Shorter Axial Length Is a Risk Factor for Proliferative Vitreoretinopathy Grade C in Eyes Unmodified by Surgical Invasion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Participants
2.2. Data collection
2.3. Surgery
2.4. Definition of Primary Success and Failure
2.5. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Machemer, R.; Aaberg, T.M.; Freeman, H.M.; Irvine, A.R.; Lean, J.S.; Michels, R.M. An updated classification of retinal detachment with proliferative vitreoretinopathy. Am. J. Ophthalmol. 1991, 112, 159–165. [Google Scholar] [CrossRef]
- Hilton, G.; Machemer, R.; Michels, R.; Okun, E.; Schepens, C.; Schwartz, A. The classification of retinal detachment with proliferative vitreoretinopathy. Ophthalmology 1983, 90, 121–125. [Google Scholar] [CrossRef]
- Pastor, J.C.; de la Rúa, E.R.; Martín, F. Proliferative vitreoretinopathy: Risk factors and pathobiology. Prog. Retin. Eye Res. 2002, 21, 127–144. [Google Scholar] [CrossRef]
- Adelman, R.A.; Parnes, A.J.; Michalewska, Z.; Ducournau, D. Clinical variables associated with failure of retinal detachment repair: The European vitreo-retinal society retinal detachment study report number 4. Ophthalmology 2014, 121, 1715–1719. [Google Scholar] [CrossRef] [PubMed]
- Sebag, J. Shaken not stirred. Ophthalmology 2001, 108, 1177–1178. [Google Scholar] [CrossRef]
- Pastor, J.C.; Rojas, J.; Pastor-Idoate, S.; Di Lauro, S.; Gonzalez-Buendia, L.; Delgado-Tirado, S. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical consequences. Prog. Retin. Eye Res. 2016, 51, 125–155. [Google Scholar] [CrossRef]
- Idrees, S.; Sridhar, J.; Kuriyan, A.E. Proliferative Vitreoretinopathy: A Review. Int. Ophthalmol. Clin 2019, 59, 221–240. [Google Scholar] [CrossRef] [PubMed]
- Rojas, J.; Fernandez, I.; Pastor, J.C.; Garcia-Gutierrez, M.T.; Sanabria, M.R.; Brion, M.; Coco, R.M.; Ruiz-Moreno, J.M.; Garcia-Arumi, J.; Elizalde, J.; et al. A strong genetic association between the tumor necrosis factor locus and proliferative vitreoretinopathy: The retina 4 project. Ophthalmology 2010, 117, 2417–2423.e2. [Google Scholar] [CrossRef]
- Pastor-Idoate, S.; Rodriguez-Hernández, I.; Rojas, J.; Fernández, I.; García-Gutierrez, M.T.; Ruiz-Moreno, J.M.; Rocha-Sousa, A.; Ramkissoon, Y.; Harsum, S.; MacLaren, R.E.; et al. The p53 codon 72 polymorphism (rs1042522) is associated with proliferative vitreoretinopathy: The Retina 4 Project. Ophthalmology 2013, 120, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, T.; Kawano, S.; Kawasaki, R.; Hirakata, A.; Yamashita, H.; Yamamoto, S.; Ishibashi, T. Japan-Retinal Detachment Registry Report I: Preoperative findings in eyes with primary retinal detachment. Jpn. J. Ophthalmol. 2020, 64, 1–12. [Google Scholar] [CrossRef]
- Baba, T.; Kawasaki, R.; Yamakiri, K.; Koto, T.; Nishitsuka, K.; Yamamoto, S.; Sakamoto, T. Visual outcomes after surgery for primary rhegmatogenous retinal detachment in era of microincision vitrectomy: Japan-Retinal Detachment Registry Report IV. Br. J. Ophthalmol. 2020, 105, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Nishitsuka, K.; Kawasaki, R.; Yamakiri, K.; Baba, T.; Koto, T.; Yamashita, H.; Sakamoto, T. Preoperative factors to select vitrectomy or scleral buckling for retinal detachment in microincision vitrectomy era. Graefes Arch. Clin. Exp. Ophthalmol. 2020, 258, 1871–1880. [Google Scholar] [CrossRef] [PubMed]
- Koto, T.; Kawasaki, R.; Yamakiri, K.; Baba, T.; Nishitsuka, K.; Hirakata, A.; Sakamoto, T. Six-months primary success rate for retinal detachment between vitrectomy and scleral buckling. Retina 2020, 41, 1164–1173. [Google Scholar] [CrossRef] [PubMed]
- Adelman, R.A.; Parnes, A.J.; Ducournau, D. Strategy for the management of uncomplicated retinal detachments: The European vitreo-retinal society retinal detachment study report 1. Ophthalmology 2013, 120, 1804–1808. [Google Scholar] [CrossRef] [PubMed]
- Minami, S.; Shinoda, H.; Shigeno, Y.; Nagai, N.; Kurihara, T.; Watanabe, K.; Sonobe, H.; Takagi, H.; Tsubota, K.; Ozawa, Y. Effect of axial length and age on the visual outcome of patients with idiopathic epiretinal membrane after pars plana vitrectomy. Sci. Rep. 2019, 9, 19056. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Wang, Y.X.; Wu, S.L.; Chen, S.H.; Yan, Y.N.; Yang, M.C.; Yang, J.Y.; Zhou, W.J.; Chan, S.Y.; Zhang, X.H.; et al. Ocular Axial Length and Diabetic Retinopathy: The Kailuan Eye Study. Investig. Ophthalmol. Vis. Sci. 2019, 60, 3689–3695. [Google Scholar] [CrossRef] [Green Version]
- Sung, J.Y.; Lee, M.W.; Won, Y.K.; Lim, H.B.; Kim, J.Y. Clinical characteristics and prognosis of Total Rhegmatogenous retinal detachment: A matched case-control study. BMC Ophthalmol. 2020, 20, 286. [Google Scholar] [CrossRef]
- Adelman, R.A.; Parnes, A.J.; Sipperley, J.O.; Ducournau, D. Strategy for the management of complex retinal detachments: The European vitreo-retinal society retinal detachment study report 2. Ophthalmology 2013, 120, 1809–1813. [Google Scholar] [CrossRef] [PubMed]
- Girard, P.; Mimoun, G.; Karpouzas, I.; Montefiore, G. Clinical risk factors for proliferative vitreoretinopathy after retinal detachment surgery. Retina 1994, 14, 417–424. [Google Scholar] [CrossRef]
- Chaudhary, R.; Dretzke, J.; Scott, R.; Logan, A.; Blanch, R. Clinical and surgical risk factors in the development of proliferative vitreoretinopathy following retinal detachment surgery: A systematic review protocol. Syst. Rev. 2016, 5, 107. [Google Scholar] [CrossRef] [Green Version]
- Cowley, M.; Conway, B.P.; Campochiaro, P.A.; Kaiser, D.; Gaskin, H. Clinical risk factors for proliferative vitreoretinopathy. Arch. Ophthalmol. 1989, 107, 1147–1151. [Google Scholar] [CrossRef] [PubMed]
- Asaria, R.H.; Kon, C.H.; Bunce, C.; Charteris, D.G.; Wong, D.; Luthert, P.J.; Khaw, P.T.; Aylward, G.W. How to predict proliferative vitreoretinopathy: A prospective study. Ophthalmology 2001, 108, 1184–1186. [Google Scholar] [CrossRef]
- Nguyen, J.H.; Nguyen-Cuu, J.; Mamou, J.; Routledge, B.; Yee, K.M.P.; Sebag, J. Vitreous Structure and Visual Function in Myopic Vitreopathy Causing Vision Degrading Myodesopsia. Am. J. Ophthalmol. 2020, 224, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Song, W.K.; Kim, S.S.; Yi, J.H.; Byeon, S.H.; Koh, H.J.; Lee, S.C.; Kwon, O.W. Axial length and intraoperative posterior vitreous detachment as predictive factors for surgical outcomes of diabetic vitrectomy. Eye 2010, 24, 1273–1278. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, K.; Manabe, S.I.; Hirata, A.; Yoshimura, K. Posterior Vitreous Detachment in Highly Myopic Patients. Investig. Ophthalmol. Vis. Sci. 2020, 61, 33. [Google Scholar] [CrossRef] [Green Version]
- Sato, M.; Minami, S.; Nagai, N.; Suzuki, M.; Kurihara, T.; Shinojima, A.; Sonobe, H.; Akino, K.; Ban, N.; Watanabe, K.; et al. Association between axial length and choroidal thickness in early age-related macular degeneration. PLoS ONE 2020, 15, e0240357. [Google Scholar] [CrossRef] [PubMed]
- Ikuno, Y.; Kawaguchi, K.; Nouchi, T.; Yasuno, Y. Choroidal thickness in healthy Japanese subjects. Investig. Ophthalmol. Vis. Sci. 2010, 51, 2173–2176. [Google Scholar] [CrossRef] [PubMed]
- Spaide, R.F. Disease expression in nonexudative age-related macular degeneration varies with choroidal thickness. Retina 2018, 38, 708–716. [Google Scholar] [CrossRef] [PubMed]
- Nagai, N.; Suzuki, M.; Minami, S.; Kurihara, T.; Kamoshita, M.; Sonobe, H.; Watanabe, K.; Uchida, A.; Shinoda, H.; Tsubota, K.; et al. Dynamic changes in choroidal conditions during anti-vascular endothelial growth factor therapy in polypoidal choroidal vasculopathy. Sci. Rep. 2019, 9, 11389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanda, A.; Noda, K.; Hirose, I.; Ishida, S. TGF-β-SNAIL axis induces Müller glial-mesenchymal transition in the pathogenesis of idiopathic epiretinal membrane. Sci. Rep. 2019, 9, 673. [Google Scholar] [CrossRef]
- Hu, Q.; Liu, G.; Deng, Q.; Wu, Q.; Tao, Y.; Jonas, J.B. Intravitreal vascular endothelial growth factor concentration and axial length. Retina 2015, 35, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.J.; Dick, A.D.; Johnston, R.L.; Yang, Y.C.; Denniston, A.K. Cataract surgery in uveitis: A multicentre database study. Br. J. Ophthalmol. 2017, 101, 1132–1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Total Cohort (n = 2013) | PVR Grade | p | ||
---|---|---|---|---|
PVR-N or B n = 1941 (96.4%) | PVR-C n = 72 (3.6%) | |||
Age (years (range)) | 55.2 ± 15.2 (9–94) | 55.2 ± 15.0 (9–94) | 55.4 ± 18.8 (10–88) | 0.381 |
Sex (men (%)) | 1326 (65.9) | 1271 (65.5) | 55 (76.4) | 0.055 |
Number of retinal breaks (range) | 2.0 ± 1.7 (1–26) | 2.0 ± 1.7 (1–26) | 1.9 ± 1.3 (1–7) | 0.646 |
Type of retinal breaks | ||||
Atrophic holes (eyes (%)) | 373 (18.5) | 355 (18.3) | 18 (25.0) | 0.150 |
Horseshoe tears (eyes (%)) | 1569 (77.9) | 1523 (78.5) | 46 (63.9) | 0.003 ** |
Macular hole (eyes (%)) | 52 (2.6) | 47 (2.4) | 5 (6.9) | 0.018 * |
Dialysis (eyes (%)) | 19 (0.9) | 16 (0.8) | 3 (4.2) | 0.004 ** |
Spread of the greatest retinal break | ||||
≤30 degrees (eyes (%)) | 1818 (90.3) | 1752 (90.3) | 66 (91.7) | 0.692 |
>30 degrees (eyes (%)) | 195 (9.7) | 189 (9.7) | 6 (8.3) | |
Location of the greatest retinal break | ||||
Superior (eyes (%)) | 1430 (71.0) | 1396 (71.9) | 34 (47.2) | <0.001 ** |
Inferior (eyes (%)) | 521 (25.9) | 489 (25.2) | 32 (44.4) | <0.001 ** |
Posterior polar (eyes (%)) | 62 (3.1) | 56 (2.9) | 6 (8.3) | 0.009 ** |
Area of detachment (quadrants) | 2.0 ± 0.8 | 1.9 ± 0.8 | 3.3 ± 0.9 | <0.001 ** |
Secondary retinal detachment | ||||
Atopic dermatitis | 28 (1.4) | 22 (1.1) | 6 (8.3) | <0.001 ** |
Trauma | 21 (1.0) | 19 (1.0) | 2 (2.8) | 0.140 |
Pseudophakic eyes (eyes (%)) | 256 (12.7) | 245 (12.6) | 11 (15.3) | 0.507 |
Hypotony, intraocular pressure <5 mmHg (eyes (%)) | 39 (1.9) | 27 (1.4) | 12 (17.1) | <0.001 ** |
Choroidal detachment (eyes (%)) | 67 (3.3) | 49 (2.5) | 18 (25.0) | <0.001 ** |
Axial length (mm (range)) | 25.6 ± 1.9 (16.4–33.0) | 25.7 ± 1.9 (16.4–33.0) | 24.9 ± 2.1 (20.6–31.7) | 0.001 ** |
Odds Ratio | 95% Confidence Interval | p | |
---|---|---|---|
Number of retinal breaks | 0.96 | 0.82 to 1.12 | 0.572 |
Type of retinal breaks; Macular hole or Dialysis | 4.70 | 2.10 to 10.52 | <0.001 ** |
Spread of retinal break (s) > 30 degrees | 0.78 | 0.33 to 1.84 | 0.574 |
Location of the greatest break; Inferior or Posterior polar | 2.98 | 1.85 to 4.80 | <0.001 ** |
Area of detachment (quadrants) | 5.42 | 4.02 to 7.31 | <0.001 ** |
Atopic dermatitis | 9.40 | 3.33 to 26.53 | <0.001 ** |
Choroidal detachment | 13.32 | 7.20 to 24.65 | <0.001 ** |
PVR-N or B (n = 64) | PVR-C (n = 64) | p | |
---|---|---|---|
Age (years (range)) | 57.4 ± 16.0 | 55.9 ± 18.4 | 0.717 |
Sex (men (%)) | 49 (76.6) | 48 (75.0) | 0.837 |
Number of retinal breaks (range) | 1.7 ± 1.2 | 1.9 ± 1.3 | 0.318 |
Type of retinal breaks | |||
Atrophic holes (eyes (%)) | 13 (20.3) | 15 (23.4) | 0.669 |
Horseshoe tears (eyes (%)) | 46 (71.9) | 43 (67.2) | 0.565 |
Macular hole (eyes (%)) | 4 (6.3) | 3 (4.7) | 0.697 |
Dialysis (eyes (%)) | 1 (1.6) | 3 (4.7) | 0.310 |
Spread of the greatest retinal break | |||
≤30 degrees (eyes (%)) | 59 (92.2) | 58 (90.6) | 0.752 |
>30 degrees (eyes (%)) | 5 (7.8) | 6 (9.4) | - |
Location of the greatest retinal break | |||
Superior (eyes (%)) | 36 (56.3) | 34 (53.1) | 0.723 |
Inferior (eyes (%)) | 23 (35.9) | 26 (40.6) | 0.585 |
Posterior polar (eyes (%)) | 5 (7.8) | 4 (6.3) | 0.730 |
Area of detachment (quadrants) | 3.2 ± 1.0 | 3.2 ± 0.9 | 0.901 |
Secondary retinal detachment | |||
Atopic dermatitis | 3 (4.7) | 5 (7.8) | 0.465 |
Trauma | 0 (0.0) | 2 (3.1) | 0.154 |
Pseudophakic eyes (%) | 17 (26.6) | 10 (15.6) | 0.129 |
Hypotony, intraocular pressure <5 mmHg (eyes (%)) | 6 (9.5) | 11 (17.7) | 0.180 |
Choroidal detachment | 12 (18.8) | 15 (23.4) | 0.516 |
Axial length (mm) | 25.9 ± 2.3 | 24.9 ± 2.0 | 0.013 * |
Odds Ratio | 95% Confidence Interval | p | |
---|---|---|---|
Axial length | 0.81 | 0.69 to 0.96 | 0.015 * |
Odds Ratio | 95% Confidence Interval | p | |
---|---|---|---|
PVR-C | 4.22 | 1.12 to 15.93 | 0.034 * |
PVR-N or B | PVR-C | p | |
---|---|---|---|
Axial length < 25.0 mm | 0 (0.0) | 7 (100.0) | 0.016 * |
Axial length ≥ 25.0 mm | 3 (42.9) | 4 (57.1) | 0.449 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minami, S.; Uchida, A.; Nagai, N.; Shinoda, H.; Kurihara, T.; Ban, N.; Terasaki, H.; Takagi, H.; Tsubota, K.; Sakamoto, T.; et al. Shorter Axial Length Is a Risk Factor for Proliferative Vitreoretinopathy Grade C in Eyes Unmodified by Surgical Invasion. J. Clin. Med. 2021, 10, 3944. https://doi.org/10.3390/jcm10173944
Minami S, Uchida A, Nagai N, Shinoda H, Kurihara T, Ban N, Terasaki H, Takagi H, Tsubota K, Sakamoto T, et al. Shorter Axial Length Is a Risk Factor for Proliferative Vitreoretinopathy Grade C in Eyes Unmodified by Surgical Invasion. Journal of Clinical Medicine. 2021; 10(17):3944. https://doi.org/10.3390/jcm10173944
Chicago/Turabian StyleMinami, Sakiko, Atsuro Uchida, Norihiro Nagai, Hajime Shinoda, Toshihide Kurihara, Norimitsu Ban, Hiroto Terasaki, Hitoshi Takagi, Kazuo Tsubota, Taiji Sakamoto, and et al. 2021. "Shorter Axial Length Is a Risk Factor for Proliferative Vitreoretinopathy Grade C in Eyes Unmodified by Surgical Invasion" Journal of Clinical Medicine 10, no. 17: 3944. https://doi.org/10.3390/jcm10173944
APA StyleMinami, S., Uchida, A., Nagai, N., Shinoda, H., Kurihara, T., Ban, N., Terasaki, H., Takagi, H., Tsubota, K., Sakamoto, T., & Ozawa, Y. (2021). Shorter Axial Length Is a Risk Factor for Proliferative Vitreoretinopathy Grade C in Eyes Unmodified by Surgical Invasion. Journal of Clinical Medicine, 10(17), 3944. https://doi.org/10.3390/jcm10173944