Diagnostic Performance of Procalcitonin for the Early Identification of Sepsis in Patients with Elevated qSOFA Score at Emergency Admission
Abstract
:1. Introduction
1.1. Background
1.2. Research Aim
2. Materials and Methods
2.1. Study Design
2.2. Patient Selection
2.3. Blood Sampling and Biomarker Measurement
2.4. Data Collection
2.5. Endpoints
2.6. Statistical Analysis
3. Results
3.1. Patient Population
3.2. Further Clinical Course and Clinical Endpoints
3.3. Diagnostic Performance of Biomarkers
3.4. Diagnostic Performance of PCT
3.5. Logistic Regression Analysis
3.6. Classification Tree Analysis
3.7. Net Reclassification Improvement
3.8. PCT and Mortality
4. Discussion
4.1. Summary of Findings
4.2. Clinical Endpoints
4.3. Diagnostic Performance of Biomarkers and qSOFA
4.4. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonca, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef]
- Fleischmann, C.; Scherag, A.; Adhikari, N.K.; Hartog, C.S.; Tsaganos, T.; Schlattmann, P.; Angus, D.C.; Reinhart, K. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am. J. Respir. Crit. Care Med. 2016, 193, 259–272. [Google Scholar] [CrossRef]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, E.K.; Rubenstein, A.R.; Radin, G.T.; Wiener, R.S.; Walkey, A.J. Two decades of mortality trends among patients with severe sepsis: A comparative meta-analysis. Crit. Care Med. 2014, 42, 625–631. [Google Scholar] [CrossRef]
- Buchman, T.G.; Simpson, S.Q.; Sciarretta, K.L.; Finne, K.P.; Sowers, N.; Collier, M.; Chavan, S.; Oke, I.; Pennini, M.E.; Santhosh, A.; et al. Sepsis Among Medicare Beneficiaries: 1. The Burdens of Sepsis, 2012–2018. Crit. Care Med. 2020, 48, 276–288. [Google Scholar] [CrossRef]
- Buchman, T.G.; Simpson, S.Q.; Sciarretta, K.L.; Finne, K.P.; Sowers, N.; Collier, M.; Chavan, S.; Oke, I.; Pennini, M.E.; Santhosh, A.; et al. Sepsis Among Medicare Beneficiaries: 2. The Trajectories of Sepsis, 2012–2018. Crit. Care Med. 2020, 48, 289–301. [Google Scholar] [CrossRef]
- Buchman, T.G.; Simpson, S.Q.; Sciarretta, K.L.; Finne, K.P.; Sowers, N.; Collier, M.; Chavan, S.; Oke, I.; Pennini, M.E.; Santhosh, A.; et al. Sepsis Among Medicare Beneficiaries: 3. The Methods, Models, and Forecasts of Sepsis, 2012–2018. Crit. Care Med. 2020, 48, 302–318. [Google Scholar] [CrossRef] [Green Version]
- Levy, M.M.; Evans, L.E.; Rhodes, A. The Surviving Sepsis Campaign Bundle: 2018 update. Intensive Care Med. 2018, 44, 925–928. [Google Scholar] [CrossRef] [Green Version]
- Teasdale, G.; Jennett, B. Assessment of coma and impaired consciousness. A practical scale. Lancet 1974, 2, 81–84. [Google Scholar] [CrossRef]
- Seymour, C.W.; Liu, V.X.; Iwashyna, T.J.; Brunkhorst, F.M.; Rea, T.D.; Scherag, A.; Rubenfeld, G.; Kahn, J.M.; Shankar-Hari, M.; Singer, M.; et al. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 762–774. [Google Scholar] [CrossRef] [Green Version]
- Askim, A.; Moser, F.; Gustad, L.T.; Stene, H.; Gundersen, M.; Åsvold, B.O.; Dale, J.; Bjørnsen, L.P.; Damås, J.K.; Solligård, E. Poor performance of quick-SOFA (qSOFA) score in predicting severe sepsis and mortality—A prospective study of patients admitted with infection to the emergency department. Scand. J. Trauma Resusc. Emerg. Med. 2017, 25, 56. [Google Scholar] [CrossRef]
- Giamarellos-Bourboulis, E.J.; Tsaganos, T.; Tsangaris, I.; Lada, M.; Routsi, C.; Sinapidis, D.; Koupetori, M.; Bristianou, M.; Adamis, G.; Mandragos, K.; et al. Validation of the new Sepsis-3 definitions: Proposal for improvement in early risk identification. Clin. Microbiol. Infect. 2017, 23, 104–109. [Google Scholar] [CrossRef] [Green Version]
- Churpek, M.M.; Snyder, A.; Han, X.; Sokol, S.; Pettit, N.; Howell, M.D.; Edelson, D.P. Quick Sepsis-related Organ Failure Assessment, Systemic Inflammatory Response Syndrome, and Early Warning Scores for Detecting Clinical Deterioration in Infected Patients outside the Intensive Care Unit. Am. J. Respir. Crit. Care Med. 2017, 195, 906–911. [Google Scholar] [CrossRef] [Green Version]
- Dorsett, M.; Kroll, M.; Smith, C.S.; Asaro, P.; Liang, S.Y.; Moy, H.P. qSOFA Has Poor Sensitivity for Prehospital Identification of Severe Sepsis and Septic Shock. Prehosp. Emerg. Care. 2017, 21, 489–497. [Google Scholar] [CrossRef]
- Park, H.K.; Kim, W.Y.; Kim, M.C.; Jung, W.; Ko, B.S. Quick sequential organ failure assessment compared to systemic inflammatory response syndrome for predicting sepsis in emergency department. J. Crit. Care 2017, 42, 12–17. [Google Scholar] [CrossRef]
- Mearelli, F.; Barbati, G.; Casarsa, C.; Giansante, C.; Breglia, A.; Spica, A.; Moras, C.; Olivieri, G.; Occhipinti, A.A.; De Nardo, M.; et al. The Integration of qSOFA with Clinical Variables and Serum Biomarkers Improves the Prognostic Value of qSOFA Alone in Patients with Suspected or Confirmed Sepsis at ED Admission. J. Clin. Med. 2020, 9, 1205. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Zou, L.; Li, D.; Qin, Q.; Hu, H.; Zhou, Y.; Cao, Y. The ability of an improved qSOFA score to predict acute sepsis severity and prognosis among adult patients. Medicine (Baltimore). Medicine 2020, 99, e18942. [Google Scholar] [CrossRef]
- Yu, H.; Nie, L.; Liu, A.; Wu, K.; Hsein, Y.-C.; Yen, D.W.; Lee, M.-T.G.; Lee, C.-C. Combining procalcitonin with the qSOFA and sepsis mortality prediction. Medicine 2019, 98, e15981. [Google Scholar] [CrossRef] [PubMed]
- Prkno, A.; Wacker, C.; Brunkhorst, F.M.; Schlattmann, P. Procalcitonin-guided therapy in intensive care unit patients with severe sepsis and septic shock—A systematic review and meta-analysis. Crit. Care 2013, 17, R291. [Google Scholar] [CrossRef] [Green Version]
- Westwood, M.; Ramaekers, B.; Whiting, P.; Tomini, F.; Joore, M.; Armstrong, N.; Ryder, S.; Stirk, L.; Severens, J.; Kleijnen, J. Procalcitonin testing to guide antibiotic therapy for the treatment of sepsis in intensive care settings and for suspected bacterial infection in emergency department settings: A systematic review and cost-effectiveness analysis. Health Technol. Assess. 2015, 19, 1–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wacker, C.; Prkno, A.; Brunkhorst, F.M.; Schlattmann, P. Procalcitonin as a diagnostic marker for sepsis: A systematic review and meta-analysis. Lancet Infect. Dis. 2013, 13, 426–435. [Google Scholar] [CrossRef]
- Schuetz, P.; Kutz, A.; Grolimund, E.; Haubitz, S.; Demann, D.; Vogeli, A.; Hitz, F.; Christ-Crain, M.; Thomann, R.; Falconnier, C. Excluding infection through procalcitonin testing improves outcomes of congestive heart failure patients presenting with acute respiratory symptoms: Results from the randomized ProHOSP trial. Int. J. Cardiol. 2014, 175, 464–472. [Google Scholar] [CrossRef]
- Soni, N.J.; Samson, D.J.; Galaydick, J.L.; Vats, V.; Huang, E.S.; Aronson, N.; Pitrak, D.L. Procalcitonin-guided antibiotic therapy: A systematic review and meta-analysis. J. Hosp. Med. 2013, 8, 530–540. [Google Scholar] [CrossRef]
- Spoto, S.; Cella, E.; de Cesaris, M.; Locorriere, L.; Mazzaroppi, S.; Nobile, E.; Lanotte, A.M.; Pedicino, L.; Fogolari, M.; Costantino, S.; et al. Procalcitonin and MR-Proadrenomedullin Combination with SOFA and qSOFA Scores for Sepsis Diagnosis and Prognosis: A Diagnostic Algorithm. Shock 2018, 50, 44–52. [Google Scholar] [CrossRef]
- Spoto, S.; Nobile, E.; Carna, E.P.R.; Fogolari, M.; Caputo, D.; De Florio, L.; Valeriani, E.; Benvenuto, D.; Costantino, S.; Ciccozzi, M.; et al. Best diagnostic accuracy of sepsis combining SIRS criteria or qSOFA score with Procalcitonin and Mid-Regional pro-Adrenomedullin outside ICU. Sci. Rep. 2020, 10, 16605. [Google Scholar] [CrossRef]
- Schuetz, P.; Beishuizen, A.; Broyles, M.; Ferrer, R.; Gavazzi, G.; Gluck, E.H.; Del Castillo, J.G.; Jensen, J.U.S.; Kanizsai, P.L.; Kwa, A.L.H.; et al. Procalcitonin (PCT)-guided antibiotic stewardship: An international experts consensus on optimized clinical use. Clin. Chem. Lab. Med. 2019, 57, 1308–1318. [Google Scholar] [CrossRef]
- Samsudin, I.; Vasikaran, S.D. Clinical Utility and Measurement of Procalcitonin. Clin. Biochem. Rev. 2017, 38, 59–68. [Google Scholar]
- Fay, K.; Sapiano, M.R.P.; Gokhale, R.; Dantes, R.; Thompson, N.; Katz, D.E.; Ray, S.M.; Wilson, L.E.; Perlmutter, R.; Nadle, J.; et al. Assessment of Health Care Exposures and Outcomes in Adult Patients With Sepsis and Septic Shock. JAMA Netw. Open 2020, 3, e206004. [Google Scholar] [CrossRef]
- Westphal, G.A.; Pereira, A.B.; Fachin, S.M.; Barreto, A.C.C.; Bornschein, A.; Caldeira Filho, M.; Koenig, Á. Characteristics and outcomes of patients with community-acquired and hospital-acquired sepsis. Rev. Bras. Ter. Intensiva 2019, 31, 71–78. [Google Scholar] [CrossRef]
- Seymour, C.W.; Rea, T.D.; Kahn, J.M.; Walkey, A.J.; Yealy, D.M.; Angus, D.C. Severe sepsis in pre-hospital emergency care: Analysis of incidence, care, and outcome. Am. J. Respir. Crit. Care Med. 2012, 186, 1264–1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhodes, A.; Phillips, G.; Beale, R.; Cecconi, M.; Chiche, J.D.; De Backer, D.; Divatia, J.J.; Dutta, B.; Evans, L.L.; Ferrer, R.; et al. The Surviving Sepsis Campaign bundles and outcome: Results from the International Multicentre Prevalence Study on Sepsis (the IMPreSS study). Intensive Care Med. 2015, 41, 1620–1628. [Google Scholar] [CrossRef]
- Martin, G.S.; Mannino, D.M.; Eaton, S.; Moss, M. The epidemiology of sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 2003, 348, 1546–1554. [Google Scholar] [CrossRef] [Green Version]
- Fleischmann, C.; Thomas-Rueddel, D.O.; Hartmann, M.; Hartog, C.S.; Welte, T.; Heublein, S.; Dennler, U.; Reinhart, K. Hospital Incidence and Mortality Rates of Sepsis. Dtsch. Arztebl. Int. 2016, 113, 159–166. [Google Scholar]
- Song, J.U.; Sin, C.K.; Park, H.K.; Shim, S.R.; Lee, J. Performance of the quick Sequential (sepsis-related) Organ Failure Assessment score as a prognostic tool in infected patients outside the intensive care unit: A systematic review and meta-analysis. Crit. Care 2018, 22, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, M.; Lu, Y.; Jiang, H.; Zhang, L. The diagnostic accuracy of procalcitonin and C-reactive protein for sepsis: A systematic review and meta-analysis. J. Cell. Biochem. 2019, 120, 5852–5859. [Google Scholar] [CrossRef] [PubMed]
Total n = 742 | Sepsis n = 202 * | Non-Sepsis n = 539 * | p-Value | |
---|---|---|---|---|
Women % (n) ** | 42.0 (312) | 39.6 (80) | 42.9 (231) | 0.424 |
Age (median, IQR) ** | 68 (56–78) | 70 (59–78) | 67 (56–77) | 0.086 |
Comorbidities % (n) ** | 85.8 (637) | 91.6 (185) | 3.7 (451) | 0.006 |
Charlson Index points (median, IQR) ** | 2 (1–3) | 3 (1–4) | 2 (1–3) | <0.0001 |
qSOFA items ** | ||||
GCS < 15% (n) ** | 9.8 (73) | 20.8 (42) | 5.8 (31) | <0.0001 |
Tachypnoea (RR ≥ 22/min) % (n) ** | 71.7 (532) | 72.8 (147) | 71.2 (384) | 0.231 |
Systolic BP ≤ 100 mmHg % (n) ** | 43.4 (322) | 57.4 (116) | 38.2 (206) | <0.0001 |
qSOFA points % (n) ** | <0.0001 | |||
1 | 77.1 (572) | 55.4 (112) | 85.2 (459) | |
2 | 20.9 (155) | 38.1 (77) | 14.5 (78) | |
3 | 2.0 (15) | 6.4 (13) | 0.4 (2) | |
GCS (median, Range) ** | 15 (3–15) | 15 (3–15) | 15 (3–15) | <0.0001 |
BP (mmHg) (median, IQR) ** | 112 (95–136) | 99 (89–122) | 117 (96–138) | <0.0001 |
RR (breaths/min) (median, IQR) ** | 23 (20–26) | 24 (20–26) | 23 (20–26) | 0.028 |
Immunosuppresion % (n) | 10.9 (80) | 22.2 (44) | 6.7 (36) | <0.0001 |
WBC/nL (median, IQR) *** | 10.0 (7.3–14.4) | 12.7 (7.6–17.9) | 9.5 (7.2–13.1) | <0.0001 |
CRP (mg/dL) (median, IQR) **** | 34.8 (5.9–99.6) | 104.4 (50.0–229.7) | 18.3 (3.4–60.9) | <0.0001 |
Non-survivors day 28% (n) ***** | 6.6% (48) | 13.4% (27) | 3.9 (21) | <0.0001 |
PCT 0.20 µg/L | PCT 0.25 µg/L | PCT 0.50 µg/L | PCT 2.00 µg/L | PCT 5.00 µg/L | PCT 10.00 µg/L | |
---|---|---|---|---|---|---|
True negative | 400 | 429 | 481 | 523 | 533 | 537 |
False negative | 44 | 50 | 74 | 122 | 151 | 169 |
False positive | 139 | 110 | 58 | 16 | 6 | 2 |
True positive | 158 | 152 | 128 | 80 | 51 | 33 |
Sensitivity (95% CI) | 78.2 (71.9–83.7) | 75.3 (68.7–81.4) | 63.4 (56.3–70.0) | 39.6 (32.8–46.7) | 25.3 (19.4–31.8) | 16.3 (11.5–22.2) |
Specificity (95% CI) | 74.2 (70.3–77.9) | 79.6 (75.9–82.9) | 89.2 (86.3–91.7) | 97.0 (95.2–98.3) | 98.9 (97.6–99.6) | 99.6 (98.7–100.0) |
Positive Likelihood Ratio (95% CI) | 3.0 (2.6–3.6) | 3.7 (3.1–4.4) | 5.9 (4.5–7.7) | 13.3 (8.0–22.3) | 22.7 (9.9–52.0) | 44.0 (10.7–181.8) |
Negative Likelihood Ratio (95% CI) | 0.3 (0.2–0.4) | 0.3 (0.2–0.4) | 0.4 (0.3–0.5) | 0.6 (0.6–0.7) | 0.8 (0.7–0.8) | 0.8 (0.8–0.9) |
Positive Predictive Value (95% CI) | 53.2 (49.2–57.2) | 58.0 (53.5–62.4) | 68.8 (62.9–74.2) | 83.3 (75.0–89.3) | 89.5 (78.8–95.1) | 94.3 (80.0- 98.6) |
Negative Predictive Value (95% CI) | 90.1 (87.5–92.2) | 89.6 (87.1–91.6) | 86.7 (84.4–88.7) | 81.1 (79.3–82.8) | 77.9 (76.5–79.3) | 76.1 (74.9–77.2) |
Accuracy (95% CI) | 75.3 (72.3–78.4) | 78.4 (75.3–81.3) | 82.2 (79.2–84.9) | 81.4 (78.4–84.1) | 78.8 (75.6–81.7) | 76.9 (76.9–79.9) |
qSOFA Cut-Off Score ≥ 2 | qSOFA | qSOFA | |||
---|---|---|---|---|---|
Score = 1 | Score ≥ 2 | ||||
PCT Cut-Off | PCT Cut-Off | PCT Cut-Off | PCT Cut-Off | ||
0.25 µg/L | 0.50 µg/L | 0.25 µg/L | 0.50 µg/L | ||
True negative | 459 | 374 | 415 | 55 | 66 |
False negative | 112 | 31 | 42 | 19 | 32 |
False positive | 80 | 85 | 44 | 25 | 14 |
True positive | 90 | 81 | 70 | 71 | 58 |
Sensitivity | 44.6 | 72.3 | 62.5 | 78.9 | 64.4 |
(95% CI) | (37.6–51.7) | (63.1–80.4) | (52.8–71.5) | (69.0–86.8) | (53.7–74.3) |
Specificity | 85.2 | 81.5 | 90.4 | 68.8 | 82.5 |
(95% CI) | (81.9–88.0) | (77.6–84.9) | (87.4–93.0) | (57.4–78.7) | (72.4–90.1) |
Positive Likelihood Ratio | 3 | 3.9 | 6.5 | 2.5 | 3.7 |
(95% CI) | (2.3–3.9) | (3.1–4.9) | (4.8–8.9) | (1.8–3.6) | (2.2–6.1) |
Negative Likelihood Ratio | 0.7 | 0.3 | 0.4 | 0.3 | 0.4 |
(95% CI) | (0.6–0.7) | (0.3–0.5) | (0.3–0.5) | (0.2–0.5) | (0.3–0.6) |
Positive Predictive Value | 52.9 | 48.8 | 61.4 | 74 | 80.6 |
(95% CI) | (46.6–59.2) | (43.3–54.4) | (53.7–68.6) | (66.9–80.0) | (71.5–87.2) |
Negative Predictive Value | 80.4 | 92.4 | 90.8 | 74.3 | 67.4 |
(95% CI) | (78.3–82.3) | (89.9–94.2) | (88.6–92.6) | (65.4–81.6) | (60.6–73.5) |
Accuracy | 74.1 | 79.7 | 84.9 | 74.1 | 72.9 |
(95% CI) | (70.8–77.2) | (76.2–82.9) | (81.7–87.7) | (66.9–80.5) | 65.6–79.5 |
PCT Cut-Off | OR (Crude) | p-Value | OR Adjusted Model 1 | p-Value | OR Adjusted Model 2 | p-Value | OR Adjusted Model 3 | p-Value | |
---|---|---|---|---|---|---|---|---|---|
0.20 µg/L | Value | 10.3 | <0.0001 | 8.7 | <0.0001 | 8.6 | <0.0001 | 4.3 | <0.0001 |
(95% CI) | (7.0–15.2) | (5.8–12.9) | (5.8–12.8) | (2.6–7.1) | |||||
0.25 µg/L | Value | 11.9 | <0.0001 | 10.1 | <0.0001 | 10.0 | <0.0001 | 5.4 | <0.0001 |
(95% CI) | (8.1–17.4) | (6.8–15.0) | (6.8–14.8) | (3.3–8.8) | |||||
0.50 µg/L | Value | 14.4 | <0.0001 | 13.1 | <0.0001 | 13.3 | <0.0001 | 7.7 | <0.0001 |
(95% CI) | (9.7–21.3) | (8.7–19.8) | (8.8–20.1) | (4.6–13.0) | |||||
2.00 µg/L | Value | 21.4 | <0.0001 | 19.4 | <0.0001 | 21.5 | <0.0001 | 12.7 | <0.0001 |
(95% CI) | (12.1–38.0) | (10.7–34.9) | (11.7–39.4) | (6.2–26.3) | |||||
5.00 µg/L | Value | 30.0 | <0.0001 | 28.5 | <0.0001 | 29.8 | <0.0001 | 26.4 | <0.0001 |
(95% CI) | (12.6–71.3) | (11.8–69.0) | (12.3–72.3) | (8.5–81.7) | |||||
10.00 µg/L | Value | 52.5 | <0.0001 | 44.7 | <0.0001 | 47.0 | <0.0001 | 25.0 | <0.0001 |
(95% CI) | (12.5–220.8) | (10.4–191.8) | (10.9–202.8) | (5.5–114.1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolanaki, M.; Möckel, M.; Winning, J.; Bauer, M.; Reinhart, K.; Stacke, A.; Hajdu, P.; Slagman, A. Diagnostic Performance of Procalcitonin for the Early Identification of Sepsis in Patients with Elevated qSOFA Score at Emergency Admission. J. Clin. Med. 2021, 10, 3869. https://doi.org/10.3390/jcm10173869
Bolanaki M, Möckel M, Winning J, Bauer M, Reinhart K, Stacke A, Hajdu P, Slagman A. Diagnostic Performance of Procalcitonin for the Early Identification of Sepsis in Patients with Elevated qSOFA Score at Emergency Admission. Journal of Clinical Medicine. 2021; 10(17):3869. https://doi.org/10.3390/jcm10173869
Chicago/Turabian StyleBolanaki, Myrto, Martin Möckel, Johannes Winning, Michael Bauer, Konrad Reinhart, Angelika Stacke, Peter Hajdu, and Anna Slagman. 2021. "Diagnostic Performance of Procalcitonin for the Early Identification of Sepsis in Patients with Elevated qSOFA Score at Emergency Admission" Journal of Clinical Medicine 10, no. 17: 3869. https://doi.org/10.3390/jcm10173869
APA StyleBolanaki, M., Möckel, M., Winning, J., Bauer, M., Reinhart, K., Stacke, A., Hajdu, P., & Slagman, A. (2021). Diagnostic Performance of Procalcitonin for the Early Identification of Sepsis in Patients with Elevated qSOFA Score at Emergency Admission. Journal of Clinical Medicine, 10(17), 3869. https://doi.org/10.3390/jcm10173869