Head-to-Head Comparison of Different Software Solutions for AVC Quantification Using Contrast-Enhanced MDCT
Abstract
:1. Introduction
2. Materials and Methods
2.1. Echocardiography
2.2. Multidetector Computed Tomography
2.3. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. AVC Quantification
3.3. Inter-Vendor Reproducibility
3.4. Intra-Vendor Reproducibility
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baumgartner, H.; Falk, V.; Bax, J.J.; De Bonis, M.; Hamm, C.; Holm, P.J.; Iung, B.; Lancellotti, P.; Lansac, E.; Rodriguez Munoz, D.; et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2017, 38, 2739–2791. [Google Scholar] [CrossRef]
- Iung, B.; Baron, G.; Butchart, E.G.; Delahaye, F.; Gohlke-Barwolf, C.; Levang, O.W.; Tornos, P.; Vanoverschelde, J.L.; Vermeer, F.; Boersma, E.; et al. A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease. Eur. Heart J. 2003, 24, 1231–1243. [Google Scholar] [CrossRef] [Green Version]
- Cribier, A.; Eltchaninoff, H.; Bash, A.; Borenstein, N.; Tron, C.; Bauer, F.; Derumeaux, G.; Anselme, F.; Laborde, F.; Leon, M.B. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: First human case description. Circulation 2002, 106, 3006–3008. [Google Scholar] [CrossRef]
- Popma, J.J.; Deeb, G.M.; Yakubov, S.J.; Mumtaz, M.; Gada, H.; O’Hair, D.; Bajwa, T.; Heiser, J.C.; Merhi, W.; Kleiman, N.S.; et al. Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1706–1715. [Google Scholar] [CrossRef] [PubMed]
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Makkar, R.; Kodali, S.K.; Russo, M.; Kapadia, S.R.; Malaisrie, S.C.; Cohen, D.J.; Pibarot, P.; et al. Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1695–1705. [Google Scholar] [CrossRef] [PubMed]
- Hamm, C.W.; Beyersdorf, F. GARY-The Largest Registry of Aortic Stenosis Treatment Worldwide. Eur. Heart J. 2020, 41, 733–735. [Google Scholar] [CrossRef]
- Hachicha, Z.; Dumesnil, J.G.; Bogaty, P.; Pibarot, P. Paradoxical low-flow, low-gradient severe aortic stenosis despite preserved ejection fraction is associated with higher afterload and reduced survival. Circulation 2007, 115, 2856–2864. [Google Scholar] [CrossRef] [Green Version]
- Lancellotti, P.; Magne, J.; Donal, E.; Davin, L.; O’Connor, K.; Rosca, M.; Szymanski, C.; Cosyns, B.; Pierard, L.A. Clinical outcome in asymptomatic severe aortic stenosis: Insights from the new proposed aortic stenosis grading classification. J. Am. Coll. Cardiol. 2012, 59, 235–243. [Google Scholar] [CrossRef]
- Adda, J.; Mielot, C.; Giorgi, R.; Cransac, F.; Zirphile, X.; Donal, E.; Sportouch-Dukhan, C.; Reant, P.; Laffitte, S.; Cade, S.; et al. Low-flow, low-gradient severe aortic stenosis despite normal ejection fraction is associated with severe left ventricular dysfunction as assessed by speckle-tracking echocardiography: A multicenter study. Circ. Cardiovasc. Imaging 2012, 5, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Minners, J.; Allgeier, M.; Gohlke-Baerwolf, C.; Kienzle, R.P.; Neumann, F.J.; Jander, N. Inconsistent grading of aortic valve stenosis by current guidelines: Haemodynamic studies in patients with apparently normal left ventricular function. Heart 2010, 96, 1463–1468. [Google Scholar] [CrossRef]
- Cueff, C.; Serfaty, J.M.; Cimadevilla, C.; Laissy, J.P.; Himbert, D.; Tubach, F.; Duval, X.; Iung, B.; Enriquez-Sarano, M.; Vahanian, A.; et al. Measurement of aortic valve calcification using multislice computed tomography: Correlation with haemodynamic severity of aortic stenosis and clinical implication for patients with low ejection fraction. Heart 2011, 97, 721–726. [Google Scholar] [CrossRef]
- Pawade, T.; Clavel, M.A.; Tribouilloy, C.; Dreyfus, J.; Mathieu, T.; Tastet, L.; Renard, C.; Gun, M.; Jenkins, W.S.A.; Macron, L.; et al. Computed Tomography Aortic Valve Calcium Scoring in Patients With Aortic Stenosis. Circ. Cardiovasc. Imaging 2018, 11, e007146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clavel, M.A.; Pibarot, P.; Messika-Zeitoun, D.; Capoulade, R.; Malouf, J.; Aggarval, S.; Araoz, P.A.; Michelena, H.I.; Cueff, C.; Larose, E.; et al. Impact of aortic valve calcification, as measured by MDCT, on survival in patients with aortic stenosis: Results of an international registry study. J. Am. Coll. Cardiol. 2014, 64, 1202–1213. [Google Scholar] [CrossRef] [Green Version]
- Rosenhek, R.; Binder, T.; Porenta, G.; Lang, I.; Christ, G.; Schemper, M.; Maurer, G.; Baumgartner, H. Predictors of outcome in severe, asymptomatic aortic stenosis. N. Engl. J. Med. 2000, 343, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Seiffert, M.; Fujita, B.; Avanesov, M.; Lunau, C.; Schon, G.; Conradi, L.; Prashovikj, E.; Scholtz, S.; Borgermann, J.; Scholtz, W.; et al. Device landing zone calcification and its impact on residual regurgitation after transcatheter aortic valve implantation with different devices. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 576–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludwig, S.; Gossling, A.; Waldschmidt, L.; Linder, M.; Bhadra, O.D.; Voigtlander, L.; Schafer, A.; Deuschl, F.; Schirmer, J.; Reichenspurner, H.; et al. TAVR for low-flow, low-gradient aortic stenosis: Prognostic impact of aortic valve calcification. Am. Heart J. 2020, 225, 138–148. [Google Scholar] [CrossRef]
- Ewe, S.H.; Ng, A.C.; Schuijf, J.D.; van der Kley, F.; Colli, A.; Palmen, M.; de Weger, A.; Marsan, N.A.; Holman, E.R.; de Roos, A.; et al. Location and severity of aortic valve calcium and implications for aortic regurgitation after transcatheter aortic valve implantation. Am. J. Cardiol. 2011, 108, 1470–1477. [Google Scholar] [CrossRef]
- Schultz, C.J.; Tzikas, A.; Moelker, A.; Rossi, A.; Nuis, R.J.; Geleijnse, M.M.; van Mieghem, N.; Krestin, G.P.; de Feyter, P.; Serruys, P.W.; et al. Correlates on MSCT of paravalvular aortic regurgitation after transcatheter aortic valve implantation using the Medtronic CoreValve prosthesis. Catheter. Cardiovasc. Interv. 2011, 78, 446–455. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Oppo, K.; Leen, E.; Angerson, W.J.; Cooke, T.G.; McArdle, C.S. Doppler perfusion index: An interobserver and intraobserver reproducibility study. Radiology 1998, 208, 453–457. [Google Scholar] [CrossRef]
- Callister, T.Q.; Cooil, B.; Raya, S.P.; Lippolis, N.J.; Russo, D.J.; Raggi, P. Coronary artery disease: Improved reproducibility of calcium scoring with an electron-beam CT volumetric method. Radiology 1998, 208, 807–814. [Google Scholar] [CrossRef]
- Glodny, B.; Helmel, B.; Trieb, T.; Schenk, C.; Taferner, B.; Unterholzner, V.; Strasak, A.; Petersen, J. A method for calcium quantification by means of CT coronary angiography using 64-multidetector CT: Very high correlation with Agatston and volume scores. Eur. Radiol. 2009, 19, 1661–1668. [Google Scholar] [CrossRef] [PubMed]
- Farsalinos, K.E.; Daraban, A.M.; Unlu, S.; Thomas, J.D.; Badano, L.P.; Voigt, J.U. Head-to-Head Comparison of Global Longitudinal Strain Measurements among Nine Different Vendors: The EACVI/ASE Inter-Vendor Comparison Study. J. Am. Soc. Echocardiogr. 2015, 28, 1171–1181.e1172. [Google Scholar] [CrossRef]
- Anwar, S.; Negishi, K.; Borowszki, A.; Gladding, P.; Popovic, Z.B.; Erenberg, F.; Thomas, J.D. Comparison of two-dimensional strain analysis using vendor-independent and vendor-specific software in adult and pediatric patients. JRSM Cardiovasc. Dis. 2017, 6, 2048004017712862. [Google Scholar] [CrossRef]
- Schuster, A.; Hor, K.N.; Kowallick, J.T.; Beerbaum, P.; Kutty, S. Cardiovascular Magnetic Resonance Myocardial Feature Tracking: Concepts and Clinical Applications. Circ. Cardiovasc. Imaging 2016, 9, e004077. [Google Scholar] [CrossRef] [Green Version]
- Gertz, R.J.; Lange, T.; Kowallick, J.T.; Backhaus, S.J.; Steinmetz, M.; Staab, W.; Kutty, S.; Hasenfuss, G.; Lotz, J.; Schuster, A. Inter-vendor reproducibility of left and right ventricular cardiovascular magnetic resonance myocardial feature-tracking. PLoS ONE 2018, 13, e0193746. [Google Scholar] [CrossRef]
- Schuster, A.; Stahnke, V.C.; Unterberg-Buchwald, C.; Kowallick, J.T.; Lamata, P.; Steinmetz, M.; Kutty, S.; Fasshauer, M.; Staab, W.; Sohns, J.M.; et al. Cardiovascular magnetic resonance feature-tracking assessment of myocardial mechanics: Intervendor agreement and considerations regarding reproducibility. Clin. Radiol. 2015, 70, 989–998. [Google Scholar] [CrossRef] [Green Version]
- Baessler, B.; Mauri, V.; Bunck, A.C.; Pinto Dos Santos, D.; Friedrichs, K.; Maintz, D.; Rudolph, T. Software-automated multidetector computed tomography-based prosthesis-sizing in transcatheter aortic valve replacement: Inter-vendor comparison and relation to patient outcome. Int. J. Cardiol. 2018, 272, 267–272. [Google Scholar] [CrossRef]
- Eberhard, M.; Hinzpeter, R.; Polacin, M.; Morsbach, F.; Maisano, F.; Nietlispach, F.; Nguyen-Kim, T.D.L.; Tanner, F.C.; Alkadhi, H. Reproducibility of aortic valve calcification scoring with computed tomography—An interplatform analysis. J. Cardiovasc. Comput. Tomogr. 2019, 13, 92–98. [Google Scholar] [CrossRef]
- Ajlan, M.; Ahmed, A.; Alskaini, A.M.; Abukhaled, N.F.; Alsaileek, A.; Ajlan, A.; Sulaiman, I.F.; Al-Mallah, M.H. The reproducibility of coronary artery calcium scoring on different software platforms. Int. J. Cardiol. 2015, 187, 155–156. [Google Scholar] [CrossRef] [PubMed]
- Weininger, M.; Ritz, K.S.; Schoepf, U.J.; Flohr, T.G.; Vliegenthart, R.; Costello, P.; Hahn, D.; Beissert, M. Interplatform reproducibility of CT coronary calcium scoring software. Radiology 2012, 265, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Lauten, A.; Figulla, H.R.; Mollmann, H.; Holzhey, D.; Kotting, J.; Beckmann, A.; Veit, C.; Cremer, J.; Kuck, K.H.; Lange, R.; et al. TAVI for low-flow, low-gradient severe aortic stenosis with preserved or reduced ejection fraction: A subgroup analysis from the German Aortic Valve Registry (GARY). EuroIntervention 2014, 10, 850–859. [Google Scholar] [CrossRef]
- Cartlidge, T.R.; Bing, R.; Kwiecinski, J.; Guzzetti, E.; Pawade, T.A.; Doris, M.K.; Adamson, P.D.; Massera, D.; Lembo, M.; Peeters, F.; et al. Contrast-enhanced computed tomography assessment of aortic stenosis. Heart 2021. [Google Scholar] [CrossRef] [PubMed]
- Grodecki, K.; Tamarappoo, B.K.; Huczek, Z.; Jedrzejczyk, S.; Cadet, S.; Kwiecinski, J.; Rymuza, B.; Parma, R.; Olasinska-Wisniewska, A.; Fijalkowska, J.; et al. Non-calcific aortic tissue quantified from computed tomography angiography improves diagnosis and prognostication of patients referred for transcatheter aortic valve implantation. Eur. Heart J. Cardiovasc. Imaging 2021, 22, 626–635. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, A.M.; Boczar, K.E.; Kansal, V.; Chan, K.; Dwivedi, G.; Chow, B.J. Quantifying Aortic Valve Calcification using Coronary Computed Tomography Angiography. J. Cardiovasc. Comput. Tomogr. 2017, 11, 99–104. [Google Scholar] [CrossRef] [PubMed]
Patients | n = 50 |
---|---|
Demographics | |
Age (years) | 78 ± 6 (61–92) |
Male | 32 (64%) |
BMI (kg/m2) | 28 ± 5 (20.7–42,25) |
Echocardiographic parameters | |
Aortic valve | |
V max (m/s) | 4.1 ± 0.60 (2.9–5.5) |
P mean (mmHg) | 40 ± 14 (16–68)) |
AVA VTI (cm2) | 0.73 ± 0.16 (0.4–1.0) |
SVI (ml/m2) | 36 ± 9 (18–57) |
Left ventricle | |
LVEF (%) | 50.3 ± 11.2 (17.1–68.2) |
LVEDD (mm) | 45.5 ± 8.7 (29–75) |
Comorbidities | |
HT | 43 (86%) |
AF | 24 (14.8%) |
DM | 12 (24%) |
CAD | 40 (80%) |
COPD | 6 (12%) |
3 Mensio–CVI 42 | CVI 42–Syngo.Via | 3 Mensio–Syngo.Via | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean Difference (SD) | ICC (95%CI) | CoV (%) | Mean Difference (SD) | ICC (95%CI) | CoV (%) | Mean Difference (SD) | ICC (95%CI) | CoV (%) | ||
Inter-vendor | AVC (mm3) | −0.06 (84.16) | 0.996 (0.992–0.998) | 9 | −7 (68.60) | 0.997 (0.995–0.998) | 7.3 | −7.06 (115.07) | 0.992 (0.986–0.995) | 12.2 |
3 Mensio | CVI 42 | Syngo.Via | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean Difference (SD) | ICC (95%CI) | CoV (%) | Mean Difference (SD) | ICC (95%CI) | CoV (%) | Mean Difference (SD) | ICC (95%CI) | CoV (%) | ||
Intra-observer | AVC (mm3) | −19.28 (45.07) | 0.999 (0.995–1.000) | 3.9 | −10.28 (18.6) | 1.000 (0.999–1.000) | 1.6 | −24.81 (48.52) | 0.998 (0.993–1.000) | 4.1 |
Inter-observer | AVC (mm3) | −7.14 (16.20) | 1.000 (0.999–1.000) | 1.4 | 1.74 (11.83) | 1.000 (1.000–1.000) | 1.0 | 0.65 (79.43) | 0.996 (0.985–0.999) | 6.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evertz, R.; Hub, S.; Backhaus, S.J.; Lange, T.; Toischer, K.; Kowallick, J.T.; Hasenfuß, G.; Schuster, A. Head-to-Head Comparison of Different Software Solutions for AVC Quantification Using Contrast-Enhanced MDCT. J. Clin. Med. 2021, 10, 3970. https://doi.org/10.3390/jcm10173970
Evertz R, Hub S, Backhaus SJ, Lange T, Toischer K, Kowallick JT, Hasenfuß G, Schuster A. Head-to-Head Comparison of Different Software Solutions for AVC Quantification Using Contrast-Enhanced MDCT. Journal of Clinical Medicine. 2021; 10(17):3970. https://doi.org/10.3390/jcm10173970
Chicago/Turabian StyleEvertz, Ruben, Sebastian Hub, Sören J. Backhaus, Torben Lange, Karl Toischer, Johannes T. Kowallick, Gerd Hasenfuß, and Andreas Schuster. 2021. "Head-to-Head Comparison of Different Software Solutions for AVC Quantification Using Contrast-Enhanced MDCT" Journal of Clinical Medicine 10, no. 17: 3970. https://doi.org/10.3390/jcm10173970
APA StyleEvertz, R., Hub, S., Backhaus, S. J., Lange, T., Toischer, K., Kowallick, J. T., Hasenfuß, G., & Schuster, A. (2021). Head-to-Head Comparison of Different Software Solutions for AVC Quantification Using Contrast-Enhanced MDCT. Journal of Clinical Medicine, 10(17), 3970. https://doi.org/10.3390/jcm10173970