Sex-Specific Impacts of Exercise on Cardiovascular Remodeling
Abstract
:1. Introduction
2. Sex Disparity in Cardiac Structure and Function
3. Sex Disparity in Vascular Wall Structure and Function
4. Exercise-Induced Cardiovascular Remodeling and Functional Adaptation
5. Detrimental Impacts of Exercise
5.1. Detrimental Impacts of Exercise on Cardiac Structure and Function
5.2. Detrimental Impacts of Exercise on Cardiac Electrical Conductivity
5.3. Detrimental Impacts of Exercise on Vascular Structure and Function
6. Sex-Specific Impact of Low–Moderate Intensity Exercise on Cardiovascular Remodeling
6.1. Sex Disparity in Cardiac Structure and Function with Low–Moderate Exercise
6.2. Sex Disparity in Vascular Structure and Function with Low–Moderate Exercise
6.3. Limitations
7. Sex-Specific Impact of High-Intensity Training (HIT) on Cardiovascular Remodeling
7.1. Sex Disparity in Cardiac Structure and Function with HIT
7.2. Sex Disparity in Vascular Wall Structure and Function with HIT
7.3. Limitations
8. Sex-Specific Impact of Combined Exercise on Cardiovascular Remodeling
8.1. Sex Disparity in Cardiac Structure and Function with Combined Exercise
8.2. Sex Disparity in Vascular Wall Structure and Function with Combined Exercise
8.3. Limitations
9. Conclusion and Future Direction
Author Contributions
Funding
Conflicts of Interest
References
- Haram, P.M.; Kemi, O.J.; Wisloff, U. Adaptation of endothelium to exercise training: Insights from experimental studies. Front. Biosci. J. Virtual Libr. 2008, 13, 336–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okada, S.; Hiuge, A.; Makino, H.; Nagumo, A.; Takaki, H.; Konishi, H.; Goto, Y.; Yoshimasa, Y.; Miyamoto, Y. Effect of exercise intervention on endothelial function and incidence of cardiovascular disease in patients with type 2 diabetes. J. Atheroscler. Thromb. 2010, 17, 828–833. [Google Scholar] [CrossRef] [Green Version]
- Darling, E.A. The Effects of Training. Boston Med. Surg. J. 1899, 141, 229–233. [Google Scholar] [CrossRef]
- Skidlauf und Skidwettlauf Eine Medizinische Sportstudie. Available online: https://www.vialibri.net/years/books/98218535/1898-henschen-salomon-eberhard-skidlauf-und-skidwettlauf-skilauf-und-skiwettlauf (accessed on 10 May 2021).
- Laughlin, M.H.; Diana, J.N.; Tipton, C.M. Effects of exercise training on coronary reactive hyperemia and blood flow in the dog. J. Appl. Physiol. 1978, 45, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Scharhag, J.; Schneider, G.; Urhausen, A.; Rochette, V.; Kramann, B.; Kindermann, W. Athlete’s heart: Right and left ventricular mass and function in male endurance athletes and untrained individuals determined by magnetic resonance imaging. J. Am. Coll. Cardiol. 2002, 40, 1856–1863. [Google Scholar] [CrossRef] [Green Version]
- Kaptoge, S.; Pennells, L.; Bacquer, D.D.; Cooney, M.T.; Kavousi, M.; Stevens, G.; Riley, L.M.; Savin, S.; Khan, T.; Altay, S.; et al. World Health Organization cardiovascular disease risk charts: Revised models to estimate risk in 21 global regions. Lancet Glob. Health 2019, 7, e1332–e1345. [Google Scholar] [CrossRef] [Green Version]
- Gielen, S.; Schuler, G.; Adams, V. Cardiovascular effects of exercise training: Molecular mechanisms. Circulation 2010, 122, 1221–1238. [Google Scholar] [CrossRef] [Green Version]
- Turkbey, E.B.; Jorgensen, N.W.; Johnson, W.C.; Bertoni, A.G.; Polak, J.F.; Diez Roux, A.V.; Tracy, R.P.; Lima, J.A.C.; Bluemke, D.A. Physical activity and physiological cardiac remodelling in a community setting: The Multi-Ethnic Study of Atherosclerosis (MESA). Heart Br. Card. Soc. 2010, 96, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Shufelt, C.; Pacheco, C.; Tweet, M.S.; Miller, V.M. Sex-specific physiology and cardiovascular disease. Adv. Exp. Med. Biol. 2018, 1065, 433–454. [Google Scholar]
- dos Santos, R.L.; da Silva, F.B.; Ribeiro, R.F.; Stefanon, I. Sex hormones in the cardiovascular system. Horm. Mol. Biol. Clin. Investig. 2014, 18, 89–103. [Google Scholar] [CrossRef]
- Barrett-Connor, E. Heart disease in women. Fertil. Steril. 1994, 62, 127S–132S. [Google Scholar] [CrossRef]
- Rodgers, J.L.; Jones, J.; Bolleddu, S.I.; Vanthenapalli, S.; Rodgers, L.E.; Shah, K.; Karia, K.; Panguluri, S.K. Cardiovascular Risks Associated with Gender and Aging. J. Cardiovasc. Dev. Dis. 2019, 6, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purkiss, S.; Huckell, V.F. Cardiovascular Physiology: Similarities and Differences between Healthy Women and Men. J. SOGC 1997, 19, 853–859. [Google Scholar] [CrossRef]
- Wingate, S. Cardiovascular Anatomy and Physiology in the Female. Crit. Care Nurs. Clin. N. Am. 1997, 9, 447–452. [Google Scholar] [CrossRef]
- de Simone, G.; Devereux, R.B.; Daniels, S.R.; Meyer, R.A. Gender Differences in Left Ventricular Growth. Hypertension 1995, 26, 979–983. [Google Scholar] [CrossRef] [PubMed]
- Prabhavathi, K.; Selvi, K.T.; Poornima, K.N.; Sarvanan, A. Role of Biological Sex in Normal Cardiac Function and in its Disease Outcome—A Review. J. Clin. Diagn. Res. JCDR 2014, 8, BE01–BE04. [Google Scholar] [CrossRef] [PubMed]
- Cabo, C. The gender inequality of the heart. Comput. Biol. Med. 2013, 43, 1073–1074. [Google Scholar] [CrossRef]
- Wu, J.; Dai, F.; Li, C.; Zou, Y. Gender Differences in Cardiac Hypertrophy. J. Cardiovasc. Transl. Res. 2020, 13, 73–84. [Google Scholar] [CrossRef]
- Gilligan, D.M.; Quyyumi, A.A.; Cannon, R.O. Effects of physiological levels of estrogen on coronary vasomotor function in postmenopausal women. Circulation 1994, 89, 2545–2551. [Google Scholar] [CrossRef] [Green Version]
- Jazbutyte, V.; Arias-Loza, P.A.; Hu, K.; Widder, J.; Govindaraj, V.; von Poser-Klein, C.; Bauersachs, J.; Fritzemeier, K.-H.; Hegele-Hartung, C.; Neyses, L.; et al. Ligand-dependent activation of ER lowers blood pressure and attenuates cardiac hypertrophy in ovariectomized spontaneously hypertensive rats. Cardiovasc. Res. 2007, 77, 774–781. [Google Scholar] [CrossRef] [Green Version]
- Luo, T.; Kim, J.K. The Role of Estrogen and Estrogen Receptors on Cardiomyocytes: An Overview. Can. J. Cardiol. 2016, 32, 1017–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelzer, T.; Jazbutyte, V.; Hu, K.; Segerer, S.; Nahrendorf, M.; Nordbeck, P.; Bonz, A.; Muck, J.; Fritzemeier, K.; Hegelehartung, C. The estrogen receptor-α agonist 16α-LE2 inhibits cardiac hypertrophy and improves hemodynamic function in estrogen-deficient spontaneously hypertensive rats. Cardiovasc. Res. 2005, 67, 604–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelzer, T.; Schumann, M.; Neumann, M.; deJager, T.; Stimpel, M.; Serfling, E.; Neyses, L. 17β-Estradiol Prevents Programmed Cell Death in Cardiac Myocytes. Biochem. Biophys. Res. Commun. 2000, 268, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Cavasin, M.A.; Sankey, S.S.; Yu, A.-L.; Menon, S.; Yang, X.-P. Estrogen and testosterone have opposing effects on chronic cardiac remodeling and function in mice with myocardial infarction. Am. J. Physiol.-Heart Circ. Physiol. 2003, 284, H1560–H1569. [Google Scholar] [CrossRef] [Green Version]
- Papamitsou, T.; Barlagiannis, D.; Papaliagkas, V.; Kotanidou, E.; Dermentzopoulou-Theodoridou, M. Testosterone-induced hypertrophy, fibrosis and apoptosis of cardiac cells—An ultrastructural and immunohistochemical study. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2011, 17, BR266–BR273. [Google Scholar] [CrossRef] [Green Version]
- Zwadlo, C.; Schmidtmann, E.; Szaroszyk, M.; Kattih, B.; Froese, N.; Hinz, H.; Schmitto, J.D.; Widder, J.; Batkai, S.; Bähre, H.; et al. Antiandrogenic Therapy With Finasteride Attenuates Cardiac Hypertrophy and Left Ventricular Dysfunction. Circulation 2015, 131, 1071–1081. [Google Scholar] [CrossRef] [Green Version]
- Grandi, A.M.; Venco, A.; Barzizza, F.; Scalise, F.; Pantaleo, P.; Finardi, G. Influence of age and sex on left ventricular anatomy and function in normals. Cardiology 1992, 81, 8–13. [Google Scholar] [CrossRef]
- Goodale, T.; Sadhu, A.; Petak, S.; Robbins, R. Testosterone and the Heart. Methodist DeBakey Cardiovasc. J. 2017, 13, 68–72. [Google Scholar] [CrossRef] [Green Version]
- Peterson, L.R.; Soto, P.F.; Herrero, P.; Schechtman, K.B.; Dence, C.; Gropler, R.J. Sex Differences in Myocardial Oxygen and Glucose Metabolism. J. Nucl. Cardiol. Off. Publ. Am. Soc. Nucl. Cardiol. 2007, 14, 573–581. [Google Scholar] [CrossRef] [Green Version]
- Wittnich, C.; Tan, L.; Wallen, J.; Belanger, M. Sex differences in myocardial metabolism and cardiac function: An emerging concept. Pflüg. Arch. Eur. J. Physiol. 2013, 465, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Ahimastos, A.A.; Formosa, M.; Dart, A.M.; Kingwell, B.A. Gender differences in large artery stiffness pre- and post puberty. J. Clin. Endocrinol. Metab. 2003, 88, 5375–5380. [Google Scholar] [CrossRef]
- Waddell, T.K.; Dart, A.M.; Gatzka, C.D.; Cameron, J.D.; Kingwell, B.A. Women exhibit a greater age-related increase in proximal aortic stiffness than men. J. Hypertens. 2001, 19, 2205–2212. [Google Scholar] [CrossRef] [PubMed]
- Martins, D.; Nelson, K.; Pan, D.; Tareen, N.; Norris, K. The effect of gender on age-related blood pressure changes and the prevalence of isolated systolic hypertension among older adults: Data from NHANES III. J. Gend.-Specif. Med. JGSM Off. J. Partnersh. Womens Health Columbia 2001, 4, 10–13, 20. [Google Scholar]
- Berry, K.L.; Cameron, J.D.; Dart, A.M.; Dewar, E.M.; Gatzka, C.D.; Jennings, G.L.; Liang, Y.-L.; Reid, C.M.; Kingwell, B.A. Large-artery stiffness contributes to the greater prevalence of systolic hypertension in elderly women. J. Am. Geriatr. Soc. 2004, 52, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Rebecca, S.; Matthew, C.Y.; Adam, D.G.; Claudia, E.K.; Joel, K.; Laura, A.C.; Kiang, L.; James, S.H. Sex Differences in Predictors of Longitudinal Changes in Carotid Artery Stiffness. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 478–484. [Google Scholar]
- Mendelsohn, M.E.; Karas, R.H. The protective effects of estrogen on the cardiovascular system. N. Engl. J. Med. 1999, 340, 1801–1811. [Google Scholar] [CrossRef]
- Rahimian, R.; Dubé, G.P.; Toma, W.; Dos Santos, N.; McManus, B.M.; van Breemen, C. Raloxifene enhances nitric oxide release in rat aorta via increasing endothelial nitric oxide mRNA expression. Eur. J. Pharmacol. 2002, 434, 141–149. [Google Scholar] [CrossRef]
- Rahimian, R.; Laher, I.; Dube, G.; van Breemen, C. Estrogen and selective estrogen receptor modulator LY117018 enhance release of nitric oxide in rat aorta. J. Pharmacol. Exp. Ther. 1997, 283, 116–122. [Google Scholar]
- Rahimian, R.; Van Breemen, C.; Karkan, D.; Dube, G.; Laher, I. Estrogen augments cyclopiazonic acid-mediated, endothelium-dependent vasodilation. Eur. J. Pharmacol. 1997, 327, 143–149. [Google Scholar] [CrossRef]
- Stampfer, M.J.; Colditz, G.A.; Willett, W.C.; Manson, J.E.; Rosner, B.; Speizer, F.E.; Hennekens, C.H. Postmenopausal estrogen therapy and cardiovascular disease. Ten-year follow-up from the nurses’ health study. N. Engl. J. Med. 1991, 325, 756–762. [Google Scholar] [CrossRef]
- Reis, S.E.; Gloth, S.T.; Blumenthal, R.S.; Resar, J.R.; Zacur, H.A.; Gerstenblith, G.; Brinker, J.A. Ethinyl estradiol acutely attenuates abnormal coronary vasomotor responses to acetylcholine in postmenopausal women. Circulation 1994, 89, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, T.; Fukuto, J.M.; Ignarro, L.J.; Chaudhuri, G. Basal release of nitric oxide from aortic rings is greater in female rabbits than in male rabbits: Implications for atherosclerosis. Proc. Natl. Acad. Sci. USA 1992, 89, 11259–11263. [Google Scholar] [CrossRef] [Green Version]
- Kähönen, M.; Tolvanen, J.P.; Sallinen, K.; Wu, X.; Pörsti, I. Influence of gender on control of arterial tone in experimental hypertension. Am. J. Physiol. 1998, 275, H15–H22. [Google Scholar] [CrossRef] [PubMed]
- Crews, J.K.; Khalil, R.A. Gender-specific inhibition of Ca2+ entry mechanisms of arterial vasoconstriction by sex hormones. Clin. Exp. Pharmacol. Physiol. 1999, 26, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Shaligram, S.; Zhang, R.; Anderson, L.; Rahimian, R. Sex-specific vascular responses of the rat aorta: Effects of moderate term (intermediate stage) streptozotocin-induced diabetes. Can. J. Physiol. Pharmacol. 2016, 94, 408–415. [Google Scholar] [CrossRef] [Green Version]
- Stallone, J.N.; Crofton, J.T.; Share, L. Sexual dimorphism in vasopressin-induced contraction of rat aorta. Am. J. Physiol. 1991, 260, H453–H458. [Google Scholar] [CrossRef] [PubMed]
- Tostes, R.C.; David, F.L.; Carvalho, M.H.; Nigro, D.; Scivoletto, R.; Fortes, Z.B. Gender differences in vascular reactivity to endothelin-1 in deoxycorticosterone-salt hypertensive rats. J. Cardiovasc. Pharmacol. 2000, 36, S99–S101. [Google Scholar] [CrossRef]
- Foryst-Ludwig, A.; Kintscher, U. Sex differences in exercise-induced cardiac hypertrophy. Pflugers Arch. 2013, 465, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Baggish, A.L.; Wang, F.; Weiner, R.B.; Elinoff, J.M.; Tournoux, F.; Boland, A.; Picard, M.H.; Hutter, A.M.; Wood, M.J. Training-specific changes in cardiac structure and function: A prospective and longitudinal assessment of competitive athletes. J. Appl. Physiol. Bethesda Md. 2008, 104, 1121–1128. [Google Scholar] [CrossRef] [PubMed]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar]
- de Mendes, M.A.; da Silva, I.; Ramires, V.; Reichert, F.; Martins, R.; Ferreira, R.; Tomasi, E. Metabolic equivalent of task (METs) thresholds as an indicator of physical activity intensity. PLoS ONE 2018, 13, e0200701. [Google Scholar] [CrossRef] [Green Version]
- Boutcher, Y.N.; Boutcher, S.H. Exercise intensity and hypertension: What’s new? J. Hum. Hypertens. 2017, 31, 157–164. [Google Scholar] [CrossRef]
- Liao, J.; Li, Y.; Zeng, F.; Wu, Y. Regulation of mTOR Pathway in Exercise-induced Cardiac Hypertrophy. Int. J. Sports Med. 2015, 36, 343–350. [Google Scholar] [CrossRef]
- Wisløff, U.; Støylen, A.; Loennechen, J.P.; Bruvold, M.; Rognmo, Ø.; Haram, P.M.; Tjønna, A.E.; Helgerud, J.; Slørdahl, S.A.; Lee, S.J.; et al. Superior Cardiovascular Effect of Aerobic Interval Training Versus Moderate Continuous Training in Heart Failure Patients: A Randomized Study. Circulation 2007, 115, 3086–3094. [Google Scholar] [CrossRef] [Green Version]
- Barnes, J.N.; Fu, Q. Sex-Specific Ventricular and Vascular Adaptations to Exercise. Adv. Exp. Med. Biol. 2018, 1065, 329–346. [Google Scholar] [PubMed]
- Charkoudian, N.; Joyner, M.J. Physiologic considerations for exercise performance in women. Clin. Chest Med. 2004, 25, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Wiebe, C.G.; Gledhill, N.; Warburton, D.E.; Jamnik, V.K.; Ferguson, S. Exercise cardiac function in endurance-trained males versus females. Clin. J. Sport Med. Off. J. Can. Acad. Sport Med. 1998, 8, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Mihl, C.; Dassen, W.R.M.; Kuipers, H. Cardiac remodelling: Concentric versus eccentric hypertrophy in strength and endurance athletes. Neth. Heart J. 2008, 16, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Foryst-Ludwig, A.; Kreissl, M.C.; Sprang, C.; Thalke, B.; Böhm, C.; Benz, V.; Gürgen, D.; Dragun, D.; Schubert, C.; Mai, K.; et al. Sex differences in physiological cardiac hypertrophy are associated with exercise-mediated changes in energy substrate availability. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, H115–H122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haines, C.D.; Harvey, P.A.; Leinwand, L.A. Estrogens mediate cardiac hypertrophy in a stimulus-dependent manner. Endocrinology 2012, 153, 4480–4490. [Google Scholar] [CrossRef]
- Konhilas, J.P.; Maass, A.H.; Luckey, S.W.; Stauffer, B.L.; Olson, E.N.; Leinwand, L.A. Sex modifies exercise and cardiac adaptation in mice. Am. J. Physiol. Heart Circ. Physiol. 2004, 287, H2768–H2776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luczak, E.D.; Leinwand, L.A. Sex-Based Cardiac Physiology. Annu. Rev. Physiol. 2009, 71, 1–18. [Google Scholar] [CrossRef]
- Dahlöf, B. Effect of angiotensin II blockade on cardiac hypertrophy and remodelling: A review. J. Hum. Hypertens. 1995, 9 (Suppl. 5), S37–S44. [Google Scholar]
- Santos, R.A.S.; Ferreira, A.J. Angiotensin-(1–7) and the renin-angiotensin system. Curr. Opin. Nephrol. Hypertens. 2007, 16, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, G.G.; Santos, S.H.S.; Oliveira, M.L.; Pimenta-Velloso, E.P.; Motta, D.F.; Martins, A.S.; Alenina, N.; Bader, M.; Santos, R.A.S.; Campagnole-Santos, M.J. Exercise induces renin-angiotensin system unbalance and high collagen expression in the heart of Mas-deficient mice. Peptides 2012, 38, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Botelho-Santos, G.A.; Sampaio, W.O.; Reudelhuber, T.L.; Bader, M.; Campagnole-Santos, M.J.; Souza dos Santos, R.A. Expression of an angiotensin-(1-7)-producing fusion protein in rats induced marked changes in regional vascular resistance. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H2485–H2490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, C.H.; Santos, R.A.S.; Ferreira, A.J.; Bader, M.; Alenina, N.; Almeida, A.P. Effects of genetic deletion of angiotensin-(1-7) receptor Mas on cardiac function during ischemia/reperfusion in the isolated perfused mouse heart. Life Sci. 2006, 80, 264–268. [Google Scholar] [CrossRef]
- Sniderman, J.D.S.; Sado, D.M.; Sniderman, A.D.; McKenna, W.J. Evaluation of Suspected Right Ventricular Pathology in the Athlete. Prog. Cardiovasc. Dis. 2012, 54, 397–406. [Google Scholar] [CrossRef]
- Pelliccia, A. Assessment of Left Ventricular Hypertrophy in a Trained Athlete: Differential Diagnosis of Physiologic Athlete’s Heart From Pathologic Hypertrophy. Prog. Cardiovasc. Dis. 2012, 10, 387–396. [Google Scholar] [CrossRef]
- Colombo, C.S.S.S.; Finocchiaro, G. The Female Athlete’s Heart: Facts and Fallacies. Curr. Treat. Options Cardiovasc. Med. 2018, 20, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorn Gerald, W. The Fuzzy Logic of Physiological Cardiac Hypertrophy. Hypertension 2007, 49, 962–970. [Google Scholar] [CrossRef] [Green Version]
- Soto, P.F.; Herrero, P.; Schechtman, K.B.; Waggoner, A.D.; Baumstark, J.M.; Ehsani, A.A.; Gropler, R.J. Exercise training impacts the myocardial metabolism of older individuals in a gender-specific manner. Am. J. Physiol. Heart Circ. Physiol. 2008, 295, H842–H850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iskandar, A.; Mujtaba, M.T.; Thompson, P. Left Atrium Size in Elite Athletes. JACC Cardiovasc. Imaging 2015, 8, 753–762. [Google Scholar] [CrossRef] [Green Version]
- Król, W.; Jędrzejewska, I.; Konopka, M.; Burkhard-Jagodzińska, K.; Klusiewicz, A.; Pokrywka, A.; Chwalbińska, J.; Sitkowski, D.; Dłużniewski, M.; Mamcarz, A.; et al. Left Atrial Enlargement in Young High-Level Endurance Athletes—Another Sign of Athlete’s Heart? J. Hum. Kinet. 2016, 53, 81–90. [Google Scholar] [CrossRef] [Green Version]
- D’Andrea, A.; Riegler, L.; Golia, E.; Cocchia, R.; Scarafile, R.; Salerno, G.; Pezzullo, E.; Nunziata, L.; Citro, R.; Cuomo, S.; et al. Range of right heart measurements in top-level athletes: The training impact. Int. J. Cardiol. 2013, 164, 48–57. [Google Scholar] [CrossRef]
- Yoon, H.J.; Kim, K.H.; Hornsby, K.; Park, J.H.; Park, H.; Kim, H.Y.; Cho, J.Y.; Ahn, Y.; Jeong, M.H.; Cho, J.G. Gender Difference of Cardiac Remodeling in University Athletes: Results from 2015 Gwangju Summer Universiade. Korean Circ. J. 2021, 51, e34. [Google Scholar] [CrossRef] [PubMed]
- Green, D.J.; Maiorana, A.; O’Driscoll, G.; Taylor, R. Effect of exercise training on endothelium-derived nitric oxide function in humans. J. Physiol. 2004, 561, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Otsuki, T.; Maeda, S.; Iemitsu, M.; Saito, Y.; Tanimura, Y.; Ajisaka, R.; Miyauchi, T. Vascular endothelium-derived factors and arterial stiffness in strength- and endurance-trained men. Am. J. Physiol.-Heart Circ. Physiol. 2007, 292, H786–H791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prior, B.M.; Lloyd, P.G.; Yang, H.T.; Terjung, R.L. Exercise-induced vascular remodeling. Exerc. Sport Sci. Rev. 2003, 31, 26–33. [Google Scholar] [CrossRef]
- Moncada, S.; Palmer, R.M.; Higgs, E.A. Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 1991, 43, 109–142. [Google Scholar]
- Esposito, F.; Mathieu-Costello, O.; Entin, P.L.; Wagner, P.D.; Richardson, R.S. The skeletal muscle VEGF mRNA response to acute exercise in patients with chronic heart failure. Growth Factors Chur Switz. 2010, 28, 139–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Black, M.A.; Cable, N.T.; Thijssen, D.H.J.; Green, D.J. Impact of age, sex, and exercise on brachial artery flow-mediated dilatation. Am. J. Physiol. Heart Circ. Physiol. 2009, 297, H1109–H1116. [Google Scholar] [CrossRef] [PubMed]
- Pierce, G.L.; Eskurza, I.; Walker, A.E.; Fay, T.N.; Seals, D.R. Sex-specific effects of habitual aerobic exercise on brachial artery flow-mediated dilation in middle-aged and older adults. Clin. Sci. Lond. Engl. 2011, 120, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Tinken, T.M.; Thijssen, D.H.J.; Hopkins, N.; Dawson, E.A.; Cable, N.T.; Green, D.J. Shear stress mediates endothelial adaptations to exercise training in humans. Hypertens. Dallas Tex 2010, 55, 312–318. [Google Scholar] [CrossRef] [Green Version]
- Moreau, K.L.; Stauffer, B.L.; Kohrt, W.M.; Seals, D.R. Essential Role of Estrogen for Improvements in Vascular Endothelial Function With Endurance Exercise in Postmenopausal Women. J. Clin. Endocrinol. Metab. 2013, 98, 4507–4515. [Google Scholar] [CrossRef] [Green Version]
- Ascensão, A.; Ferreira, R.; Magalhães, J. Exercise-induced cardioprotection--biochemical, morphological and functional evidence in whole tissue and isolated mitochondria. Int. J. Cardiol. 2007, 117, 16–30. [Google Scholar] [CrossRef]
- Powers, S.K.; Demirel, H.A.; Vincent, H.K.; Coombes, J.S.; Naito, H.; Hamilton, K.L.; Shanely, R.A.; Jessup, J. Exercise training improves myocardial tolerance to in vivo ischemia-reperfusion in the rat. Am. J. Physiol. 1998, 275, R1468–R1477. [Google Scholar] [CrossRef]
- Powers, S.K.; Quindry, J.C.; Kavazis, A.N. Exercise-induced cardioprotection against myocardial ischemia-reperfusion injury. Free Radic. Biol. Med. 2008, 44, 193–201. [Google Scholar] [CrossRef]
- Hamilton, K.L.; Quindry, J.C.; French, J.P.; Staib, J.; Hughes, J.; Mehta, J.L.; Powers, S.K. MnSOD antisense treatment and exercise-induced protection against arrhythmias. Free Radic. Biol. Med. 2004, 37, 1360–1368. [Google Scholar] [CrossRef]
- Kanter, M.M.; Hamlin, R.L.; Unverferth, D.V.; Davis, H.W.; Merola, A.J. Effect of exercise training on antioxidant enzymes and cardiotoxicity of doxorubicin. J. Appl. Physiol. Bethesda Md. 1985, 59, 1298–1303. [Google Scholar] [CrossRef] [PubMed]
- Powers, S.K.; Criswell, D.; Lawler, J.; Martin, D.; Lieu, F.K.; Ji, L.L.; Herb, R.A. Rigorous exercise training increases superoxide dismutase activity in ventricular myocardium. Am. J. Physiol. 1993, 265, H2094–H2098. [Google Scholar] [CrossRef]
- Giannuzzi, P.; Temporelli, P.L.; Corrà, U.; Tavazzi, L. ELVD-CHF Study Group Antiremodeling effect of long-term exercise training in patients with stable chronic heart failure: Results of the Exercise in Left Ventricular Dysfunction and Chronic Heart Failure (ELVD-CHF) Trial. Circulation 2003, 108, 554–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hambrecht, R.; Gielen, S.; Linke, A.; Fiehn, E.; Yu, J.; Walther, C.; Schoene, N.; Schuler, G. Effects of exercise training on left ventricular function and peripheral resistance in patients with chronic heart failure: A randomized trial. JAMA 2000, 283, 3095–3101. [Google Scholar] [CrossRef] [PubMed]
- McMullen, J.R.; Amirahmadi, F.; Woodcock, E.A.; Schinke-Braun, M.; Bouwman, R.D.; Hewitt, K.A.; Mollica, J.P.; Zhang, L.; Zhang, Y.; Shioi, T.; et al. Protective effects of exercise and phosphoinositide 3-kinase(p110alpha) signaling in dilated and hypertrophic cardiomyopathy. Proc. Natl. Acad. Sci. USA 2007, 104, 612–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, L.; Mei, D.F.; Gu, A.-G.; Wang, S.; Lentzner, B.; Gutstein, D.E.; Zwas, D.; Homma, S.; Yi, G.-H.; Wang, J. Exercise training normalizes altered calcium-handling proteins during development of heart failure. J. Appl. Physiol. Bethesda Md. 2002, 92, 1524–1530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolim, N.P.L.; Medeiros, A.; Rosa, K.T.; Mattos, K.C.; Irigoyen, M.C.; Krieger, E.M.; Krieger, J.E.; Negrão, C.E.; Brum, P.C. Exercise training improves the net balance of cardiac Ca2+ handling protein expression in heart failure. Physiol. Genomics 2007, 29, 246–252. [Google Scholar] [CrossRef]
- Coats, A.J.; Adamopoulos, S.; Radaelli, A.; McCance, A.; Meyer, T.E.; Bernardi, L.; Solda, P.L.; Davey, P.; Ormerod, O.; Forfar, C. Controlled trial of physical training in chronic heart failure. Exercise performance, hemodynamics, ventilation, and autonomic function. Circulation 1992, 85, 2119–2131. [Google Scholar] [CrossRef] [Green Version]
- Braith, R.W.; Welsch, M.A.; Feigenbaum, M.S.; Kluess, H.A.; Pepine, C.J. Neuroendocrine activation in heart failure is modified by endurance exercise training. J. Am. Coll. Cardiol. 1999, 34, 1170–1175. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Wan, W.; Powers, A.S.; Li, J.; Ji, L.; Lao, S.; Wilson, B.; Erikson, J.M.; Zhang, J.Q. Effects of exercise training on cardiac function and myocardial remodeling in post myocardial infarction rats. J. Mol. Cell. Cardiol. 2008, 44, 114–122. [Google Scholar] [CrossRef] [Green Version]
- Hambrecht, R.; Adams, V.; Erbs, S.; Linke, A.; Kränkel, N.; Shu, Y.; Baither, Y.; Gielen, S.; Thiele, H.; Gummert, J.F.; et al. Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation 2003, 107, 3152–3158. [Google Scholar] [CrossRef] [Green Version]
- Adams, V.; Linke, A.; Kränkel, N.; Erbs, S.; Gielen, S.; Möbius-Winkler, S.; Gummert, J.F.; Mohr, F.W.; Schuler, G.; Hambrecht, R. Impact of regular physical activity on the NAD(P)H oxidase and angiotensin receptor system in patients with coronary artery disease. Circulation 2005, 111, 555–562. [Google Scholar] [CrossRef] [Green Version]
- Elliott, A.D.; La Gerche, A. The right ventricle following prolonged endurance exercise: Are we overlooking the more important side of the heart? A meta-analysis. Br. J. Sports Med. 2015, 49, 724–729. [Google Scholar] [CrossRef]
- La Gerche, A.; Claessen, G. Is Exercise Good for the Right Ventricle? Concepts for Health and Disease. Can. J. Cardiol. 2015, 31, 502–508. [Google Scholar] [CrossRef]
- Lewis, G.D.; Bossone, E.; Naeije, R.; Grünig, E.; Saggar, R.; Lancellotti, P.; Ghio, S.; Varga, J.; Rajagopalan, S.; Oudiz, R.; et al. Pulmonary Vascular Hemodynamic Response to Exercise in Cardiopulmonary Diseases. Circulation 2013, 128, 1470–1479. [Google Scholar] [CrossRef]
- Naeije, R.; Chesler, N. Pulmonary Circulation at Exercise. Compr. Physiol. 2012, 2, 711–741. [Google Scholar]
- La Gerche, A.; Roberts, T.; Claessen, G. The response of the pulmonary circulation and right ventricle to exercise: Exercise-induced right ventricular dysfunction and structural remodeling in endurance athletes (2013 Grover Conference series). Pulm. Circ. 2014, 4, 407–416. [Google Scholar] [CrossRef] [Green Version]
- Finocchiaro, G.; Papadakis, M.; Robertus, J.-L.; Dhutia, H.; Steriotis, A.K.; Tome, M.; Mellor, G.; Merghani, A.; Malhotra, A.; Behr, E.; et al. Etiology of Sudden Death in Sports: Insights From a United Kingdom Regional Registry. J. Am. Coll. Cardiol. 2016, 67, 2108–2115. [Google Scholar] [CrossRef] [PubMed]
- Rich, L.; Rarick, J.; Prahlow, J. Arrhythmogenic Right Ventricular Cardiomyopathy in a Young Athlete. Am. J. Forensic Med. Pathol. 2021, 42, 64–66. [Google Scholar] [CrossRef] [PubMed]
- Gasperetti, A.; James, C.A.; Cerrone, M.; Delmar, M.; Calkins, H.; Duru, F. Arrhythmogenic right ventricular cardiomyopathy and sports activity: From molecular pathways in diseased hearts to new insights into the athletic heart mimicry. Eur. Heart J. 2021, 42, 1231–1243. [Google Scholar] [CrossRef] [PubMed]
- Guasch, E.; Mont, L. Diagnosis, pathophysiology, and management of exercise-induced arrhythmias. Nat. Rev. Cardiol. 2017, 14, 88–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flannery, M.D.; Kalman, J.M.; Sanders, P.; La Gerche, A. State of the Art Review: Atrial Fibrillation in Athletes. Heart Lung Circ. 2017, 26, 983–989. [Google Scholar] [CrossRef]
- Wilhelm, M.; Roten, L.; Tanner, H.; Wilhelm, I.; Schmid, J.-P.; Saner, H. Gender Differences of Atrial and Ventricular Remodeling and Autonomic Tone in Nonelite Athletes. Am. J. Cardiol. 2011, 108, 1489–1495. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, L.; Devadoss, R.; Chaubey, V.K.; Spodick, D.H. Interatrial Block in the Modern Era. Curr. Cardiol. Rev. 2014, 10, 181–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guasch, E.; Benito, B.; Qi, X.; Cifelli, C.; Naud, P.; Shi, Y.; Mighiu, A.; Tardif, J.-C.; Tadevosyan, A.; Chen, Y.; et al. Atrial fibrillation promotion by endurance exercise: Demonstration and mechanistic exploration in an animal model. J. Am. Coll. Cardiol. 2013, 62, 68–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehmann, M.H.; Timothy, K.W.; Frankovich, D.; Fromm, B.S.; Keating, M.; Locati, E.H.; Taggart, R.T.; Towbin, J.A.; Moss, A.J.; Schwartz, P.J.; et al. Age-Gender Influence on the Rate-Corrected QT Interval and the QT-Heart Rate Relation in Families With Genotypically Characterized Long QT Syndrome. J. Am. Coll. Cardiol. 1997, 29, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Locati, E.H.; Zareba, W.; Moss, A.J.; Schwartz, P.J.; Vincent, G.M.; Lehmann, M.H.; Towbin, J.A.; Priori, S.G.; Napolitano, C.; Robinson, J.L.; et al. Age- and Sex-Related Differences in Clinical Manifestations in Patients With Congenital Long-QT Syndrome. Circulation 1998, 97, 2237–2244. [Google Scholar] [CrossRef] [Green Version]
- Benito, B.; Sarkozy, A.; Mont, L.; Henkens, S.; Berruezo, A.; Tamborero, D.; Arzamendi, D.; Berne, P.; Brugada, R.; Brugada, P.; et al. Gender Differences in Clinical Manifestations of Brugada Syndrome. J. Am. Coll. Cardiol. 2008, 52, 1567–1573. [Google Scholar] [CrossRef] [Green Version]
- Vlachos, K.; Mascia, G.; Martin, C.A.; Bazoukis, G.; Frontera, A.; Cheniti, G.; Letsas, K.P.; Efremidis, M.; Georgopoulos, S.; Gkalapis, C.; et al. Atrial fibrillation in Brugada syndrome: Current perspectives. J. Cardiovasc. Electrophysiol. 2020, 31, 975–984. [Google Scholar] [CrossRef]
- Mascia, G.; Bona, R.D.; Ameri, P.; Canepa, M.; Porto, I.; Parati, G.; Crotti, L.; Brignole, M. Brugada syndrome and syncope: A practical approach for diagnosis and treatment. EP Eur. 2021, 23, 996–1002. [Google Scholar]
- Saarel, E.V.; Law, I.; Berul, C.I.; Ackerman, M.J.; Kanter, R.J.; Sanatani, S.; Cohen, M.I.; Berger, S.; Fischbach, P.S.; Burton, D.A.; et al. Safety of Sports for Young Patients With Implantable Cardioverter-Defibrillators. Circ. Arrhythm. Electrophysiol. 2018, 11, e006305. [Google Scholar] [CrossRef]
- Lampert, R. Sport Participation in Patients with Implantable Cardioverter-Defibrillators. Curr. Treat. Options Cardiovasc. Med. 2019, 21, 66. [Google Scholar] [CrossRef] [PubMed]
- Lehnart, S.E.; Wehrens, X.H.T.; Laitinen, P.J.; Reiken, S.R.; Deng, S.-X.; Cheng, Z.; Landry, D.W.; Kontula, K.; Swan, H.; Marks, A.R. Sudden Death in Familial Polymorphic Ventricular Tachycardia Associated With Calcium Release Channel (Ryanodine Receptor) Leak. Circulation 2004, 109, 3208–3214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noseworthy, P.A.; Tikkanen, J.T.; Porthan, K.; Oikarinen, L.; Pietila, A.; Harald, K.; Peloso, G.M.; Merchant, F.M.; Jula, A.; Väänänen, H.; et al. The early repolarization pattern in the general population: Clinical correlates and heritability. J. Am. Coll. Cardiol. 2011, 57, 2284–2289. [Google Scholar] [CrossRef] [Green Version]
- Tester, D.J.; Arya, P.; Will, M.; Haglund, C.M.; Farley, A.L.; Makielski, J.C.; Ackerman, M.J. Genotypic heterogeneity and phenotypic mimicry among unrelated patients referred for catecholaminergic polymorphic ventricular tachycardia genetic testing. Heart Rhythm 2006, 3, 800–805. [Google Scholar] [CrossRef]
- Adams, V. CrossTalk proposal: Acute exercise elicits damage to the endothelial layer of systemic blood vessels in healthy individuals. J. Physiol. 2018, 596, 537–539. [Google Scholar] [CrossRef]
- Dawson, E.A.; Whyte, G.P.; Black, M.A.; Jones, H.; Hopkins, N.; Oxborough, D.; Gaze, D.; Shave, R.E.; Wilson, M.; George, K.P.; et al. Changes in vascular and cardiac function after prolonged strenuous exercise in humans. J. Appl. Physiol. Bethesda Md. 2008, 105, 1562–1568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birk, G.K.; Dawson, E.A.; Batterham, A.M.; Atkinson, G.; Cable, T.; Thijssen, D.H.J.; Green, D.J. Effects of exercise intensity on flow mediated dilation in healthy humans. Int. J. Sports Med. 2013, 34, 409–414. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Vélez, R.; Hernández-Quiñones, P.A.; Tordecilla-Sanders, A.; Álvarez, C.; Ramírez-Campillo, R.; Izquierdo, M.; Correa-Bautista, J.E.; Garcia-Hermoso, A.; Garcia, R.G. Effectiveness of HIIT compared to moderate continuous training in improving vascular parameters in inactive adults. Lipids Health Dis. 2019, 18, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Johnson, B.D.; Padilla, J.; Wallace, J.P. The exercise dose affects oxidative stress and brachial artery flow-mediated dilation in trained men. Eur. J. Appl. Physiol. 2012, 112, 33–42. [Google Scholar] [CrossRef]
- O’Sullivan, S.E. The effects of exercise training on markers of endothelial function in young healthy men. Int. J. Sports Med. 2003, 24, 404–409. [Google Scholar]
- Uhlemann, M.; Möbius-Winkler, S.; Fikenzer, S.; Adam, J.; Redlich, M.; Möhlenkamp, S.; Hilberg, T.; Schuler, G.C.; Adams, V. Circulating microRNA-126 increases after different forms of endurance exercise in healthy adults. Eur. J. Prev. Cardiol. 2014, 21, 484–491. [Google Scholar] [CrossRef]
- Boos, C.J.; Balakrishnan, B.; Lip, G.Y.H. The effects of exercise stress testing on soluble E-selectin, von Willebrand factor, and circulating endothelial cells as indices of endothelial damage/dysfunction. Ann. Med. 2008, 40, 66–73. [Google Scholar] [CrossRef]
- Sapp, R.M.; Hagberg, J.M. CrossTalk opposing view: Acute exercise does not elicit damage to the endothelial layer of systemic blood vessels in healthy individuals. J. Physiol. 2018, 596, 541–544. [Google Scholar] [CrossRef]
- Ghadieh, A.S.; Saab, B. Evidence for exercise training in the management of hypertension in adults. Can. Fam. Physician Med. Fam. Can. 2015, 61, 233–239. [Google Scholar]
- Wang, R.; Tian, H.; Guo, D.; Tian, Q.; Yao, T.; Kong, X. Impacts of exercise intervention on various diseases in rats. J. Sport Health Sci. 2020, 9, 211–227. [Google Scholar] [CrossRef] [PubMed]
- Asif, Y.; Wlodek, M.E.; Black, M.J.; Russell, A.P.; Soeding, P.F.; Wadley, G.D. Sustained cardiac programming by short-term juvenile exercise training in male rats. J. Physiol. 2018, 596, 163–180. [Google Scholar] [CrossRef] [PubMed]
- Liao, P.-H.; Hsieh, D.J.-Y.; Kuo, C.-H.; Day, C.-H.; Shen, C.-Y.; Lai, C.-H.; Chen, R.-J.; Padma, V.V.; Kuo, W.-W.; Huang, C.-Y. Moderate exercise training attenuates aging-induced cardiac inflammation, hypertrophy and fibrosis injuries of rat hearts. Oncotarget 2015, 6, 35383–35394. [Google Scholar] [CrossRef]
- Dworatzek, E.; Mahmoodzadeh, S.; Schubert, C.; Westphal, C.; Leber, J.; Kusch, A.; Kararigas, G.; Fliegner, D.; Moulin, M.; Ventura-Clapier, R.; et al. Sex differences in exercise-induced physiological myocardial hypertrophy are modulated by oestrogen receptor beta. Cardiovasc. Res. 2014, 102, 418–428. [Google Scholar] [CrossRef] [Green Version]
- Verboven, M.; Cuypers, A.; Deluyker, D.; Lambrichts, I.; Eijnde, B.O.; Hansen, D.; Bito, V. High intensity training improves cardiac function in healthy rats. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zile, M.R.; Baicu, C.F.; Ikonomidis, J.; Stroud, R.E.; Nietert, P.J.; Bradshaw, A.D.; Slater, R.; Palmer, B.M.; Van Buren, P.; Meyer, M.; et al. Myocardial Stiffness in Patients with Heart Failure and a Preserved Ejection Fraction: Contributions of Collagen and Titin. Circulation 2015, 131, 1247–1259. [Google Scholar] [CrossRef]
- Hafstad, A.D.; Lund, J.; Hadler-Olsen, E.; Höper, A.C.; Larsen, T.S.; Aasum, E. High- and moderate-intensity training normalizes ventricular function and mechanoenergetics in mice with diet-induced obesity. Diabetes 2013, 62, 2287–2294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timothy, J.W.D.; Ben, C.; Sorcha, C.; de Marvao, A.; Roddy, W.; James, S.W.; Stuart, A.C.; O’Regan, P.D. Moderate Physical Activity in Healthy Adults Is Associated With Cardiac Remodeling. Circ. Cardiovasc. Imaging 2016, 9, e004712. [Google Scholar]
- Potoră, C.S.; Tache, S.; Albu, A.; Nagy, A.L. Effects of moderate exercise and a multiple vitamin and mineral complex on the arterial wall. Romanian J. Morphol. Embryol. Rev. Roum. Morphol. Embryol. 2018, 59, 249–256. [Google Scholar]
- Albarwani, S.; Al-Siyabi, S.; Baomar, H.; Hassan, M.O. Exercise training attenuates ageing-induced BKCa channel downregulation in rat coronary arteries. Exp. Physiol. 2010, 95, 746–755. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Liu, B.; Li, N.; Xue, Z.; Liu, X. Aerobic exercise increases BK(Ca) channel contribution to regulation of mesenteric arterial tone by upregulating β1-subunit. Exp. Physiol. 2013, 98, 326–336. [Google Scholar] [CrossRef]
- Zhao, H.-C.; Wang, F. Exercise training changes the gating properties of large-conductance Ca2+-activated K+ channels in rat thoracic aorta smooth muscle cells. J. Biomech. 2010, 43, 263–267. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Zhang, L.; Lu, N.; Shi, L. Aerobic exercise of low to moderate intensity corrects unequal changes in BK(Ca) subunit expression in the mesenteric arteries of spontaneously hypertensive rats. Physiol. Res. 2017, 66, 219–233. [Google Scholar] [CrossRef]
- Shenouda, N.; Gillen, J.B.; Gibala, M.J.; MacDonald, M.J. Changes in brachial artery endothelial function and resting diameter with moderate-intensity continuous but not sprint interval training in sedentary men. J. Appl. Physiol. 2017, 123, 773–780. [Google Scholar] [CrossRef] [Green Version]
- Sawyer, B.J.; Tucker, W.J.; Bhammar, D.M.; Ryder, J.R.; Sweazea, K.L.; Gaesser, G.A. Effects of high-intensity interval training and moderate-intensity continuous training on endothelial function and cardiometabolic risk markers in obese adults. J. Appl. Physiol. Bethesda Md. 2016, 121, 279–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakobowchuk, M.; Tanguay, S.; Burgomaster, K.A.; Howarth, K.R.; Gibala, M.J.; MacDonald, M.J. Sprint interval and traditional endurance training induce similar improvements in peripheral arterial stiffness and flow-mediated dilation in healthy humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295, R236–R242. [Google Scholar] [CrossRef]
- Goto, C.; Higashi, Y.; Kimura, M.; Noma, K.; Hara, K.; Nakagawa, K.; Kawamura, M.; Chayama, K.; Yoshizumi, M.; Nara, I. Effect of Different Intensities of Exercise on Endothelium-Dependent Vasodilation in Humans: Role of Endothelium-Dependent Nitric Oxide and Oxidative Stress. Circulation 2003, 108, 530–535. [Google Scholar] [CrossRef] [Green Version]
- Sugawara, J.; Inoue, H.; Hayashi, K.; Yokoi, T.; Kono, I. Effect of low-intensity aerobic exercise training on arterial compliance in postmenopausal women. Hypertens. Res. Off. J. Jpn. Soc. Hypertens. 2004, 27, 897–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO|What is Moderate-intensity and Vigorous-intensity Physical Activity? Available online: https://www.who.int/dietphysicalactivity/physical_activity_intensity/en/ (accessed on 21 October 2020).
- Physical Activity Guidelines for Americans, 2nd ed.; Department of Health and Human Services: Washington, DC, USA, 2018.
- de Oliveira, S.G.; dos Santos, N.V.; de Oliveira, F.S.R.; Souza-Mello, V.; da-Silva, B.S. High-intensity interval training has beneficial effects on cardiac remodeling through local renin-angiotensin system modulation in mice fed high-fat or high-fructose diets. Life Sci. 2017, 189, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Ross, L.M.; Porter, R.R.; Durstine, J.L. High-intensity interval training (HIIT) for patients with chronic diseases. J. Sport Health Sci. 2016, 5, 139–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, D.J.; Hopman, M.T.E.; Padilla, J.; Laughlin, M.H.; Thijssen, D.H.J. Vascular Adaptation to Exercise in Humans: Role of Hemodynamic Stimuli. Physiol. Rev. 2017, 97, 495–528. [Google Scholar] [CrossRef]
- Kong, Z.; Fan, X.; Sun, S.; Song, L.; Shi, Q.; Nie, J. Comparison of High-Intensity Interval Training and Moderate-to-Vigorous Continuous Training for Cardiometabolic Health and Exercise Enjoyment in Obese Young Women: A Randomized Controlled Trial. PLoS ONE 2016, 11, e0158589. [Google Scholar] [CrossRef]
- Skutnik, B.C.; Smith, J.R.; Johnson, A.M.; Kurti, S.P.; Harms, C.A. The Effect of Low Volume Interval Training on Resting Blood Pressure in Pre-hypertensive Subjects: A Preliminary Study. Phys. Sportsmed. 2016, 44, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.B.; Neves, E.; Long, G.; Graber, J.; Gladish, B.; Wiseman, A.; Owens, M.; Fisher, A.J.; Presson, R.G.; Petrache, I.; et al. High-intensity interval training, but not continuous training, reverses right ventricular hypertrophy and dysfunction in a rat model of pulmonary hypertension. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2017, 312, R197–R210. [Google Scholar] [CrossRef] [Green Version]
- Cassidy, S.; Thoma, C.; Hallsworth, K.; Parikh, J.; Hollingsworth, K.G.; Taylor, R.; Jakovljevic, D.G.; Trenell, M.I. High intensity intermittent exercise improves cardiac structure and function and reduces liver fat in patients with type 2 diabetes: A randomised controlled trial. Diabetologia 2016, 59, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Novoa, U.; Arauna, D.; Moran, M.; Nuñez, M.; Zagmutt, S.; Saldivia, S.; Valdes, C.; Villaseñor, J.; Zambrano, C.G.; Gonzalez, D.R. High-Intensity Exercise Reduces Cardiac Fibrosis and Hypertrophy but Does Not Restore the Nitroso-Redox Imbalance in Diabetic Cardiomyopathy. Oxid. Med. Cell. Longev. 2017, 2017, 7921363. [Google Scholar] [CrossRef] [Green Version]
- Oláh, A.; Mátyás, C.; Kellermayer, D.; Ruppert, M.; Barta, B.A.; Sayour, A.A.; Török, M.; Koncsos, G.; Giricz, Z.; Ferdinandy, P.; et al. Sex Differences in Morphological and Functional Aspects of Exercise-Induced Cardiac Hypertrophy in a Rat Model. Front. Physiol. 2019, 10, 889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, E.R.M.; Lara, A.A.; Almeida, P.W.M.; Guimarães, D.; Resende, R.R.; Campagnole-Santos, M.J.; Bader, M.; Santos, R.A.S.; Guatimosim, S. Angiotensin-(1-7) Prevents Cardiomyocyte Pathological Remodeling Through a Nitric Oxide/Guanosine 3′,5′-Cyclic Monophosphate–Dependent Pathway. Hypertension 2010, 55, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Santos, R.A.S.; e Silva, A.C.S.; Maric, C.; Silva, D.M.R.; Machado, R.P.; de Buhr, I.; Heringer-Walther, S.; Pinheiro, S.V.B.; Lopes, M.T.; Bader, M.; et al. Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc. Natl. Acad. Sci. USA 2003, 100, 8258–8263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sukumaran, V.; Veeraveedu, P.T.; Gurusamy, N.; Yamaguchi, K.; Lakshmanan, A.P.; Ma, M.; Suzuki, K.; Kodama, M.; Watanabe, K. Cardioprotective effects of telmisartan against heart failure in rats induced by experimental autoimmune myocarditis through the modulation of angiotensin-converting enzyme-2/angiotensin 1-7/mas receptor axis. Int. J. Biol. Sci. 2011, 7, 1077–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sukumaran, V.; Veeraveedu, P.T.; Gurusamy, N.; Lakshmanan, A.P.; Yamaguchi, K.; Ma, M.; Suzuki, K.; Kodama, M.; Watanabe, K. Telmisartan acts through the modulation of ACE-2/ANG 1-7/mas receptor in rats with dilated cardiomyopathy induced by experimental autoimmune myocarditis. Life Sci. 2012, 90, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Schinzari, F.; Veneziani, A.; Mores, N.; Barini, A.; Di Daniele, N.; Cardillo, C.; Tesauro, M. Beneficial Effects of Apelin on Vascular Function in Patients With Central Obesity. Hypertension 2017, 69, 942–949. [Google Scholar] [CrossRef]
- Rahimi, M.; Shekarforoush, S.; Asgari, A.R.; Khoshbaten, A.; Rajabi, H.; Bazgir, B.; Mohammadi, M.T.; Sobhani, V.; Shakibaee, A. The effect of high intensity interval training on cardioprotection against ischemia-reperfusion injury in wistar rats. EXCLI J. 2015, 14, 237–246. [Google Scholar]
- Heiskanen, M.A.; Leskinen, T.; Heinonen, I.H.A.; Löyttyniemi, E.; Eskelinen, J.-J.; Virtanen, K.; Hannukainen, J.C.; Kalliokoski, K.K. Right ventricular metabolic adaptations to high-intensity interval and moderate-intensity continuous training in healthy middle-aged men. Am. J. Physiol.-Heart Circ. Physiol. 2016, 311, H667–H675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grace, F.; Herbert, P.; Elliott, A.D.; Richards, J.; Beaumont, A.; Sculthorpe, N.F. High intensity interval training (HIIT) improves resting blood pressure, metabolic (MET) capacity and heart rate reserve without compromising cardiac function in sedentary aging men. Exp. Gerontol. 2018, 109, 75–81. [Google Scholar] [CrossRef]
- Ito, S. High-intensity interval training for health benefits and care of cardiac diseases—The key to an efficient exercise protocol. World J. Cardiol. 2019, 11, 171–188. [Google Scholar] [CrossRef]
- Stewart, G.M.; Chan, J.; Yamada, A.; Kavanagh, J.J.; Haseler, L.J.; Shiino, K.; Sabapathy, S. Impact of high-intensity endurance exercise on regional left and right ventricular myocardial mechanics. Eur. Heart J. Cardiovasc. Imaging 2016, 18, 688–696. [Google Scholar] [CrossRef] [Green Version]
- Cote, A.T.; Phillips, A.A.; Foulds, H.J.; Charlesworth, S.A.; Bredin, S.S.D.; Burr, J.F.; Koehle, M.S.; Warburton, D.E.R. Sex Differences in Cardiac Function After Prolonged Strenuous Exercise. Clin. J. Sport Med. 2015, 25, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Scott, J.M.; Esch, B.T.A.; Haykowsky, M.J.; Isserow, S.; Koehle, M.S.; Hughes, B.G.; Zbogar, D.; Bredin, S.S.D.; McKenzie, D.C.; Warburton, D.E.R. Sex differences in left ventricular function and β-receptor responiveness following prolonged strenuous exercise. J. Appl. Physiol. 2007, 102, 681–687. [Google Scholar] [CrossRef]
- Batacan, R.B.; Duncan, M.J.; Dalbo, V.J.; Buitrago, G.L.; Fenning, A.S. Effect of different intensities of physical activity on cardiometabolic markers and vascular and cardiac function in adult rats fed with a high-fat high-carbohydrate diet. J. Sport Health Sci. 2018, 7, 109–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klonizakis, M.; Moss, J.; Gilbert, S.; Broom, D.; Foster, J.; Tew, G.A. Low-volume high-intensity interval training rapidly improves cardiopulmonary function in postmenopausal women. Menopause 2014, 21, 1099–1105. [Google Scholar] [CrossRef] [PubMed]
- Rognmo, Ø.; Hetland, E.; Helgerud, J.; Hoff, J.; Slørdahl, S.A. High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease. Eur. J. Cardiovasc. Prev. Rehabil. 2004, 11, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Freyssin, C.; Verkindt, C.; Prieur, F.; Benaich, P.; Maunier, S.; Blanc, P. Cardiac Rehabilitation in Chronic Heart Failure: Effect of an 8-Week, High-Intensity Interval Training Versus Continuous Training. Arch. Phys. Med. Rehabil. 2012, 93, 1359–1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, Y.; Ying, W.; Yu, C.; Daliao, X.; Lijun, S. Impact of moderate- and high-intensity exercise on the endothelial ultrastructure and function in mesenteric arteries from hypertensive rats. Life Sci. 2019, 222, 36–45. [Google Scholar]
- Chen, Y.; Zhang, H.; Zhang, Y.; Lu, N.; Zhang, L.; Shi, L. Exercise intensity-dependent reverse and adverse remodeling of voltage-gated Ca2+ channels in mesenteric arteries from spontaneously hypertensive rats. Hypertens. Res. 2015, 38, 656–665. [Google Scholar] [CrossRef]
- Beckers, P.J.; Denollet, J.; Possemiers, N.M.; Wuyts, F.L.; Vrints, C.J.; Conraads, V.M. Combined endurance-resistance training vs. endurance training in patients with chronic heart failure: A prospective randomized study. Eur. Heart J. 2008, 29, 1858–1866. [Google Scholar] [CrossRef] [Green Version]
- Dor-Haim, H.; Barak, S.; Horowitz, M.; Yaakobi, E.; Katzburg, S.; Swissa, M.; Lotan, C. Improvement in cardiac dysfunction with a novel circuit training method combining simultaneous aerobic-resistance exercises. A randomized trial. PLoS ONE 2018, 13, e0188551. [Google Scholar]
- Schroeder, E.C.; Franke, W.D.; Sharp, R.L.; Lee, D. Comparative effectiveness of aerobic, resistance, and combined training on cardiovascular disease risk factors: A randomized controlled trial. PLoS ONE 2019, 14, e0210292. [Google Scholar] [CrossRef] [Green Version]
- Lippincott Williams & Wilkins. ACSM’s Guidelines for Exercise Testing and Prescription, 9th ed.; American College of Sports Medicine: Baltimore, MD, USA, 2013; ISBN 978-1-60913-605-5. [Google Scholar]
- Patel, H.; Alkhawam, H.; Madanieh, R.; Shah, N.; Kosmas, C.E.; Vittorio, T.J. Aerobic vs anaerobic exercise training effects on the cardiovascular system. World J. Cardiol. 2017, 9, 134–138. [Google Scholar] [CrossRef]
- Stojiljković, N.; Ignjatović, A.; Savić, Z.; Marković, Ž.; Milanović, S. History of Resistance Training. Act. Phys. Educ. Sport 2013, 3, 135–138. [Google Scholar]
- Shaw, B.S.; Shaw, I.; Brown, G.A. Resistance exercise is medicine: Strength training in health promotion and rehabilitation. Int. J. Ther. Rehabil. 2015, 22, 385–389. [Google Scholar] [CrossRef]
- Sanches, I.C.; Buzin, M.; Conti, F.F.; da Dias, D.S.; dos Santos, C.P.; Sirvente, R.; Salemi, V.M.C.; Llesuy, S.; Irigoyen, M.-C.; De Angelis, K. Combined aerobic and resistance exercise training attenuates cardiac dysfunctions in a model of diabetes and menopause. PLoS ONE 2018, 13, e0202731. [Google Scholar]
- Shimojo, G.L.; da Silva Dias, D.; Malfitano, C.; Sanches, I.C.; Llesuy, S.; Ulloa, L.; Irigoyen, M.-C.; De Angelis, K. Combined Aerobic and Resistance Exercise Training Improve Hypertension Associated With Menopause. Front. Physiol. 2018, 9, 1471. [Google Scholar] [CrossRef] [PubMed]
- Chrysohoou, C.; Angelis, A.; Tsitsinakis, G.; Spetsioti, S.; Nasis, I.; Tsiachris, D.; Rapakoulias, P.; Pitsavos, C.; Koulouris, N.G.; Vogiatzis, I.; et al. Cardiovascular effects of high-intensity interval aerobic training combined with strength exercise in patients with chronic heart failure. A randomized phase III clinical trial. Int. J. Cardiol. 2015, 179, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Haykowsky, M.J.; Liang, Y.; Pechter, D.; Jones, L.W.; McAlister, F.A.; Clark, A.M. A Meta-Analysis of the Effect of Exercise Training on Left Ventricular Remodeling in Heart Failure Patients: The Benefit Depends on the Type of Training Performed. J. Am. Coll. Cardiol. 2007, 49, 2329–2336. [Google Scholar] [CrossRef] [Green Version]
- Ahn, N.; Kim, K. Effects of Aerobic and Resistance Exercise on Myokines in High Fat Diet-Induced Middle-Aged Obese Rats. Int. J. Environ. Res. Public. Health 2020, 17, 2685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, M.; Gao, S.A.; Friberg, P.; Annerstedt, M.; Carlström, J.; Ivarsson, T.; Jensen, G.; Ljungman, S.; Mathillas, O.; Nielsen, F.-D.; et al. Baroreflex effectiveness index and baroreflex sensitivity predict all-cause mortality and sudden death in hypertensive patients with chronic renal failure. J. Hypertens. 2007, 25, 163–168. [Google Scholar] [CrossRef]
- Masson, G.S.; Costa, T.S.R.; Yshii, L.; Fernandes, D.C.; Soares, P.P.S.; Laurindo, F.R.; Scavone, C.; Michelini, L.C. Time-Dependent Effects of Training on Cardiovascular Control in Spontaneously Hypertensive Rats: Role for Brain Oxidative Stress and Inflammation and Baroreflex Sensitivity. PLoS ONE 2014, 9, e94927. [Google Scholar] [CrossRef]
- Son, W.-M.; Sung, K.-D.; Cho, J.-M.; Park, S.-Y. Combined exercise reduces arterial stiffness, blood pressure, and blood markers for cardiovascular risk in postmenopausal women with hypertension. Menopause 2017, 24, 262–268. [Google Scholar] [CrossRef]
- Maeda, S.; Zempo-Miyaki, A.; Sasai, H.; Tsujimoto, T.; So, R.; Tanaka, K. Lifestyle modification decreases arterial stiffness in overweight and obese men: Dietary modification vs. exercise training. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Masroor, S.; Bhati, P.; Verma, S.; Khan, M.; Hussain, M.E. Heart Rate Variability following Combined Aerobic and Resistance Training in Sedentary Hypertensive Women: A Randomised Control Trial. Indian Heart J. 2018, 70, S28–S35. [Google Scholar] [CrossRef]
- Figueroa, A.; Park, S.Y.; Seo, D.Y.; Sanchez-Gonzalez, M.A.; Baek, Y.H. Combined resistance and endurance exercise training improves arterial stiffness, blood pressure, and muscle strength in postmenopausal women. Menopause 2011, 18, 980–984. [Google Scholar] [CrossRef] [PubMed]
- Miyachi, M.; Kawano, H.; Sugawara, J.; Takahashi, K.; Hayashi, K.; Yamazaki, K.; Tabata, I.; Tanaka, H. Unfavorable Effects of Resistance Training on Central Arterial Compliance: A Randomized Intervention Study. Circulation 2004, 110, 2858–2863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyachi, M.; Donato, A.J.; Yamamoto, K.; Takahashi, K.; Gates, P.E.; Moreau, K.L.; Tanaka, H. Greater Age-Related Reductions in Central Arterial Compliance in Resistance-Trained Men. Hypertension 2003, 41, 130–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawano, H.; Tanaka, H.; Miyachi, M. Resistance training and arterial compliance: Keeping the benefits while minimizing the stiffening. J. Hypertens. 2006, 24, 1753–1759. [Google Scholar] [CrossRef] [Green Version]
- Montero, D.; Vinet, A.; Roberts, C.K. Effect of combined aerobic and resistance training versus aerobic training on arterial stiffness. Int. J. Cardiol. 2015, 178, 69–76. [Google Scholar] [CrossRef]
- Lima, L.; Bonardi, J.; Campos, G.; Bertani, R.; Scher, L.; Moriguti, J.; Ferriolli, E.; Lima, N. Combined aerobic and resistance training: Are there additional benefits for older hypertensive adults? Clinics 2017, 72, 363–369. [Google Scholar] [CrossRef]
- Shiotsu, Y.; Watanabe, Y.; Tujii, S.; Yanagita, M. Effect of exercise order of combined aerobic and resistance training on arterial stiffness in older men. Exp. Gerontol. 2018, 111, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, T.; Masuhara, M.; Ikuta, K. Combined aerobic and resistance training and vascular function: Effect of aerobic exercise before and after resistance training. J. Appl. Physiol. 2007, 103, 1655–1661. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hanssen, H.; Cordes, M.; Rossmeissl, A.; Endes, S.; Schmidt-Trucksäss, A. Aerobic, resistance and combined exercise training on arterial stiffness in normotensive and hypertensive adults: A review. Eur. J. Sport Sci. 2015, 15, 443–457. [Google Scholar] [CrossRef] [PubMed]
Exercise Intensity | MET * | VO2max * | HRmax * |
---|---|---|---|
Low | <3 | <45% | <55% |
Moderate | 3–5.9 | 45–70% | 55–74% |
High | ≥6 | ≥70% | ≥90% |
Types of Exercise | |
---|---|
Aerobic | Activity that increases the capacity of the cardiorespiratory system by increasing oxygen supply and improving the oxygen utilization in muscles. Can be categorized further by intensity, such as low, moderate, and high. |
Resistance | Exercise that includes the use of a load, machinery, or your own body weight to increase muscle strength and endurance. Strength and endurance training are subtypes of resistance training. |
Combined | An exercise routine that incorporates a combination of aerobic and resistance exercise. |
Study | Participant Characteristics | Exercise Regimen | Cardiovascular Structural and Functional Findings | Sex-Specific Impact | Proposed Molecular Mechanisms |
---|---|---|---|---|---|
Asif et al. [137] | Male Wistar Kyoto rats | Running: treadmill Duration: up to 1 h/day, 5 days/week for 4 weeks | ↑LV diameter | N/A | ↓Cardiac microRNA-208b in LV (authors believe this change to be insignificant) |
Liao et al. [54] | Aged male Sprague-Dawley rats | Swimming Duration: gradually increased from 20 to 60 min/day, 5 days/week for 12 weeks | ↓Pathological cardiac hypertrophy | N/A | Down regulation of ERK1/2/JNK and NFATc3 |
Dworatzek et al. [139] | Male and female C57BL/6J mice | Running: voluntary cage wheel Duration: 8 weeks | ↑LV mass | Greater cardiac hypertrophy in females compared to males | Activation of PI3K/AKT signaling pathway by upregulating AKT/mTOR signaling leading to cardiac hypertrophy |
Verboven et al. [140] | Male Sprague-Dawley rats | Running: treadmill Duration: 1 h/day, 5 days/week for 13 weeks | ↓End systolic volume, ↑SV, ↑EF, and ↓LV pressure | N/A | N/A |
Hafstad et al. [142] | Male C57BL/6J mice | Running: treadmill Duration: ~120 min/day, 5 days/week for 10 weeks | Prevention of diet induced diastolic and systolic dysfunction | N/A | N/A |
Potora et al. [144] | Male Wistar rats | Swimming Duration: 15 min/day for 14 days | Aortic smooth muscle cells hypertrophy and morphological changes, ↑thickness of elastic fibers | N/A | N/A |
Zhang et al. [148] | Male SHR | Running: treadmill Duration: 60 min/day, 5 days/week for 8 weeks | ↓Systemic BP | N/A | Correcting the hypertension-associated BKCa channel remodeling and suppressing the pathological adaptations of BKCa channels that result from high BP |
Dawes et al. [143] | Males and females | MIT as defined by the Copenhagen City Heart Study Leisure Time Physical Activity Questionnaire | ↑LV mass and ↑LV and RV volume in males and females | Data were not analyzed for sex differences | N/A |
Turkbey et al. [9] | Males and females | MIT as defined by the MESA Typical Week Physical Activity Survey | ↑LV mass, ↑SV, and ↑end diastolic volume in both sexes | Males showed a greater increase in LV mass, SV, and end diastolic volume as the levels of physical activity increased when compared to females | N/A |
Shenouda et al. [149] | Healthy males | Stationary cycling Duration: 45 min/day for 12 weeks | ↑Brachial artery FMD but no change in PWV | N/A | N/A |
Sawyer et al. [150] | Healthy males | Stationary cycling Duration: 40 min/day, 3 days/week for 8 weeks | ↑Brachial artery diameter but no significant change in FMD | N/A | N/A |
Rakobowchuk et al. [151] | Males and females | Stationary cycling Duration: 40–60 min/day, 5 days/week for 6 weeks | ↑Relative FMD and improved distensibility in popliteal artery | No sex differences were seen | N/A |
Goto et al. [152] | Healthy males | Stationary cycling Duration: 30 min/day, 5–7 days/week for 12 weeks | ↑Endothelium-dependent vasodilation | N/A | ↑Production of NO |
Sugawara et al. [153] | Post-menopausal females | Stationary cycling Duration: 3–5 days/week for 12 weeks | ↑Arterial compliance and ↓ LDL | N/A | N/A |
Study | Participant Characteristics | Exercise Regimen | Cardiovascular Structural and Functional Findings | Sex-Specific Impact | Proposed Molecular Mechanisms |
---|---|---|---|---|---|
Oláh et al. [164] | Healthy male and female Wistar rats | Swimming Duration: 200 min/day, 5 days/week for 12 weeks | ↑SV and ↑contractility and stroke work in both sexes | More pronounced LV hypertrophy in females than males, ↑diastolic function only in males | ↑Phosphorylation of AKT in the myocardium in both sexes but to a greater degree in females, thus leading to more pronounced LV hypertrophy in females |
Verboven et al. [140] | Healthy male Sprague-Dawley rats | Running: Treadmill Duration: 10 bouts, 5 days/week for 13 weeks Speed: 18 m/min at 30° inclination | Beneficial LV hypertrophy, ↑EF, ↑cardiac output and volume, ↓myocardial collagen content, ↑cardiac capillary density | N/A | ↑Cardiac metabolism due to increased oxygen supplied by enhanced capillary density and ↑citrate synthase and complex II enzyme activity (measure of mitochondrial mass) |
de Oliveira Sá et al. [156] | Male C57BL/6 mice, overfed a diet high in fat or fructose | Running: Treadmill Duration: 3 days/week for 12 weeks Speed: 45 m/min | ↓LV mass and LV wall thickness | N/A | Modulated components of the cardiac RAS, ACE2/Angiotensin (1–7)/Mas receptor axis |
Brown et al. [161] | Male Sprague Dawley rats with pulmonary arterial hypertension | Running: Treadmill Duration: 30 min/day, 5 times/week for 6 weeks | ↓RV systolic pressure, ↓RV hypertrophy, ↓fibrosis, ↑cardiac output | N/A | ↑RV apelin expression |
Rahimi et al. [170] | Male Wistar rats with IRI | Running: Treadmill Duration: 76–85 min/day, 5 consecutive days | ↓Infarct size by 50% and 35% after 1 and 7 days post exercise | N/A | N/A |
Batacan Jr et al. [177] | Wistar adult male rats overfed with a high-fat high carbohydrate (HFHC) diet | Running: Treadmill Duration: 4 bouts, 5 days/week for 12 weeks Speed: 50 m/min at 10% inclination | No significant difference for SBP or HR before and after exercise, ↑endothelium-dependent relaxation to acetylcholine, ↓contractile responses of mesenteric arteries to α-adrenergic stimuli | N/A | N/A |
Fang et al. [181] | Male SHR | Running: Treadmill Duration: 60 min/day, 5 days/week for 8 weeks Speed: 26–28 m/min (~75–85% of the maximal aerobic velocity) | ↑SBP and ↑DBP | N/A | ↑Oxidative stress, ↓NO bioavailability |
Chen et al. [182] | Male SHR | Running: Treadmill Duration: 60 min/day, 5 days/week for 8 weeks Speed: 26–28 m/min (~75–85% of the maximal aerobic velocity) | Worsened hypertension | N/A | ↑Adverse remodeling of L-type voltage-gated Ca2+ (Cav1.2) channels |
Heiskanen et al. [171] | Healthy, middle-aged males | Cycle ergometer Duration: 6 sessions in 2 weeks HIIT session: 4–6 × 30 s all-out cycling/4 min recovery | Beneficial RV hypertrophy, ↑RV end systolic and end diastolic volumes, ↓RVEF, ↓RV glucose uptake, but RV mass, SV, and RV free fatty acid uptake remained unchanged | N/A | N/A |
Stewart et al. [174] | Recreationally active, healthy males who were training >5 h/week | Cycle ergometer Duration: only one 90 min exercise session at 110% of gas exchange threshold (GET) | More pronounced decrements in RV function, ↓LV function only to the sites of septal myocardium | N/A | N/A |
Wisløff et al. [55] | Male and female heart failure patients | Walking: Treadmill Duration: 38 min/day, 3 times/week for 12 weeks | Reversed pathological LV remodeling, ↓LV end-diastolic and end-systolic volumes, ↑LVEF, ↑brachial artery FMD | Sex differences were not studied | ↓Plasma pro-BNP level, ↑NO bioavailability, ↑Plasma antioxidant level |
Grace et al. [172] | Aging male non-athletes and aging male athletes | Sprints, cycle ergometers Duration: Once/5 days for 6 weeks | ↑Resting BP in both groups without causing pathological remodeling, ↑diastolic septal thickness, and ↓chamber diameter only in athletes | N/A | N/A |
Klonizakis et al. [178] | Postmenopausal females | Cycling Duration: 10 × 1-min intervals at 100% of peak power output, 6 sessions in 2 weeks | ↓SBP, no improvement in brachial artery FMD | N/A | N/A |
Ramírez-Vélez et al. [129] | Healthy adults (study did not mention the sex of the subjects) | Fast walking and running: Treadmill Duration: 4 × 4 min intervals at 85–95% of HRR, 3 days/week for 12 weeks | ↑Brachial artery FMD, ↓aortic PWV | N/A | N/A |
Shenouda et al. [149] | Healthy males | Cycling sprints Duration: 3 × 20 s sprint interval training for 10 min for 12 weeks | No change in brachial artery diameter | N/A | N/A |
Study | Participant Characteristics | Exercise Regimen | Cardiovascular Structural and Functional Findings | Sex-Specific Impact | Proposed Molecular Mechanism |
---|---|---|---|---|---|
Shimojo et al. [191] | Menopausal female SHR | Aerobic: Running on treadmill, 1 h/day at ∼50–60% of maximal running speed Resistance: Ladder climbing, 15 climbs/session at 1st–2nd week: 30–40%; 3rd–5th week: 40–50%; and 6th–8th week: 40–60% of the maximal load Duration: 5 days/week for 8 weeks | ↓HR, ↓mean arterial BP, ↑baroreflex sensitivity | N/A | ↓TNF and IL-6, ↓NADPH oxidase, ↑level of enzymatic or non-enzymatic antioxidants |
Chrysohoou et al. [192] | Male and female heart failure patients | Aerobic: Cycle ergometers for 45 min/day Resistance: 4 exercises (knee extension, seated chest press, peck deck and lateral pull-down) with a fitness equipment Duration: 3 days/week for 12 weeks | ↓PWV, ↑SBP, ↑LV diastolic function | Sex differences were not studied | N/A |
Dor-Haim et al. [184] | Male MI patients | Aerobic-resistance: 20 min of treadmill walking, 15 min of cycling and 10 min of hand cycle paddling, total 45 min/day Duration: Twice/week for 12 weeks | ↑LVEF, ↑diastolic function | N/A | N/A |
Beckers et al. [183] | Male and female CHF patients | 1st–2nd month: 10 min endurance, 40 min resistance 3rd–4th month: 16 min endurance, 30 min resistance 5th–6th month: 10, 12 and 15 min of endurance, the reminder of exercise session spent on resistance training Duration: 70 sessions in 6 months | ↑LVEF | Sex differences were not studied | NT-proBNP levels remained unchanged |
Son et al. [197] | Postmenopausal hypertensive females | Aerobic-resistance: Exercise intensity was increased gradually from 40% to 70% of HRR/4 weeks Duration: 3 times/week for 12 weeks | ↓Brachial-ankle PWV, ↓BP | N/A | ↓Endothelin-1, ↑ NO (as measured by the level of nitrite/nitrate in blood) |
Masroor et al. [199] | Premenopausal hypertensive females | Aerobic: Running on treadmill for 20 min/day at 50–80% of HRmax Resistance: 3 sets of 10 repetitions of 5 exercises at an intensity of 50–80% of 1RM Duration: 5 days/week for 4 weeks | ↓BP, ↓HR | N/A | N/A |
Figueroa et al. [200] | Postmenopausal females | Endurance: Walking on treadmill for 20 min at 60% of HRmax Resistance: 12 repetitions for 9 exercises for 20 min at 60% of HRmax Duration: 3 times/week for 12 weeks | ↓Brachial-ankle PWV, ↓SBP and DBP, ↓HR | N/A | N/A |
Kawano et al. [203] | Healthy males | Aerobic: Cycling for 30 min at 60% of HRmax Resistance: 3 sets of 8–12 exercises at 80% of 1RM Duration: 3 sessions/week for 4 months | ↑Arterial compliance | N/A | N/A |
Lima et al. [205] | Hypertensive older males and females | Aerobic: Treadmill ergometer, 1st–4th week for 25 min, 5th–10th week for 35 min Resistance: 1st–4th week: 9 exercises, 5th–10th week: 15 repetitions for the upper limbs and 20 repetitions for the trunk and lower limbs at 50 to 60% 1RM Duration: 3 training sessions/week for 10 weeks | Did not show any additional benefits in reducing BP compared to resistance or aerobic training alone | Sex differences were not studied | N/A |
Shiotsu et al. [206] | Older males | Aerobic: Cycling for 20 min at 60% of HRR Resistance: 3 sets of 8–12 repetitions for 5 different exercises at 70–80% of 1RM Duration: Twice/week for 10 weeks | ↓Carotid-femoral PWV | N/A | N/A |
Okamoto et al. [207] | Healthy males and females | Aerobic: Running for 20 min at 60% of the targeted HR Resistance: 5 sets of 8–10 repetitions at 80% of 1RM, Duration: Twice/week for 8 weeks | ↓Brachial-ankle PWV, ↑brachial artery FMD | Sex differences were not studied | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, R.A.; Khalsa, S.S.S.; Vyas, A.K.; Rahimian, R. Sex-Specific Impacts of Exercise on Cardiovascular Remodeling. J. Clin. Med. 2021, 10, 3833. https://doi.org/10.3390/jcm10173833
Islam RA, Khalsa SSS, Vyas AK, Rahimian R. Sex-Specific Impacts of Exercise on Cardiovascular Remodeling. Journal of Clinical Medicine. 2021; 10(17):3833. https://doi.org/10.3390/jcm10173833
Chicago/Turabian StyleIslam, Rifat A., Siri Sham S. Khalsa, Arpita K. Vyas, and Roshanak Rahimian. 2021. "Sex-Specific Impacts of Exercise on Cardiovascular Remodeling" Journal of Clinical Medicine 10, no. 17: 3833. https://doi.org/10.3390/jcm10173833
APA StyleIslam, R. A., Khalsa, S. S. S., Vyas, A. K., & Rahimian, R. (2021). Sex-Specific Impacts of Exercise on Cardiovascular Remodeling. Journal of Clinical Medicine, 10(17), 3833. https://doi.org/10.3390/jcm10173833