GLP-1 Receptor Agonists in Diabetic Kidney Disease: From Physiology to Clinical Outcomes
Abstract
:1. Introduction
2. The Association of GLP-1 and Gut-Renal Axis
3. Renoprotective Mechanisms of GLP1-RAs in T2D
3.1. Glucose Lowering
3.2. Oxidative Stress and Inflammation
3.3. Natriuresis—Tubular Effect
3.4. Endothelial Function—Glomerular Effect
3.5. Blood Pressure
3.6. Dyslipidemia
3.7. Body Weight
4. GLP1-RAs and Renal Outcomes in Clinical Trials
4.1. Renal Outcomes with Liraglutide in the LEADER Trial
4.2. Renal Outcomes with Semaglutide in the SUSTAIN-6 Trial
4.3. Renal Outcomes with Semaglutide in the PIONEER-6 Trial
4.4. Renal Outcomes with Semaglutide in the FLOW Trial
4.5. Renal Outcomes with Dulaglutide in the AWARD-7 Trial
4.6. Renal Outcomes with Dulaglutide in the REWIND Trial
4.7. Renal Outcomes with Exenatide in the EXSCEL Trial
4.8. Renal Outcomes with Albiglutide in the HARMONY Trial
4.9. Renal Outcomes with Lixisenatide in the ELIXA Trial
5. Conclusions and New Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muskiet, M.H.A.; Tonneijck, L.; Smits, M.M.; Kramer, M.H.H.; Heerspink, H.J.L.; van Raalte, D.H. Pleiotropic Effects of Type 2 Diabetes Management Strategies on Renal Risk Factors. Lancet Diabetes Endocrinol. 2015, 3, 367–381. [Google Scholar] [CrossRef]
- Nathan, D.M. Diabetes: Advances in Diagnosis and Treatment. JAMA 2015, 314, 1052–1062. [Google Scholar] [CrossRef] [PubMed]
- Gregg, E.W.; Li, Y.; Wang, J.; Rios Burrows, N.; Ali, M.K.; Rolka, D.; Williams, D.E.; Geiss, L. Changes in Diabetes-Related Complications in the United States, 1990–2010. N. Engl. J. Med. 2014, 370, 1514–1523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregg, E.W.; Sattar, N.; Ali, M.K. The Changing Face of Diabetes Complications. Lancet Diabetes Endocrinol. 2016, 4, 537–547. [Google Scholar] [CrossRef]
- Thomas, M.C.; Cooper, M.E.; Zimmet, P. Changing Epidemiology of Type 2 Diabetes Mellitus and Associated Chronic Kidney Disease. Nat. Rev. Nephrol. 2016, 12, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Poncelas, A.; Garre-Olmo, J.; Franch-Nadal, J.; Diez-Espino, J.; Mundet-Tuduri, X.; Barrot-De la Puente, J.; Coll-de Tuero, G.; RedGDPS Study Group. Prevalence of Chronic Kidney Disease in Patients with Type 2 Diabetes in Spain: PERCEDIME2 Study. BMC Nephrol. 2013, 14, 46. [Google Scholar] [CrossRef] [Green Version]
- Bailey, R.A.; Wang, Y.; Zhu, V.; Rupnow, M.F.T. Chronic Kidney Disease in US Adults with Type 2 Diabetes: An Updated National Estimate of Prevalence Based on Kidney Disease: Improving Global Outcomes (KDIGO) Staging. BMC Res. Notes 2014, 7, 415. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020, 43 (Suppl. 1), S98–S110. [Google Scholar] [CrossRef] [Green Version]
- Zelniker, T.A.; Wiviott, S.D.; Raz, I.; Im, K.; Goodrich, E.L.; Furtado, R.H.M.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; et al. Comparison of the Effects of Glucagon-Like Peptide Receptor Agonists and Sodium-Glucose Cotransporter 2 Inhibitors for Prevention of Major Adverse Cardiovascular and Renal Outcomes in Type 2 Diabetes Mellitus. Circulation 2019, 139, 2022–2031. [Google Scholar] [CrossRef] [PubMed]
- Muskiet, M.H.A.; Heerspink, H.J.L.; van Raalte, D.H. SGLT2 Inhibition: A New Era in Renoprotective Medicine? Lancet Diabetes Endocrinol. 2017, 5, 569–571. [Google Scholar] [CrossRef]
- Yu, B.; Dong, C.; Hu, Z.; Liu, B. Effects of Sodium-Glucose Co-Transporter 2 (SGLT2) Inhibitors on Renal Outcomes in Patients with Type 2 Diabetes Mellitus and Chronic Kidney Disease. Medicine 2021, 100, e24655. [Google Scholar] [CrossRef] [PubMed]
- Nauck, M.A.; Meier, J.J. The Incretin Effect in Healthy Individuals and Those with Type 2 Diabetes: Physiology, Pathophysiology, and Response to Therapeutic Interventions. Lancet Diabetes Endocrinol. 2016, 4, 525–536. [Google Scholar] [CrossRef]
- Cho, Y.M.; Fujita, Y.; Kieffer, T.J. Glucagon-like Peptide-1: Glucose Homeostasis and Beyond. Annu. Rev. Physiol. 2014, 76, 535–559. [Google Scholar] [CrossRef] [PubMed]
- Smits, M.M.; Tonneijck, L.; Muskiet, M.H.A.; Kramer, M.H.H.; Cahen, D.L.; van Raalte, D.H. Gastrointestinal Actions of Glucagon-like Peptide-1-Based Therapies: Glycaemic Control beyond the Pancreas. Diabetes Obes. Metab. 2016, 18, 224–235. [Google Scholar] [CrossRef] [PubMed]
- Tahrani, A.A.; Barnett, A.H.; Bailey, C.J. Pharmacology and Therapeutic Implications of Current Drugs for Type 2 Diabetes Mellitus. Nat. Rev. Endocrinol. 2016, 12, 566–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier, J.J. GLP-1 Receptor Agonists for Individualized Treatment of Type 2 Diabetes Mellitus. Nat. Rev. Endocrinol. 2012, 8, 728–742. [Google Scholar] [CrossRef] [PubMed]
- Jendle, J.; Nauck, M.A.; Matthews, D.R.; Frid, A.; Hermansen, K.; Düring, M.; Zdravkovic, M.; Strauss, B.J.; Garber, A.J.; LEAD-2 and LEAD-3 Study Groups. Weight Loss with Liraglutide, a Once-Daily Human Glucagon-like Peptide-1 Analogue for Type 2 Diabetes Treatment as Monotherapy or Added to Metformin, Is Primarily as a Result of a Reduction in Fat Tissue. Diabetes Obes. Metab. 2009, 11, 1163–1172. [Google Scholar] [CrossRef] [PubMed]
- Wilding, J.P.H.; Batterham, R.L.; Calanna, S.; Davies, M.; Van Gaal, L.F.; Lingvay, I.; McGowan, B.M.; Rosenstock, J.; Tran, M.T.D.; Wadden, T.A.; et al. Once-Weekly Semaglutide in Adults with Overweight or Obesity. N. Engl. J. Med. 2021, 384, 989–1002. [Google Scholar] [CrossRef]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jódar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef] [Green Version]
- Scheen, A.J. Pharmacokinetics and Clinical Use of Incretin-Based Therapies in Patients with Chronic Kidney Disease and Type 2 Diabetes. Clin. Pharm. 2015, 54, 1–21. [Google Scholar] [CrossRef]
- Mann, J.F.E.; Hansen, T.; Idorn, T.; Leiter, L.A.; Marso, S.P.; Rossing, P.; Seufert, J.; Tadayon, S.; Vilsbøll, T. Effects of Once-Weekly Subcutaneous Semaglutide on Kidney Function and Safety in Patients with Type 2 Diabetes: A Post-Hoc Analysis of the SUSTAIN 1–7 Randomised Controlled Trials. Lancet Diabetes Endocrinol. 2020, 8, 880–893. [Google Scholar] [CrossRef]
- Górriz, J.L.; Soler, M.J.; Navarro-González, J.F.; García-Carro, C.; Puchades, M.J.; D’Marco, L.; Martínez Castelao, A.; Fernández-Fernández, B.; Ortiz, A.; Górriz-Zambrano, C.; et al. GLP-1 Receptor Agonists and Diabetic Kidney Disease: A Call of Attention to Nephrologists. J. Clin. Med. 2020, 9, 947. [Google Scholar] [CrossRef] [Green Version]
- Mann, J.F.E.; Fonseca, V.A.; Poulter, N.R.; Raz, I.; Idorn, T.; Rasmussen, S.; von Scholten, B.J.; Mosenzon, O.; LEADER Trial Investigators. Safety of Liraglutide in Type 2 Diabetes and Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2020, 15, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Nauck, M.A.; Homberger, E.; Siegel, E.G.; Allen, R.C.; Eaton, R.P.; Ebert, R.; Creutzfeldt, W. Incretin Effects of Increasing Glucose Loads in Man Calculated from Venous Insulin and C-Peptide Responses. J. Clin. Endocrinol. Metab. 1986, 63, 492–498. [Google Scholar] [CrossRef]
- Michell, A.R.; Debnam, E.S.; Unwin, R.J. Regulation of Renal Function by the Gastrointestinal Tract: Potential Role of Gut-Derived Peptides and Hormones. Annu. Rev. Physiol. 2008, 70, 379–403. [Google Scholar] [CrossRef]
- Thomas, L.; Kumar, R. Control of Renal Solute Excretion by Enteric Signals and Mediators. J. Am. Soc. Nephrol. 2008, 19, 207–212. [Google Scholar] [CrossRef] [Green Version]
- Preston, R.A.; Afshartous, D.; Forte, L.R.; Rodco, R.; Alonso, A.B.; Garg, D.; Raij, L. Sodium Challenge Does Not Support an Acute Gastrointestinal–Renal Natriuretic Signaling Axis in Humans. Kidney Int. 2012, 82, 1313–1320. [Google Scholar] [CrossRef] [Green Version]
- Singer, D.R.; Markandu, N.D.; Buckley, M.G.; Miller, M.A.; Sagnella, G.A.; MacGregor, G.A. Contrasting Endocrine Responses to Acute Oral Compared with Intravenous Sodium Loading in Normal Humans. Am. J. Physiol. 1998, 274, F111–F119. [Google Scholar] [CrossRef] [PubMed]
- Hoorn, E.J.; Zietse, R. Gut-Kidney Kaliuretic Signaling: Looking Forward to Feeding. Kidney Int. 2015, 88, 1230–1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bankir, L.; Roussel, R.; Bouby, N. Protein- and Diabetes-Induced Glomerular Hyperfiltration: Role of Glucagon, Vasopressin, and Urea. Am. J. Physiol. Ren. Physiol. 2015, 309, F2–F23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tonneijck, L.; Muskiet, M.H.A.; Smits, M.M.; van Bommel, E.J.; Heerspink, H.J.L.; van Raalte, D.H.; Joles, J.A. Glomerular Hyperfiltration in Diabetes: Mechanisms, Clinical Significance, and Treatment. J. Am. Soc. Nephrol. 2017, 28, 1023–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nauck, M. Incretin Therapies: Highlighting Common Features and Differences in the Modes of Action of Glucagon-like Peptide-1 Receptor Agonists and Dipeptidyl Peptidase-4 Inhibitors. Diabetes Obes. Metab. 2016, 18, 203–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagger, J.I.; Knop, F.K.; Lund, A.; Vestergaard, H.; Holst, J.J.; Vilsbøll, T. Impaired Regulation of the Incretin Effect in Patients with Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2011, 96, 737–745. [Google Scholar] [CrossRef] [PubMed]
- van Bloemendaal, L.; Ten Kulve, J.S.; la Fleur, S.E.; Ijzerman, R.G.; Diamant, M. Effects of Glucagon-like Peptide 1 on Appetite and Body Weight: Focus on the CNS. J. Endocrinol. 2014, 221, T1–T16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smits, M.M.; van Raalte, D.H.; Tonneijck, L.; Muskiet, M.H.A.; Kramer, M.H.H.; Cahen, D.L. GLP-1 Based Therapies: Clinical Implications for Gastroenterologists. Gut 2016, 65, 702–711. [Google Scholar] [CrossRef] [Green Version]
- Muskiet, M.H.A.; Smits, M.M.; Morsink, L.M.; Diamant, M. The Gut-Renal Axis: Do Incretin-Based Agents Confer Renoprotection in Diabetes? Nat. Rev. Nephrol. 2014, 10, 88–103. [Google Scholar] [CrossRef]
- Skov, J.; Dejgaard, A.; Frøkiær, J.; Holst, J.J.; Jonassen, T.; Rittig, S.; Christiansen, J.S. Glucagon-like Peptide-1 (GLP-1): Effect on Kidney Hemodynamics and Renin-Angiotensin-Aldosterone System in Healthy Men. J. Clin. Endocrinol. Metab. 2013, 98, E664–E671. [Google Scholar] [CrossRef] [Green Version]
- Gutzwiller, J.-P.; Tschopp, S.; Bock, A.; Zehnder, C.E.; Huber, A.R.; Kreyenbuehl, M.; Gutmann, H.; Drewe, J.; Henzen, C.; Goeke, B.; et al. Glucagon-like Peptide 1 Induces Natriuresis in Healthy Subjects and in Insulin-Resistant Obese Men. J. Clin. Endocrinol. Metab. 2004, 89, 3055–3061. [Google Scholar] [CrossRef]
- Kang, Z.; Zeng, J.; Zhang, T.; Lin, S.; Gao, J.; Jiang, C.; Fan, R.; Yin, D. Hyperglycemia Induces NF-ΚB Activation and MCP-1 Expression via Downregulating GLP-1R Expression in Rat Mesangial Cells: Inhibition by Metformin. Cell Biol. Int. 2019, 43, 940–953. [Google Scholar] [CrossRef]
- Zhou, S.-J.; Bai, L.; Lv, L.; Chen, R.; Li, C.-J.; Liu, X.-Y.; Yu, D.-M.; Yu, P. Liraglutide Ameliorates Renal Injury in Streptozotocin-induced Diabetic Rats by Activating Endothelial Nitric Oxide Synthase Activity via the Downregulation of the Nuclear Factor-κB Pathway. Mol. Med. Rep. 2014, 10, 2587–2594. [Google Scholar] [CrossRef] [Green Version]
- Ye, Y.; Zhong, X.; Li, N.; Pan, T. Protective Effects of Liraglutide on Glomerular Podocytes in Obese Mice by Inhibiting the Inflammatory Factor TNF-α-Mediated NF-ΚB and MAPK Pathway. Obes. Res. Clin. Pr. 2019, 13, 385–390. [Google Scholar] [CrossRef]
- Wang, C.; Li, L.; Liu, S.; Liao, G.; Li, L.; Chen, Y.; Cheng, J.; Lu, Y.; Liu, J. GLP-1 Receptor Agonist Ameliorates Obesity-Induced Chronic Kidney Injury via Restoring Renal Metabolism Homeostasis. PLoS ONE 2018, 13, e0193473. [Google Scholar] [CrossRef] [Green Version]
- Zitman-Gal, T.; Einbinder, Y.; Ohana, M.; Katzav, A.; Kartawy, A.; Benchetrit, S. Effect of Liraglutide on the Janus Kinase/Signal Transducer and Transcription Activator (JAK/STAT) Pathway in Diabetic Kidney Disease in Db/Db Mice and in Cultured Endothelial Cells. J. Diabetes 2019, 11, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Farah, L.X.S.; Valentini, V.; Pessoa, T.D.; Malnic, G.; McDonough, A.A.; Girardi, A.C.C. The Physiological Role of Glucagon-like Peptide-1 in the Regulation of Renal Function. Am. J. Physiol. Ren. Physiol. 2016, 310, F123–F127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carraro-Lacroix, L.R.; Malnic, G.; Girardi, A.C.C. Regulation of Na+/H+ Exchanger NHE3 by Glucagon-like Peptide 1 Receptor Agonist Exendin-4 in Renal Proximal Tubule Cells. Am. J. Physiol. Ren. Physiol. 2009, 297, F1647–1655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skov, J.; Pedersen, M.; Holst, J.J.; Madsen, B.; Goetze, J.P.; Rittig, S.; Jonassen, T.; Frøkiær, J.; Dejgaard, A.; Christiansen, J.S. Short-Term Effects of Liraglutide on Kidney Function and Vasoactive Hormones in Type 2 Diabetes: A Randomized Clinical Trial. Diabetes Obes. Metab. 2016, 18, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Asmar, A.; Simonsen, L.; Asmar, M.; Madsbad, S.; Holst, J.J.; Frandsen, E.; Moro, C.; Jonassen, T.; Bülow, J. Renal Extraction and Acute Effects of Glucagon-like Peptide-1 on Central and Renal Hemodynamics in Healthy Men. Am. J. Physiol. Endocrinol. Metab. 2015, 308, E641–E649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Huang, C.; Lao, J.; Pocai, A.; Forrest, G.; Price, O.; Roy, S.; Kelley, D.E.; Sullivan, K.A.; Forrest, M.J. Acute Hemodynamic and Renal Effects of Glucagon-like Peptide 1 Analog and Dipeptidyl Peptidase-4 Inhibitor in Rats. Cardiovasc. Diabetol. 2015, 14, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Moreno, C.; Mistry, M.; Roman, R.J. Renal Effects of Glucagon-like Peptide in Rats. Eur. J. Pharm. 2002, 434, 163–167. [Google Scholar] [CrossRef]
- Sagoo, M.K.; Gnudi, L. Diabetic Nephropathy: An Overview. Methods Mol. Biol. 2020, 2067, 3–7. [Google Scholar] [CrossRef]
- Han, F.; Hou, N.; Liu, Y.; Huang, N.; Pan, R.; Zhang, X.; Mao, E.; Sun, X. Liraglutide Improves Vascular Dysfunction by Regulating a CAMP-Independent PKA-AMPK Pathway in Perivascular Adipose Tissue in Obese Mice. Biomed. Pharm. 2019, 120, 109537. [Google Scholar] [CrossRef]
- Sukumaran, V.; Tsuchimochi, H.; Sonobe, T.; Shirai, M.; Pearson, J.T. Liraglutide Improves Renal Endothelial Function in Obese Zucker Rats on a High-Salt Diet. J. Pharm. Exp. 2019, 369, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Jensen, E.P.; Poulsen, S.S.; Kissow, H.; Holstein-Rathlou, N.-H.; Deacon, C.F.; Jensen, B.L.; Holst, J.J.; Sorensen, C.M. Activation of GLP-1 Receptors on Vascular Smooth Muscle Cells Reduces the Autoregulatory Response in Afferent Arterioles and Increases Renal Blood Flow. Am. J. Physiol. Ren. Physiol. 2015, 308, F867–F877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomson, S.C.; Kashkouli, A.; Singh, P. Glucagon-like Peptide-1 Receptor Stimulation Increases GFR and Suppresses Proximal Reabsorption in the Rat. Am. J. Physiol. Ren. Physiol. 2013, 304, F137–F144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muskiet, M.H.A.; Tonneijck, L.; Smits, M.M.; Kramer, M.H.H.; Diamant, M.; Joles, J.A.; van Raalte, D.H. Acute Renal Haemodynamic Effects of Glucagon-like Peptide-1 Receptor Agonist Exenatide in Healthy Overweight Men. Diabetes Obes. Metab. 2016, 18, 178–185. [Google Scholar] [CrossRef]
- Fujita, H.; Morii, T.; Fujishima, H.; Sato, T.; Shimizu, T.; Hosoba, M.; Tsukiyama, K.; Narita, T.; Takahashi, T.; Drucker, D.J.; et al. The Protective Roles of GLP-1R Signaling in Diabetic Nephropathy: Possible Mechanism and Therapeutic Potential. Kidney Int. 2014, 85, 579–589. [Google Scholar] [CrossRef] [Green Version]
- von Scholten, B.J.; Lajer, M.; Goetze, J.P.; Persson, F.; Rossing, P. Time Course and Mechanisms of the Anti-Hypertensive and Renal Effects of Liraglutide Treatment. Diabet. Med. 2015, 32, 343–352. [Google Scholar] [CrossRef] [PubMed]
- von Scholten, B.J.; Hansen, T.W.; Goetze, J.P.; Persson, F.; Rossing, P. Glucagon-like Peptide 1 Receptor Agonist (GLP-1 RA): Long-Term Effect on Kidney Function in Patients with Type 2 Diabetes. J. Diabetes Complicat. 2015, 29, 670–674. [Google Scholar] [CrossRef]
- Lovshin, J.A.; Zinman, B. Blood Pressure-Lowering Effects of Incretin-Based Diabetes Therapies. Can. J. Diabetes 2014, 38, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Jose, P.A.; Zeng, C. Gastrointestinal–Renal Axis: Role in the Regulation of Blood Pressure. J. Am. Heart Assoc. 2017, 6, e005536. [Google Scholar] [CrossRef] [Green Version]
- Sun, F.; Wu, S.; Guo, S.; Yu, K.; Yang, Z.; Li, L.; Zhang, Y.; Quan, X.; Ji, L.; Zhan, S. Impact of GLP-1 Receptor Agonists on Blood Pressure, Heart Rate and Hypertension among Patients with Type 2 Diabetes: A Systematic Review and Network Meta-Analysis. Diabetes Res. Clin. Pr. 2015, 110, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Russo, G.; Piscitelli, P.; Giandalia, A.; Viazzi, F.; Pontremoli, R.; Fioretto, P.; De Cosmo, S. Atherogenic Dyslipidemia and Diabetic Nephropathy. J. Nephrol. 2020, 33, 1001–1008. [Google Scholar] [CrossRef] [PubMed]
- Nyström, T.; Gutniak, M.K.; Zhang, Q.; Zhang, F.; Holst, J.J.; Ahrén, B.; Sjöholm, A. Effects of Glucagon-like Peptide-1 on Endothelial Function in Type 2 Diabetes Patients with Stable Coronary Artery Disease. Am. J. Physiol. Endocrinol. Metab. 2004, 287, E1209–E1215. [Google Scholar] [CrossRef] [PubMed]
- Nyström, T.; Gonon, A.T.; Sjöholm, A.; Pernow, J. Glucagon-like Peptide-1 Relaxes Rat Conduit Arteries via an Endothelium-Independent Mechanism. Regul. Pept. 2005, 125, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Muntner, P.; Coresh, J.; Smith, J.C.; Eckfeldt, J.; Klag, M.J. Plasma Lipids and Risk of Developing Renal Dysfunction: The Atherosclerosis Risk in Communities Study. Kidney Int. 2000, 58, 293–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, F.; Wu, S.; Wang, J.; Guo, S.; Chai, S.; Yang, Z.; Li, L.; Zhang, Y.; Ji, L.; Zhan, S. Effect of Glucagon-like Peptide-1 Receptor Agonists on Lipid Profiles among Type 2 Diabetes: A Systematic Review and Network Meta-Analysis. Clin. Ther. 2015, 37, 225–241. [Google Scholar] [CrossRef]
- Jensen, M.D. Role of Body Fat Distribution and the Metabolic Complications of Obesity. J. Clin. Endocrinol. Metab. 2008, 93 (Suppl. 1), S57–S63. [Google Scholar] [CrossRef] [Green Version]
- Thomson, S.C.; Vallon, V.; Blantz, R.C. Kidney Function in Early Diabetes: The Tubular Hypothesis of Glomerular Filtration. Am. J. Physiol. Ren. Physiol. 2004, 286, F8–F15. [Google Scholar] [CrossRef]
- Hostetter, T.H. Hyperfiltration and Glomerulosclerosis. Semin. Nephrol. 2003, 23, 194–199. [Google Scholar] [CrossRef]
- Leon, C.A.; Raij, L. Interaction of Haemodynamic and Metabolic Pathways in the Genesis of Diabetic Nephropathy. J. Hypertens. 2005, 23, 1931–1937. [Google Scholar] [CrossRef]
- UK Prospective Diabetes Study (UKPDS) Group. Intensive Blood-Glucose Control with Sulphonylureas or Insulin Compared with Conventional Treatment and Risk of Complications in Patients with Type 2 Diabetes (UKPDS 33). Lancet 1998, 352, 837–853. [Google Scholar]
- Foster, M.C.; Hwang, S.-J.; Larson, M.G.; Lichtman, J.H.; Parikh, N.I.; Vasan, R.S.; Levy, D.; Fox, C.S. Overweight, Obesity, and the Development of Stage 3 CKD: The Framingham Heart Study. Am. J. Kidney Dis. 2008, 52, 39–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, C.; McCulloch, C.E.; Iribarren, C.; Darbinian, J.; Go, A.S. Body Mass Index and Risk for End-Stage Renal Disease. Ann. Intern. Med. 2006, 144, 21–28. [Google Scholar] [CrossRef]
- Ejerblad, E.; Fored, C.M.; Lindblad, P.; Fryzek, J.; McLaughlin, J.K.; Nyrén, O. Obesity and Risk for Chronic Renal Failure. J. Am. Soc. Nephrol. 2006, 17, 1695–1702. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, X.; Song, Y.; Caballero, B.; Cheskin, L.J. Association between Obesity and Kidney Disease: A Systematic Review and Meta-Analysis. Kidney Int. 2008, 73, 19–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Praga, M.; Morales, E. Obesity, Proteinuria and Progression of Renal Failure. Curr. Opin. Nephrol. Hypertens. 2006, 15, 481–486. [Google Scholar] [CrossRef]
- Bunck, M.C.; Diamant, M.; Eliasson, B.; Cornér, A.; Shaginian, R.M.; Heine, R.J.; Taskinen, M.-R.; Yki-Järvinen, H.; Smith, U. Exenatide Affects Circulating Cardiovascular Risk Biomarkers Independently of Changes in Body Composition. Diabetes Care 2010, 33, 1734–1737. [Google Scholar] [CrossRef] [Green Version]
- Buse, J.B.; Henry, R.R.; Han, J.; Kim, D.D.; Fineman, M.S.; Baron, A.D.; Exenatide-113 Clinical Study Group. Effects of Exenatide (Exendin-4) on Glycemic Control over 30 Weeks in Sulfonylurea-Treated Patients with Type 2 Diabetes. Diabetes Care 2004, 27, 2628–2635. [Google Scholar] [CrossRef] [Green Version]
- van Can, J.; Sloth, B.; Jensen, C.B.; Flint, A.; Blaak, E.E.; Saris, W.H.M. Effects of the Once-Daily GLP-1 Analog Liraglutide on Gastric Emptying, Glycemic Parameters, Appetite and Energy Metabolism in Obese, Non-Diabetic Adults. Int. J. Obes. 2014, 38, 784–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mann, J.F.E.; Ørsted, D.D.; Brown-Frandsen, K.; Marso, S.P.; Poulter, N.R.; Rasmussen, S.; Tornøe, K.; Zinman, B.; Buse, J.B.; LEADER Steering Committee and Investigators. Liraglutide and Renal Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 839–848. [Google Scholar] [CrossRef] [Green Version]
- Mann, J.F.E.; Fonseca, V.; Mosenzon, O.; Raz, I.; Goldman, B.; Idorn, T.; von Scholten, B.J.; Poulter, N.R. Effects of Liraglutide Versus Placebo on Cardiovascular Events in Patients With Type 2 Diabetes Mellitus and Chronic Kidney Disease. Circulation 2018, 138, 2908–2918. [Google Scholar] [CrossRef]
- Mosenzon, O.; Blicher, T.M.; Rosenlund, S.; Eriksson, J.W.; Heller, S.; Hels, O.H.; Pratley, R.; Sathyapalan, T.; Desouza, C.; PIONEER 5 Investigators. Efficacy and Safety of Oral Semaglutide in Patients with Type 2 Diabetes and Moderate Renal Impairment (PIONEER 5): A Placebo-Controlled, Randomised, Phase 3a Trial. Lancet Diabetes Endocrinol. 2019, 7, 515–527. [Google Scholar] [CrossRef] [Green Version]
- Husain, M.; Birkenfeld, A.L.; Donsmark, M.; Dungan, K.; Eliaschewitz, F.G.; Franco, D.R.; Jeppesen, O.K.; Lingvay, I.; Mosenzon, O.; Pedersen, S.D.; et al. Oral Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2019, 381, 841–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novo Nordisk A/S. Effect of Semaglutide Versus Placebo on the Progression of Renal Impairment in Subjects With Type 2 Diabetes and Chronic Kidney Disease; Clinical trial registration NCT03819153. clinicaltrials.gov; 2021. Available online: https://clinicaltrials.gov/ct2/show/NCT03819153 (accessed on 25 August 2021).
- Tuttle, K.R.; Lakshmanan, M.C.; Rayner, B.; Busch, R.S.; Zimmermann, A.G.; Woodward, D.B.; Botros, F.T. Dulaglutide versus Insulin Glargine in Patients with Type 2 Diabetes and Moderate-to-Severe Chronic Kidney Disease (AWARD-7): A Multicentre, Open-Label, Randomised Trial. Lancet Diabetes Endocrinol. 2018, 6, 605–617. [Google Scholar] [CrossRef]
- Gerstein, H.C.; Colhoun, H.M.; Dagenais, G.R.; Diaz, R.; Lakshmanan, M.; Pais, P.; Probstfield, J.; Botros, F.T.; Riddle, M.C.; Rydén, L.; et al. Dulaglutide and Renal Outcomes in Type 2 Diabetes: An Exploratory Analysis of the REWIND Randomised, Placebo-Controlled Trial. Lancet 2019, 394, 131–138. [Google Scholar] [CrossRef]
- Holman, R.R.; Bethel, M.A.; Mentz, R.J.; Thompson, V.P.; Lokhnygina, Y.; Buse, J.B.; Chan, J.C.; Choi, J.; Gustavson, S.M.; Iqbal, N.; et al. Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 1228–1239. [Google Scholar] [CrossRef] [PubMed]
- Muskiet, M.H.A.; Bunck, M.C.; Heine, R.J.; Cornér, A.; Yki-Järvinen, H.; Eliasson, B.; Joles, J.A.; Diamant, M.; Tonneijck, L.; van Raalte, D.H. Exenatide Twice-Daily Does Not Affect Renal Function or Albuminuria Compared to Titrated Insulin Glargine in Patients with Type 2 Diabetes Mellitus: A Post-Hoc Analysis of a 52-Week Randomised Trial. Diabetes Res. Clin. Pract. 2019, 153, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, A.F.; Green, J.B.; Janmohamed, S.; D’Agostino, R.B.; Granger, C.B.; Jones, N.P.; Leiter, L.A.; Rosenberg, A.E.; Sigmon, K.N.; Somerville, M.C.; et al. Albiglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes and Cardiovascular Disease (Harmony Outcomes): A Double-Blind, Randomised Placebo-Controlled Trial. Lancet 2018, 392, 1519–1529. [Google Scholar] [CrossRef] [Green Version]
- Pfeffer, M.A.; Claggett, B.; Diaz, R.; Dickstein, K.; Gerstein, H.C.; Køber, L.V.; Lawson, F.C.; Ping, L.; Wei, X.; Lewis, E.F.; et al. Lixisenatide in Patients with Type 2 Diabetes and Acute Coronary Syndrome. N. Engl. J. Med. 2015, 373, 2247–2257. [Google Scholar] [CrossRef]
Study | N | Study Design | Baseline Characteristics | Median Follow Up (years) | Renal Outcome Studied | Results |
---|---|---|---|---|---|---|
LEADER NCT01179048 | 9340 | DB-RCT | T2D + high CV risk | 3.8 | New-onset macroalbuminuria, doubling of the serum creatinine level, KF, renal death | ↓ Renal outcomes HR 0.78 (95% CI: 0.67–0.92) |
SUSTAIN-6 NCT01720446 | 3297 | DB-RCT | T2D + ≥50 years + established CVD/CKD stage III-V T2D + ≥60 years + CV risk factors | 2.1 | New or worsening of nephropathy (persistent macroalbuminuria, doubling of the serum creatinine level and CCr < 45 mL/min/1.73 m2, RRT) | ↓ Renal outcomes HR 0.64 (95% CI: 0.46–0.88) |
PIONEER-6 NCT02692716 | 31,283 | DB-RCT | T2D + ≥50 years + established CVD/ CKD stage III-V | 1.3 | Changes in eGFR decline and rate of renal related death | No statistical differences |
LOW NCT03819153 | 3508 | QB-RCT | T2D + established CKD stage III-IV | 5 | Time to first occurrence of persistent eGFR decline (≥50%), reaching KF, death from KD or CV, annual rate of change in eGFR, change in eGFR, relative change in UACR | |
AWARD-7 NCT01621178 | 577 | OL-RCT | T2D + established CKD stage III-IV | 0.997 | Changes in eGFR decline and UACR from baseline | No statistical differences |
REWIND NCT01394952 | 9901 | DB-RCT | T2D + previous CV event/CV risk factors | 5.4 | New onset of macroalbuminuria, sustained eGFR decline (≥30%) or RRT | ↓ Renal outcomes HR 0.85 (95% CI: 0.77–0.93) |
EXSCEL NCT01144338 | 14,752 | DB-RCT | T2D (70% with previous CV event) | 3.2 | New-onset macroalbuminuria, 40% eGFR decline, KF, renal death | ↓ Renal outcomes HR 0.87 (95% CI: 0.70–1.07) |
HARMONY NCT02465515 | 9463 | DB-RCT | T2D + ≥40 years + established CVD | 1.6 | Changes in eGFR decline | ↓ Renal outcomes HR 0.78 (95% CI: 0.68–0.90) |
ELIXA NCT01147250 | 6068 | DB-RCT | T2D + recent acute coronary event | 2.1 | Percent change in UACR and eGFR from baseline | Lower UACR CR (−21.10%, −42.25 to 0.04; p = 0.0502 in mAlb); (−39.18%, −68.53 to −9.84, p = 0.0070 on MAlb) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojano Toimil, A.; Ciudin, A. GLP-1 Receptor Agonists in Diabetic Kidney Disease: From Physiology to Clinical Outcomes. J. Clin. Med. 2021, 10, 3955. https://doi.org/10.3390/jcm10173955
Rojano Toimil A, Ciudin A. GLP-1 Receptor Agonists in Diabetic Kidney Disease: From Physiology to Clinical Outcomes. Journal of Clinical Medicine. 2021; 10(17):3955. https://doi.org/10.3390/jcm10173955
Chicago/Turabian StyleRojano Toimil, Alba, and Andreea Ciudin. 2021. "GLP-1 Receptor Agonists in Diabetic Kidney Disease: From Physiology to Clinical Outcomes" Journal of Clinical Medicine 10, no. 17: 3955. https://doi.org/10.3390/jcm10173955
APA StyleRojano Toimil, A., & Ciudin, A. (2021). GLP-1 Receptor Agonists in Diabetic Kidney Disease: From Physiology to Clinical Outcomes. Journal of Clinical Medicine, 10(17), 3955. https://doi.org/10.3390/jcm10173955