Effects of Roux-en-Y Gastric Bypass and Sleeve Gastrectomy on Non-Alcoholic Fatty Liver Disease: A 12-Month Follow-Up Study with Paired Liver Biopsies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Study Investigations
2.3. Tissue Sampling
2.4. Liver Biopsies and Histological Examination
2.5. Ethics
2.6. Statistics and Calculations
3. Results
3.1. Baseline
3.2. Twelve Months after Surgery: Impact of RYGB and SG on Anthropometrical and Biochemical Profiles
3.3. Effects of RYGB and SG on Liver Histology
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Brien, P.E.; Hindle, A.; Brennan, L.; Skinner, S.; Burton, P.; Smith, A.; Crosthwaite, G.; Brown, W. Long-Term Outcomes After Bariatric Surgery: A Systematic Review and Meta-analysis of Weight Loss at 10 or More Years for All Bariatric Procedures and a Single-Centre Review of 20-Year Outcomes After Adjustable Gastric Banding. Obes. Surg. 2018, 29, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Salminen, P.; Helmiö, M.; Ovaska, J.; Juuti, A.; Leivonen, M.; Peromaa-Haavisto, P.; Hurme, S.; Soinio, M.; Nuutila, P.; Victorzon, M. Effect of Laparoscopic Sleeve Gastrectomy vs Laparoscopic Roux-en-Y Gastric Bypass on Weight Loss at 5 Years among Patients with Morbid Obesity. JAMA 2018, 319, 241–254. [Google Scholar] [CrossRef]
- Borgeraas, H.; Hofsø, D.; Hertel, J.K.; Hjelmesaeth, J. Comparison of the effect of Roux-en-Y gastric bypass and sleeve gastrectomy on remission of type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Obes. Rev. 2020, 21, e13011. [Google Scholar] [CrossRef] [Green Version]
- Hofsø, D.; Fatima, F.; Borgeraas, H.; Birkeland, K.I.; Gulseth, H.L.; Hertel, J.K.; Johnson, L.K.; Lindberg, M.; Nordstrand, N.; Småstuen, M.C.; et al. Gastric bypass versus sleeve gastrectomy in patients with type 2 diabetes (Oseberg): A single-centre, triple-blind, randomised controlled trial. Lancet Diabetes Endocrinol. 2019, 7, 912–924. [Google Scholar] [CrossRef]
- Osland, E.; Yunus, R.M.; Khan, S.; Memon, B.; Memon, M.A. Diabetes improvement and resolution following laparoscopic vertical sleeve gastrectomy (LVSG) versus laparoscopic Roux-en-Y gastric bypass (LRYGB) procedures: A systematic review of randomized controlled trials. Surg. Endosc. 2016, 31, 1952–1963. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Doumouras, A.G.; Yu, J.; Aditya, I.; Gmora, S.; Anvari, M.; Hong, D. Laparoscopic Sleeve Gastrectomy Versus Laparoscopic Roux-en-Y Gastric Bypass: A Systematic Review and Meta-analysis of Weight Loss, Comorbidities, and Biochemical Outcomes From Randomized Controlled Trials. Ann. Surg. 2019. Available online: Insights.ovid.com (accessed on 8 December 2020). [CrossRef] [PubMed]
- Madsbad, S.; Dirksen, C.; Holst, J.J. Mechanisms of changes in glucose metabolism and bodyweight after bariatric surgery. Lancet Diabetes Endocrinol. 2014, 2, 152–164. [Google Scholar] [CrossRef]
- Lassailly, G.; Caiazzo, R.; Buob, D.; Pigeyre, M.; Verkindt, H.; Labreuche, J.; Raverdy, V.; Leteurtre, E.; Dharancy, S.; Louvet, A.; et al. Bariatric Surgery Reduces Features of Nonalcoholic Steatohepatitis in Morbidly Obese Patients. Gastroenterology 2015, 149, 379–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathurin, P.; Hollebecque, A.; Arnalsteen, L.; Buob, D.; Leteurtre, E.; Caiazzo, R.; Pigeyre, M.; Verkindt, H.; Dharancy, S.; Louvet, A.; et al. Prospective study of the long-term effects of bariatric surgery on liver injury in patients without advanced disease. Gastroenterology 2009, 137, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Parker, B.M.; Wu, J.; You, J.; Barnes, D.S.; Yerian, L.; Kirwan, J.P.; Schauer, P.R.; Sessler, D.I. Reversal of fibrosis in patients with nonalcoholic steatohepatosis after gastric bypass surgery. BMC Obes. 2017, 4, 32. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5596497/ (accessed on 20 January 2021).
- Schwenger, K.J.; Fischer, S.E.; Jackson, T.; Okrainec, A.; Allard, J.P. In nonalcoholic fatty liver disease, Roux-en-Y gastric bypass improves liver histology while persistent disease is associated with lower improvements in waist circumference and glycemic control. Surg. Obes. Relat. Dis. 2018, 14, 1233–1239. [Google Scholar] [CrossRef] [PubMed]
- Lassailly, G.; Caiazzo, R.; Ntandja-Wandji, L.-C.; Gnemmi, V.; Baud, G.; Verkindt, H.; Ningarhari, M.; Louvet, A.; Leteurtre, E.; Raverdy, V.; et al. Bariatric Surgery Provides Long-term Resolution of Nonalcoholic Steatohepatitis and Regression of Fibrosis. Gastroenterology 2020, 159, 1290–1301.e5. [Google Scholar] [CrossRef] [PubMed]
- Angrisani, L.; Santonicola, A.; Iovino, P.; Vitiello, A.; Higa, K.; Himpens, J.; Buchwald, H.; Scopinaro, N. IFSO Worldwide Survey 2016: Primary, Endoluminal, and Revisional Procedures. Obes. Surg. 2018, 28, 3783–3794. [Google Scholar] [CrossRef]
- Von Schönfels, W.; Beckmann, J.H.; Ahrens, M.; Hendricks, A.; Röcken, C.; Szymczak, S.; Hampe, J.; Schafmayer, C. Histologic improvement of NAFLD in patients with obesity after bariatric surgery based on standardized NAS (NAFLD activity score). Surg. Obes. Relat. Dis. 2018, 14, 1607–1616. [Google Scholar] [CrossRef] [PubMed]
- Froylich, D.; Corcelles, R.; Daigle, C.; Boules, M.; Brethauer, S.; Schauer, P. Effect of Roux-en-Y gastric bypass and sleeve gastrectomy on nonalcoholic fatty liver disease: A comparative study. Surg. Obes. Relat. Dis. 2016, 12, 127–131. Available online: http://www.sciencedirect.com/science/article/pii/S155072891500101X (accessed on 25 June 2015). [CrossRef] [PubMed]
- Raj, P.P.; Gomes, R.M.; Kumar, S.; Senthilnathan, P.; Karthikeyan, P.; Shankar, A.; Palanivelu, C. The effect of surgically induced weight loss on nonalcoholic fatty liver disease in morbidly obese Indians: “NASHOST” prospective observational trial. Surg. Obes. Relat. Dis. 2015, 11, 1315–1322. [Google Scholar]
- Kleiner, D.E.; Brunt, E.M.; Van Natta, M.; Behling, C.; Contos, M.J.; Cummings, O.W.; Ferrell, L.D.; Liu, Y.-C.; Torbenson, M.S.; Unalp-Arida, A.; et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005, 41, 1313–1321. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattar, S.G.; Velcu, L.M.; Rabinovitz, M.; Demetris, A.J.; Krasinskas, A.M.; Barinas-Mitchell, E.; Eid, G.M.; Ramanathan, R.; Taylor, D.S.; Schauer, P.R. Surgically-induced weight loss significantly improves nonalcoholic fatty liver disease and the metabolic syndrome. Ann. Surg. 2005, 242, 610–620. [Google Scholar] [CrossRef]
- Weiner, R.A. Surgical Treatment of Non-Alcoholic Steatohepatitis and Non-Alcoholic Fatty Liver Disease. Dig. Dis. 2010, 28, 274–279. [Google Scholar] [CrossRef]
- Moretto, M.; Kupski, C.; da Silva, V.D.; Padoin, A.V.; Mottin, C.C. Effect of Bariatric Surgery on Liver Fibrosis. Obes. Surg. 2011, 22, 1044–1049. [Google Scholar] [CrossRef]
- Lee, Y.; Doumouras, A.G.; Yu, J.; Brar, K.; Banfield, L.; Gmora, S.; Anvari, M.; Hong, D. Complete Resolution of Nonalcoholic Fatty Liver Disease After Bariatric Surgery: A Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2019, 17, 1040–1060.e11. [Google Scholar] [CrossRef] [Green Version]
- Svane, M.S.; Bojsen-Møller, K.N.; Martinussen, C.; Dirksen, C.; Madsen, J.L.; Reitelseder, S.; Holm, L.; Rehfeld, J.F.; Kristiansen, V.B.; van Hall, G.; et al. Postprandial Nutrient Handling and Gastrointestinal Hormone Secretion After Roux-en-Y Gastric Bypass vs Sleeve Gastrectomy. Gastroenterology 2019, 156, 1627–1641.e1. [Google Scholar] [CrossRef] [Green Version]
- Moreland, A.M.; Santa Ana, C.A.; Asplin, J.R.; Kuhn, J.A.; Holmes, R.P.; Cole, J.A.; Odstrcil, E.A.; Van Dinter, T.G.; Martinez, J.G.; Fordtran, J.S. Steatorrhea and Hyperoxaluria in Severely Obese Patients Before and After Roux-en-Y Gastric Bypass. Gastroenterology 2017, 152, 1055–1067.e3. [Google Scholar] [CrossRef] [PubMed]
- Odstrcil, E.A.; Martinez, J.G.; Ana, C.A.S.; Xue, B.; E Schneider, R.; Steffer, K.J.; Porter, J.L.; Asplin, J.; A Kuhn, J.; Fordtran, J.S. The contribution of malabsorption to the reduction in net energy absorption after long-limb Roux-en-Y gastric bypass. Am. J. Clin. Nutr. 2010, 92, 704–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eiken, A.; Fuglsang, S.; Eiken, M.; Svane, M.S.; Kuhre, R.E.; Albrechtsen, N.J.W.; Hansen, S.H.; Trammell, S.A.J.; Svenningsen, J.S.; Rehfeld, J.F.; et al. Bilio-enteric flow and plasma concentrations of bile acids after gastric bypass and sleeve gastrectomy. Int. J. Obes. 2020, 44, 1872–1883. [Google Scholar] [CrossRef] [PubMed]
- Reiner, Ž. Hypertriglyceridaemia and risk of coronary artery disease. Nat. Rev. Cardiol. 2017, 14, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Flatt, P.R. Dorothy Hodgkin Lecture 2008. Gastric inhibitory polypeptide (GIP) revisited: A new therapeutic target for obesity-diabetes? Diabet. Med. 2008, 25, 759–764. [Google Scholar] [CrossRef] [PubMed]
- Holst, J.J. The physiology of glucagon-like peptide 1. Physiol. Rev. 2007, 87, 1409–1439. [Google Scholar] [CrossRef]
- Cummings, D.E. Ghrelin and the short- and long-term regulation of appetite and body weight. Physiol. Behav. 2006, 89, 71–84. [Google Scholar] [CrossRef]
- Bifari, F.; Manfrini, R.; Cas, M.D.; Berra, C.; Siano, M.; Zuin, M.; Paroni, R.; Folli, F. Multiple target tissue effects of GLP-1 analogues on non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Pharmacol. Res. 2018, 137, 219–229. [Google Scholar] [CrossRef]
- Azulai, S.; Grinbaum, R.; Beglaibter, N.; Eldar, S.; Rubin, M.; Schyr, R.B.-H.; Romano-Zelekha, O.; Ben-Zvi, D. Sleeve Gastrectomy Is Associated with a Greater Reduction in Plasma Liver Enzymes Than Bypass Surgeries—A Registry-Based Two-Year Follow-Up Analysis. J. Clin. Med. 2021, 10, 1144. [Google Scholar] [CrossRef] [PubMed]
RYGB Baseline (n = 16) | RYGB Follow-Up (n = 16) | p-Value | SG Baseline (n = 24) | SG Follow-Up (n = 24) | p-Value | p-Value RYGB vs. SG Delta Changes | p-Value RYGB vs. SG Follow-Up | |
---|---|---|---|---|---|---|---|---|
Age (years) | 44 (2) | - | - | 44 (9) | - | - | - | - |
Female (n, %) | 9 (56) | - | - | 14 (58) | - | - | - | - |
Diabetes (n, (%)) | 7 (44) | 1 (6) | 5 (21) | 3 (12) | 0.638 | |||
Weight (kg) | 127 (24) | 93 (19) | <0.001 | 123 (17) | 95 (15) | <0.001 | 0.092 | 0.747 |
BMI (kg/m2) | 43.0 (7.2) | 31.4 (6.4) | <0.001 | 41.0 (4.5) | 31.5 (4.0) | <0.001 | 0.363 | 0.966 |
% EWL | - | 70 (23) | - | - | 62 (23) | - | - | 0.297 |
% total body weight loss | - | 27 (7) | - | - | 23 (9) | - | - | 0.104 |
Waist-hip | 0.94 (0.13) | 0.88 (0.1 | <0.001 | 0.91 (0.13) | 0.86 (0.1) | <0.001 | 0.706 | 0.473 |
Systolic BP (mmHg) | 129 (15) | 119 (15) | 0.002 | 128 (15) | 122 (19) | 0.148 | 0.288 | 0.499 |
Diastolic BP (mmHg) | 83 (8) | 78 (11) | 0.002 | 83 (9) | 78 (11) | 0.036 | 0.200 | 0.162 |
Heart rate (BPM) | 74 (16) | 60 (11) | <0.001 | 74 (16) | 62 (12) | <0.001 | 0.565 | 0.434 |
ALT (U/L) | 33 (14) | 32 (14) | 0.791 | 32 (11) | 21 (10) | <0.001 | 0.026 | 0.006 |
AST (U/L) | 25 (9) | 27 (7) | 0.285 | 25 (8) | 26 (14) | 0.285 | 0.397 | 0.825 |
Fasting glucose (mmol/L) | 6.7 (1.5) | 5.5 (0.5) | 0.002 | 6.1 (0.6) | 5.3 (0.5) | <0.001 | 0.739 | 0.450 |
C-peptide (pmol/L) | 1160 (204) | 749 (253) | <0.001 | 1245 (450) | 856 (356) | <0.001 | 0.142 | 0.387 |
Fasting insulin (pmol/L) | 110 (24) | 54 (21) | <0.001 | 144 (68) | 79 (44) | <0.001 | 0.313 | 0.085 |
HOMA-IR | 6.2 (0.9) | 1.9 (0.8) | 0.035 | 5.9 (2.7) | 2.7 (1.8) | <0.001 | 0.281 | 0.127 |
LDL cholesterol (mmol/L) | 2.1 (0.6) | 1.5 (0.4) | <0.001 | 2.7 (1.0) | 2.7 (1.0) | 0.943 | 0.026 | <0.001 |
HDL cholesterol (mmol/L) | 1.21 (0.34) | 1.4 (0.3) | 0.002 | 1.22 (0.33) | 1.5 (0.3) | <0.001 | 0.813 | 0.291 |
VLDL cholesterol mmol/L) | 0.68 (0.35) | 0.3 (0.1) | <0.001 | 0.63 (0.27) | 0.5 (0.4) | 0.121 | 0.074 | 0.093 |
Triglycerides mmol/L) | 1.53 (0.77) | 0.8 (0.2) | <0.001 | 1.37 (0.58) | 1.1 (0.6) | 0.071 | 0.056 | 0.096 |
HsCRP (mg/L) | 7.4 (7.6) | 1.5 (1.3) | 0.004 | 3.9 (2.5) | 1.3 (1.3) | <0.001 | 0.037 | 0.789 |
Adiponectin | 6091 (1526) | 12453 (7741) | 0.005 | 5757 (2832) | 10397 (4266) | <0.001 | 0.337 | 0.333 |
Leptin | 44 (30) | 22 (21) | <0.001 | 42 (26) | 18 (15) | <0.001 | 0.720 | 0.507 |
Il-6 | 1.12 (0.67) | 0.7 (0.3) | 0.011 | 1.03 (0.7) | 0.6 (0.4) | 0.007 | 0.557 | 0.859 |
TNF-α | 2.18 (0.85) | 2.0 (0.6) | 0.372 | 1.97 (0.52) | 1.8 (0.5) | 0.440 | 0.445 | 0.524 |
RYGB Baseline (n = 16) | RYGB Follow-Up (n = 16) | p-Value | SG Baseline (n = 24) | SG Follow-Up (n = 24) | p-Value | p-Value RYGB vs. SG Delta Changes | p-Value RYGB vs. SG Follow-Up | |
---|---|---|---|---|---|---|---|---|
Liver histology | ||||||||
NAFLD activity score | 3.3 (0.9) | 0.7 (0.7) | <0.001 | 3.1 (1.4) | 1.0 (0.9) | <0.001 | 0.241 | 0.302 |
Steatosis | 0.9 (0.7) | 0.0 (0.0) | <0.001 | 0.5 (0.7) | 0.2 (0.4) | 0.003 | 0.007 | 0.022 |
Inflammation | 1.2 (0.4) | 0.5 (0.5) | <0.001 | 1.1 (0.6) | 0.5 (0.5) | <0.001 | 0.796 | 1.000 |
Ballooning | 1.3 (0.4) | 0.2 (0.4) | <0.001 | 1.4 (0.5) | 0.3 (0.5) | <0.001 | 0.625 | 0.692 |
Fibrosis | 1.0 (0.4) | 0.8 (0.4) | 0.104 | 1.2 (0.4) | 1.0 (0.4) | 0.096 | 0.826 | 0.131 |
RYGB Baseline (n = 16) | RYGB Follow-Up (n = 16) | SG Baseline (n = 24) | SG Follow-Up (n = 24) | |
---|---|---|---|---|
Steatosis grade (0/1/2/3) | 5/8/3/0 | 16/0/0/0 | 14/7/3/0 | 19/5/0/0 |
Inflammation grade (0/1/2) | 0/13/3 | 8/8/0 | 3/15/6 | 12/12/0 |
Ballooning grade (0/1/2) | 0/12/4 | 13/3/0 | 0/14/10 | 19/4/1 |
Fibrosis grade (0/1/2/3/4) | 1/14/1/0/0 | 4/12/0/0/0 | 0/20/4/0/0 | 2/21/1/0/0 |
NAS total sum (0/1/2/3/4/5/6/7/8) | 0/0/3/7/4/2/0/0/0 | 7/7/2/0/0/0/0/0/0 | 0/2/8/6/2/6/0/0/0 | 8/10/5/1/0/0/0/0/0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedersen, J.S.; Rygg, M.O.; Serizawa, R.R.; Kristiansen, V.B.; Albrechtsen, N.J.W.; Gluud, L.L.; Madsbad, S.; Bendtsen, F. Effects of Roux-en-Y Gastric Bypass and Sleeve Gastrectomy on Non-Alcoholic Fatty Liver Disease: A 12-Month Follow-Up Study with Paired Liver Biopsies. J. Clin. Med. 2021, 10, 3783. https://doi.org/10.3390/jcm10173783
Pedersen JS, Rygg MO, Serizawa RR, Kristiansen VB, Albrechtsen NJW, Gluud LL, Madsbad S, Bendtsen F. Effects of Roux-en-Y Gastric Bypass and Sleeve Gastrectomy on Non-Alcoholic Fatty Liver Disease: A 12-Month Follow-Up Study with Paired Liver Biopsies. Journal of Clinical Medicine. 2021; 10(17):3783. https://doi.org/10.3390/jcm10173783
Chicago/Turabian StylePedersen, Julie Steen, Marte Opseth Rygg, Reza Rafiolsadat Serizawa, Viggo Bjerregaard Kristiansen, Nicolai J. Wewer Albrechtsen, Lise Lotte Gluud, Sten Madsbad, and Flemming Bendtsen. 2021. "Effects of Roux-en-Y Gastric Bypass and Sleeve Gastrectomy on Non-Alcoholic Fatty Liver Disease: A 12-Month Follow-Up Study with Paired Liver Biopsies" Journal of Clinical Medicine 10, no. 17: 3783. https://doi.org/10.3390/jcm10173783
APA StylePedersen, J. S., Rygg, M. O., Serizawa, R. R., Kristiansen, V. B., Albrechtsen, N. J. W., Gluud, L. L., Madsbad, S., & Bendtsen, F. (2021). Effects of Roux-en-Y Gastric Bypass and Sleeve Gastrectomy on Non-Alcoholic Fatty Liver Disease: A 12-Month Follow-Up Study with Paired Liver Biopsies. Journal of Clinical Medicine, 10(17), 3783. https://doi.org/10.3390/jcm10173783