dose–Length Product Compared with Using Organ Doses: Consequences of Adopting International Commission on Radiological Protection Publication 103 or Dual-Energy Scanning. Am. J. Roentgenol. 2010, 194, 881–889. [Google Scholar] [CrossRef]
- Saltybaeva, N.; Jafari, M.E.; Hupfer, M.; Kalender, W.A. Estimates of Effective Dose for CT Scans of the Lower Extremities. Radiology 2014, 273, 153–159. [Google Scholar] [CrossRef]
- Cross, T.M.; Smart, R.C.; Thomson, J.E.M. Exposure to Diagnostic Ionizing Radiation in Sports Medicine: Assessing and Monitoring the Risk. Clin. J. Sport Med. 2003, 13, 164–170. [Google Scholar] [CrossRef]
- Griffiths, H.J. 1990 Recommendations of the International Commission on Radiological Protection. Annals of the ICRP Publication 60. Radiology 1992, 182. [Google Scholar] [CrossRef]
- ICRP. The 2007 Recommendations of the International Commission on Radiological Protection. Ann. ICRP 2007, 37, 1–332. [Google Scholar] [CrossRef]
- Zhao, L.; Fan, Q.; Venkatesh, K.P.; Park, M.S.; Song, H.R. Objective Guidelines for Removing an External Fixator after Tibial Lengthening Using Pixel Value Ratio: A Pilot Study. Clin. Orthop. Relat. Res. 2009, 467, 3321–3326. [Google Scholar] [CrossRef] [Green Version]
- Sabharwal, S.; Kumar, A. Methods for Assessing Leg Length Discrepancy. Clin. Orthop. Relat. Res. 2008, 466, 2910–2922. [Google Scholar] [CrossRef] [Green Version]
- Buck, F.M.; Guggenberger, R.; Koch, P.P.; Pfirrmann, C. Femoral and Tibial Torsion Measurements With 3D Models Based on Low-Dose Biplanar Radiographs in Comparison with Standard CT Measurements. Am. J. Roentgenol. 2012, 199, W607–W612. [Google Scholar] [CrossRef]
- Mettler, F.A.; Huda, W.; Yoshizumi, T.T.; Mahesh, M. Effective Doses in Radiology and Diagnostic Nuclear Medicine: A Catalog. Radiology 2008, 248, 254–263. [Google Scholar] [CrossRef]
- Radzi, S.; Cowin, G.; Robinson, M.; Pratap, J.; Volp, A.; Schuetz, M.A.; Schmutz, B. Metal artifacts from titanium and steel screws in CT, 1.5T and 3T MR images of the tibial Pilon: A quantitative assessment in 3D. Quant. Imaging Med. Surg. 2014, 4, 163–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elsissy, P.; Akpolat, Y.T.; Chien, A.; Cheng, W.K. MRI evaluation of the knee with non-ferromagnetic external fixators: Cadaveric knee model. Eur. J. Orthop. Surg. Traumatol. 2015, 25, 933–939. [Google Scholar] [CrossRef]
- Mahnken, A.H.; Staatz, G.; Hermanns, B.; Gunther, R.W.; Weber, M. Congenital pseudarthrosis of the tibia in pediatric patients: MR imaging. AJR Am. J. Roentgenol. 2001, 177, 1025–1029. [Google Scholar] [CrossRef]
- Maffulli, N.; Hughes, T.; Fixsen, J.A. Ultrasonographic monitoring of limb lengthening. J. Bone Jt. Surg. Br. Vol. 1992, 74, 130–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perandini, S.; Faccioli, N.; Zaccarella, A.; Re, T.; Mucelli, R.P. The diagnostic contribution of CT volumetric rendering techniques in routine practice. Indian J. Radiol. Imaging 2010, 20, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Schnarkowski, P.; Rédei, J.; Peterfy, C.G.; Weidenmaier, W.; Mutschler, W.; Arand, M.; Reiser, M.F. Tibial shaft fractures: Assessment of fracture healing with computed tomography. J. Comput. Assist. Tomogr. 1995, 19, 777–781. [Google Scholar] [CrossRef] [PubMed]
- Buckley, R.; Mohanty, K.; Malish, D. Lower limb malrotation following MIPO technique of distal femoral and proximal tibial fractures. Injury 2011, 42, 194–199. [Google Scholar] [CrossRef]
- Say, F.; Bulbul, M. Findings related to rotational malalignment in tibial fractures treated with reamed intramedullary nailing. Arch. Orthop. Trauma Surg. 2014, 134, 1381–1386. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, T.; Bouchard, K.A.; Phadke, A.; Meigs, J.B.; Kassarjian, A.; Salamipour, H. The accuracy of computed tomography for the diagnosis of tibial non-union. J. Bone Jt. Surg. Am. Vol. 2006, 88, 692–697. [Google Scholar]
- Liodakis, E.; Liodaki, E.; Krettek, C.; Citak, M.; Gaulke, R.; Konstantinidis, L.; Kenawey, M. Can the viability of a non-union be evaluated using SPECT/CT? A preliminary retrospective study. Technol. Health Care 2011, 19, 103–108. [Google Scholar] [CrossRef]
- Huurman, W.W.; Jacobsen, F.S.; Anderson, J.C.; Chu, W.K. Limb-length discrepancy measured with computerized axial tomographic equipment. J. Bone Jt. Surg. Am. Vol. 1987, 69, 699–705. [Google Scholar] [CrossRef]
- Sabharwal, S.; Zhao, C.; McKeon, J.J.; McClemens, E.; Edgar, M.; Behrens, F. Computed Radiographic Measurement of Limb-Length DiscrepancyFull-Length Standing Anteroposterior Radiograph Compared with Scanogram. J. Bone Jt. Surg. Am. Vol. 2006, 88, 2243–2251. [Google Scholar] [CrossRef] [Green Version]
- Huda, W.; Ogden, K.M.; Khorasani, M.R. Converting Dose-Length Product to Effective Dose at CT. Radiology 2008, 248, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Vilar-Palop, J.; Vilar, J.; Hernandez-Aguado, I.; Gonzalez-Alvarez, I.; Lumbreras, B. Updated effective doses in radiology. J. Radiol. Prot. 2016, 36, 975–990. [Google Scholar] [CrossRef] [PubMed]
- Biswas, D.; Bible, J.E.; Bohan, M.; Simpson, A.K.; Whang, P.G.; Grauer, J.N. Radiation Exposure from Musculoskeletal Computerized Tomographic Scans. J. Bone Jt. Surg. Am. Vol. 2009, 91, 1882–1889. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, W.C.; Yao, J.; Bluemke, D.A.; Folio, L.R. Opportunities to Reduce CT Radiation Exposure, Experience Over 5 Years at the NIH Clinical Center. Radiat. Prot. Dosim. 2017, 175, 482–492. [Google Scholar] [CrossRef] [Green Version]
- Su, A.W.; Hillen, T.J.; Eutsler, E.P.; Bedi, A.; Ross, J.R.; Larson, C.; Clohisy, J.C.; Nepple, J.J. Low-Dose Computed Tomography Reduces Radiation Exposure by 90% Compared with Traditional Computed Tomography Among Patients Undergoing Hip-Preservation Surgery. Arthrosc. J. Arthrosc. Relat. Surg. 2019, 35, 1385–1392. [Google Scholar] [CrossRef]
- Yi, J.W.; Park, H.J.; Lee, S.Y.; Rho, M.H.; Hong, H.P.; Choi, Y.J.; Kim, M.S. Radiation dose reduction in multidetector CT in fracture evaluation. Br. J. Radiol. 2017, 90, 20170240. [Google Scholar] [CrossRef]
- Jonsson, A.; Herrlin, K.; Jonsson, K.; Lundin, B.; Sanfridsson, J.; Pettersson, H. Radiation dose reduction in computed skeletal radiography. Acta Radiol. 1996, 37, 128–133. [Google Scholar] [CrossRef]
- Song, O.K.; Chung, Y.E.; Seo, N.; Baek, S.-E.; Choi, J.-Y.; Park, M.-S.; Kim, M.-J. Metal implants influence CT scan parameters leading to increased local radiation exposure: A proposal for correction techniques. PLoS ONE 2019, 14, e0221692. [Google Scholar] [CrossRef] [PubMed]
- Luechinger, R.; Boesiger, P.; Disegi, J. Safety evaluation of large external fixation clamps and frames in a magnetic resonance environment. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007, 82, 17–22. [Google Scholar] [CrossRef] [PubMed]
Patient Characteristics | |
---|---|
N | 19 patients 21 extremities |
Demographic data | |
Age (years) | 44 ± 20 (15–82) |
M | 37 ± 15.6 (15–73) |
F | 61 ± 19.5 (27–82) |
Sex (M/F) | 13/6 |
Baseline characteristics | |
Ring fixator/TSF | 2/19 |
Trauma | 19 patients |
MVA | 11 |
Industrial accident | 2 |
Fall | 4 |
Gunshot accident | 2 |
Deformity | |
Pseudarthrosis | 4 |
Bone defect/shortening | 5 |
Axial deviation | 4 |
Axis + shortening | 5 |
Osteomyelitis | 1 |
Location | 21 extremities |
Open tib–fib fracture | 14 |
Open femur fracture | 1 |
Prox tibial fracture | 2 |
Ankle Fracture | 1 |
Tib–fib Gunshot fracture | 3 |
Patient’s List | ||||||
---|---|---|---|---|---|---|
Age | Sex | Location | Accident | Fracture | Treatment | |
1 | 49 | m | tib–fib | MVA/MC | open Fx | PA, bone transport Ilizarov |
2 | 40 | m | tib–fib | MVA/MC | open Fx | PA, bone transport TSF over nail |
3 | 70 | f | tib–fib | Fall | open Fx | PA, axial deviation, vessel lesion, TSF |
4 | 18 | m | tib–fib | Industrial a. | open Fx | bone defect, shortening, Ilizarov |
5 | 34 | m | tib–fib | MVA | open Fx | bone defect and soft tissue, PA, TSF |
6 | 36 | m | tib–fib/tib–fib | Gunshot | GSFx/GSFx | left bone defect and refracture TSF, right axial deviation |
7 | 45 | m | tib–fib | MVA/MC | prox tib Fx | axial deviation and shortening, TSF |
8 | 50 | m | tib–fib | MVA | prox tib Fx | axial deviation and shortening, TSF |
9 | 15 | m | tib–fib+femur | MVA/MC | open Fx | huge bone defect, shortening, bone transport and lengthening, TSF |
10 | 73 | m | tib–fib | Gunshot | GSFx | axial deviation and shortening, TSF |
11 | 32 | m | tib–fib | MVA/MC | open Fx | bone defect and shortening, TSF |
12 | 31 | m | tib–fib | IA. | open Fx | shortening, TSF |
13 | 32 | m | tib–fib | MVA | open Fx | axial deviation and shortening, TSF |
14 | 27 | f | tib–fib | MVA (ped.) | open Fx | deux etage, healing in TSF |
15 | 20 | m | tib–fib | Fall | open Fx | osteomyelitis and fistulation, TSF |
16 | 67 | f | tib–fib | Fall | ankle Fx | axis correction and arthrodesis TSF |
17 | 50 | f | tib–fib/tib–fib | Fall | open Fx | axial deviation and shortening, TSF |
18 | 82 | f | tib–fib | MVA (ped) | open Fx | axial deviation, TSF |
19 | 70 | f | tib–fib | MVA/MC | open Fx | axial deviation, TSF |
Scans and Indications | |
---|---|
Scans | |
Total | 34 |
CT | 23 (12 VRT) |
Hip | 2 |
Knee | 3 |
Knee + lower leg | 4 |
Lower leg | 8 |
Lower leg + Ankle | 3 |
Ankle | 3 |
Angio CT | 8 (6 VRT) |
Rotational CT | 2 |
CT scanogram | 1 |
Specific questions/indications | 48 |
Vessels | 8 |
Non-union | 10 |
Axis | 4 |
Pre-/Further surgical planning | 9 |
Fixator removal/Callus maturation | 5 |
Length measurement, LLD | 5 |
Malrotation | 7 |
Mixed Indications | 13 |
SD Standard deviation |
Effective Dose and RFC—Patients | |||||||
---|---|---|---|---|---|---|---|
Age | Sex | Nr. CTs | ED (mSv) | RFC Per Sv | RFC (Individual) | RFC (Adult) | |
1 | 49 | m | 2 | 2.21 | 1 in 24 | 10,860 | 11,312 |
2 | 40 | m | 2 | 0.16 | 1 in 24 | 151,052 | 157,346 |
3 | 70 | f | 7 | 37.60 | 1 in 62 | 1649 | 665 |
4 | 18 | m | 1 | 4.95 | 1 in 11 | 2222 | 5051 |
5 | 34 | m | 1 | 5.15 | 1 in 23 | 4468 | 4856 |
6 | 36 | m | 3 | 2.72 | 1 in 23 | 8464 | 9200 |
7 | 45 | m | 1 | 0.19 | 1 in 24 | 129,450 | 134,844 |
8 | 50 | m | 2 | 0.28 | 1 in 24 | 86,331 | 89,928 |
9 | 15 | m | 2 | 5.93 | 1 in 11 | 1856 | 4217 |
10 | 73 | m | 1 | 0.11 | 1 in 59 | 561,905 | 238,095 |
11 | 32 | m | 1 | 0.34 | 1 in 23 | 67,548 | 73,421 |
12 | 31 | m | 2 | 0.22 | 2 in 23 | 102,679 | 111,607 |
13 | 32 | m | 2 | 0.13 | 3 in 23 | 172,673 | 187,688 |
14 | 27 | f | 1 | 0.29 | 1 in 14 | 48,110 | 85,911 |
15 | 20 | m | 1 | 0.12 | 1 in 16 | 130,081 | 203,252 |
16 | 67 | f | 1 | 0.06 | 1 in 34 | 570,470 | 419,463 |
17 | 50 | f | 4 | 1.44 | 1 in 26 | 18,038 | 17,344 |
18 | 82 | f | 1 | 0.10 | 1 in 143 | 1,471,193 | 257,202 |
19 | 70 | f | 1 | 0.12 | 1 in 62 | 525,424 | 211,864 |
3.27 | 1 in 34 | 213,920 | 117,014 |
Effective Dose and Risk of Fatal Cancer | ||
---|---|---|
Specific Questions/Indications | Mean ED | RFC |
Vessels (CTA) | 6.80 | 3677 |
Non-union | 0.49 | 51,502 |
Axis | 0.20 | 123,793 |
Pre-/Further surgical planning | 0.29 | 87,054 |
Fix. Removal/Callus maturation | 0.10 | 250,479 |
Length measurement, LLD | 0.38 | 66,246 |
Malrotation | 2.34 | 10,701 |
Location | ||
CTA | 5.04 | 4956 |
Topo | 0.19 | 134,844 |
Hip | 2.54 | 9825 |
Knee | 0.10 | 262,608 |
Knee + lower leg | 0.21 | 118,147 |
Lower leg | 0.18 | 140,417 |
Lower leg + Ankle | 0.12 | 217,050 |
Ankle | 0.04 | 692,252 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zak, L.; Tiefenboeck, T.M.; Wozasek, G.E. Computed Tomography in Limb Salvage and Deformity Correction—3D Assessment, Indications, Radiation Exposure, and Safety Considerations. J. Clin. Med. 2021, 10, 3781. https://doi.org/10.3390/jcm10173781
Zak L, Tiefenboeck TM, Wozasek GE. Computed Tomography in Limb Salvage and Deformity Correction—3D Assessment, Indications, Radiation Exposure, and Safety Considerations. Journal of Clinical Medicine. 2021; 10(17):3781. https://doi.org/10.3390/jcm10173781
Chicago/Turabian StyleZak, Lukas, Thomas M. Tiefenboeck, and Gerald E. Wozasek. 2021. "Computed Tomography in Limb Salvage and Deformity Correction—3D Assessment, Indications, Radiation Exposure, and Safety Considerations" Journal of Clinical Medicine 10, no. 17: 3781. https://doi.org/10.3390/jcm10173781
APA StyleZak, L., Tiefenboeck, T. M., & Wozasek, G. E. (2021). Computed Tomography in Limb Salvage and Deformity Correction—3D Assessment, Indications, Radiation Exposure, and Safety Considerations. Journal of Clinical Medicine, 10(17), 3781. https://doi.org/10.3390/jcm10173781