Does Attentional Style Moderate the Relationship between Time Perspective and Social Network Addiction? A Cross-Sectional Study on a Sample of Social Networking Sites Users
Abstract
:1. Introduction
2. Theoretical Background
2.1. Time Perspective and Social Network Addiction
2.2. Time Perspective and Attention
2.3. Attention and Social Network Addiction
3. Research Goals and Hypotheses
4. Materials and Methods
4.1. Participants and Procedure
4.2. Instruments
4.2.1. The Zimbardo Time Perspective Inventory
4.2.2. The Attentional Style Questionnaire
4.2.3. The Social Network Addiction—Italian Scale (SNA-IS)
4.3. Data Analysis
5. Results
5.1. The Impact of Time Perspective on Social Network Addiction and the Moderating Role of Attentional Style
5.2. The Impact of Time Perspective on Interpersonal Irritability and the Moderating Role of Attentional Style
5.3. The Impact of Time Perspective on Elapsed Time and the Moderating Role of Attentional Style
5.4. The Impact of Time Perspective on Social Performance Impairment and the Moderating Role of Attentional Style
5.5. The Impact of Time Perspective on Social Network Anxiety and the Moderating Role of Attentional Style
6. Discussion
6.1. Linear Associations among All the Variables of the Present Study
6.2. The Moderating Role of Attentional Style in the Relation between Time Perspective and Social Network Addiction
7. Limitations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chaffey, D. Global Social Media Research Summary. 2021. Available online: https://www.smartinsights.com/social-media-marketing/social-media-strategy/new-global-social-media-research/ (accessed on 26 July 2021).
- Andreassen, C.S. Online Social Network Site Addiction: A Comprehensive Review. Curr. Addict. Rep. 2015, 2, 175–184. [Google Scholar] [CrossRef]
- Miceli, S.; Maniscalco, L.; Matranga, D. Social networks and social activities promote cognitive functioning in both concurrent and prospective time: Evidence from the SHARE survey. Eur. J. Ageing 2019, 16, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Young, K. Internet Addiction: Diagnosis and Treatment Considerations. J. Contemp. Psychother. 2009, 39, 241–246. [Google Scholar] [CrossRef]
- Carli, V.; Durkee, T.; Wasserman, D.; Hadlaczky, G.; Despalins, R.; Kramarz, E.; Wasserman, C.; Sarchiapone, M.; Hoven, C.W.; Brunner, R.; et al. Association between Pathological Internet Use and Comorbid Psychopathology: A Systematic Review. Psychopathology 2013, 46, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Fineberg, N.A.; Demetrovics, Z.; Stein, D.J.; Ioannidis, K.; Potenza, M.N.; Grünblatt, E.; Brand, M.; Billieux, J.; Carmi, L.; King, D.L.; et al. COST Action Network, Chamberlain SR. Manifesto for a European research network into Problematic Usage of the Internet. Eur. Neuropsychopharmacol. 2018, 28, 1232–1246. [Google Scholar] [CrossRef]
- Griffiths, M.D.; King, D.L.; Demetrovics, Z. DSM-5 internet gaming disorder needs a unified approach to assessment. Neuropsychiatry 2014, 4, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Andreassen, C.S.; Torsheim, T.; Pallesen, S. Predictors of use of social network sites at work—A specific type of cyberloafing. J. Comput. Mediat. Commun. 2014, 19, 906–921. [Google Scholar] [CrossRef] [Green Version]
- Guedes, E.; Sancassiani, F.; Carta, M.G.; Campos, C.; Machado, S.; King, A.L.; Nardi, A.E. Internet Addiction and Excessive Social Networks Use: What About Facebook? Clin. Pract. Epidemiol. Ment. Health 2016, 28, 43–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffiths, M. A ‘components’ model of addiction within a biopsychosocial framework. J. Subst. Use 2005, 10, 191–197. [Google Scholar] [CrossRef]
- Andreassen, C.S.; Pallesen, S. Social network site addiction—An overview. Curr. Pharm. Des. 2014, 20, 4053–4061. [Google Scholar] [CrossRef]
- Karaiskos, D.; Tzavellas, E.; Balta, G.; Paparrigopoulos, T. P02-232—Social network addiction: A new clinical disorder? Eur. Psychiatry 2010, 25, 1. [Google Scholar] [CrossRef]
- Paul, J.A.; Baker, H.M.; Cochran, J.D. Effect of online social networking on student academic performance. Comput. Hum. Behav. 2012, 28, 2117–2127. [Google Scholar] [CrossRef]
- Elphinston, R.A.; Noller, P. Time to face it! Facebook intrusion and the implications for romantic jealousy and relationship satisfaction. Cyberpsychol. Behav. Soc. Netw. 2011, 14, 631–635. [Google Scholar] [CrossRef]
- Frost, R.L.; Rickwood, D.J. A systematic review of the mental health outcomes associated with Facebook use. Comput. Hum. Behav. 2017, 76, 576–600. [Google Scholar] [CrossRef]
- Marino, C.; Gini, G.; Vieno, A.; Spada, M.M. The associations between problematic Facebook use, psychological distress and well-being among adolescents and young adults: A systematic review and meta-analysis. J. Affect. Disord. 2018, 226, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Chittaro, L.; Vianello, A. Time perspective as a predictor of problematic Internet use: A study of Facebook users. Personal. Individ. Differ. 2013, 55, 989–993. [Google Scholar] [CrossRef]
- Przepiorka, A.; Blachnio, A. Time perspective in internet and Facebook addiction. Comput. Hum. Behav. 2016, 60, 13–18. [Google Scholar] [CrossRef]
- Lukavská, K. The immediate and long-term effects of time perspective on Internet gaming disorder. J. Behav. Addict. 2018, 7, 44–51. [Google Scholar] [CrossRef]
- Sharif-Razi, M.; Kaya, N.D.; Mihajlovic, I.; Deamond, W.; Nussbaum, D. Subclinical Problem Gambling, Implicit Affect, and Stress: A Psychopharmacological Explanation; American Psychological Association: Washington, DC, USA, 2012. [Google Scholar]
- Keough, K.A.; Zimbardo, P.G.; Boyd, J.N. Who’s Smoking, Drinking, and Using Drugs? Time Perspective as a Predictor of Substance Use. Basic Appl. Soc. Psychol. 1999, 21, 149–164. [Google Scholar] [CrossRef]
- Apostolidis, T.; Fieulaine, N.; Simonin, L.; Rolland, G. Cannabis use, time perspective and risk perception: Evidence of a moderating effect. Psychol. Health 2006, 21, 571–592. [Google Scholar] [CrossRef] [Green Version]
- Zimbardo, P.G.; Boyd, J.N. Putting time in perspective: A valid, reliable individual differences metric. J. Perspect. Soc. Psychol. 1999, 77, 1271–1288. [Google Scholar] [CrossRef]
- Settanni, M.; Marengo, D.; Fabris, M.A.; Longobardi, C. The interplay between ADHD symptoms and time perspective in addictive social media use: A study on adolescent Facebook users. Child. Youth Serv. Rev. 2018, 89, 165–170. [Google Scholar] [CrossRef]
- Nikolaidou, M.; Stanton Fraser, D.; Hinvest, N. Attentional bias in Internet users with problematic use of social networking sites. J. Behav. Addict. 2019, 8, 733–742. [Google Scholar] [CrossRef]
- Klingeman, H. The Time Game: Temporal Perspectives of Patients and Staff in Alcohol and Drug Treatment. Time Soc. 2001, 10, 303–328. [Google Scholar] [CrossRef]
- Rothspan, S.; Read, S.J. Present versus future time perspective and HIV risk among heterosexual college students. Health Psychol. 1996, 15, 131–134. [Google Scholar] [CrossRef] [PubMed]
- Zimbardo, P.G.; Keough, K.A.; Boyd, J.N. Present time perspective as a predictor of risk driving. Personal. Individ. Differ. 1997, 23, 1007–1023. [Google Scholar] [CrossRef]
- Laghi, F.; Baiocco, R.; D’Alessio, M.; Gurrieri, G. Suicidal ideation and time perspective in high school students. Eur. Psychiatry 2009, 24, 41–46. [Google Scholar] [CrossRef]
- Epel, E.S.; Bandura, A.; Zimbardo, P.G. Escaping homelessness: The influences of self-efficacy and time perspective on coping with homelessness. J. Appl. Soc. Psychol. 1999, 29, 575–596. [Google Scholar] [CrossRef]
- Ferrari, J.R.; Diaz-Morales, J.F. Procrastination: Different time orientations reflect different motives. J. Res. Personal. 2007, 41, 707–714. [Google Scholar] [CrossRef]
- Drake, L.; Duncan, E.; Sutherland, F.; Abernethy, C.; Henry, C. Time Perspective and Correlates of Well-Being. Time Soc. 2008, 17, 23–37. [Google Scholar] [CrossRef] [Green Version]
- Boniwell, I.; Zimbardo, P.G. Balancing Time Perspective in Pursuit of Optimal Functioning. In Positive Psychology in Practice; Linley, P.A., Joseph, S., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; pp. 165–178. [Google Scholar]
- Kim, J.; Hong, H.; Lee, J.; Hyun, H. Effects of time perspective and Self-Control on procrastination and Internet addiction. J Behav. Addict. 2017, 6, 229–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corbetta, M.; Shulman, G. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 2002, 3, 201–215. [Google Scholar] [CrossRef] [PubMed]
- Posner, M.I. Orienting of attention. Q. J. Exp. Psychol. 1980, 32, 3–25. [Google Scholar] [CrossRef]
- Christoff, K. Undirected thought: Neural determinants and correlates. Brain Res. 2012, 1428, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, A.; Regier, T.; Kay, P.; Ivry, R. Whorf hypothesis is supported in the right visual field but not the left. Proc. Natl. Acad. Sci. USA 2006, 103, 489–494. [Google Scholar] [CrossRef] [Green Version]
- Clark, D.A.; Purdon, C.L. The assessment of unwanted intrusive thoughts: A review and critique of the literature. Behav. Res. Ther. 1995, 33, 967–976. [Google Scholar] [CrossRef]
- Fan, J.; Gu, X.S.; Guise, K.G.; Liu, X.; Fossella, J.; Wang, H.B.; Posner, M.I. Testing the behavioral interaction and integration of attentional networks. Brain Cogn. 2009, 70, 209–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zajenkowski, M.; Stolarski, M.; Maciantowicz, O.; Malesza, M.; Witowska, J. Time to be smart: Uncovering a complex interplay between intelligence and time perspectives. Intelligence 2016, 58, 1–9. [Google Scholar] [CrossRef]
- Witowska, J.; Zajenkowski, M. How is perception of time associated with cognitive functioning? The relationship between time perspective and executive control. Time Soc. 2019, 20, 375–400. [Google Scholar] [CrossRef]
- Franken, I.H.A. Drug craving and addiction: Integrating psychological and neuro-psycho-pharmacological approaches. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2003, 27, 563–579. [Google Scholar] [CrossRef]
- Kavanagh, D.J.; Andrade, J.; May, J. Beating the urge: Implications of research into substance-related desires. Addict. Behav. 2004, 29, 1359–1372. [Google Scholar] [CrossRef]
- Macit, H.; Macit, G.; Güngör, O. A research on social media addiction and dopamine driven feedback. Mehmet Akif Ersoy Üniversitesi İktisadi İdari Bilimler Fakültesi Derg. 2018, 5, 882–897. [Google Scholar] [CrossRef]
- Rau, P.L.; Peng, S.Y.; Yang, C.C. Time distortion for expert and novice online game players. Cyberpsychol. Behav. 2006, 9, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, H.; Coskun, M.; Ayaydin, H.; Adak, I.; Zoroglu, S.S. Prevalence and patterns of psychiatric disorders in referred adolescents with Internet addiction. Psychiatry Clin. Neurosci. 2013, 67, 352–359. [Google Scholar] [CrossRef]
- Chou, W.P.; Ko, C.H.; Kaufman, E.A.; Crowell, S.E.; Hsiao, R.C.; Wang, P.W.; Lin, J.J.; Yen, C.F. Association of stress coping strategies with Internet addiction in college students: The moderating effect of depression. Compr. Psychiatry 2015, 62, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Panagiotidi, M.; Overton, P. The relationship between internet addiction, attention deficit hyperactivity symptoms and online activities in adults. Compr. Psychiatry 2018, 87, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Van Calster, L.; D’Argembeau, A.; Majerus, S. Measuring individual differences in internal versus external attention: The attentional style questionnaire. Personal. Individ. Differ. 2018, 128, 25–32. [Google Scholar] [CrossRef]
- Caci, B.; Cardaci, M.; Scrima, F.; Tabacchi, M.E. The Dimensions of Facebook Addiction as Measured by Facebook Addiction Italian Questionnaire and Their Relationships with Individual Differences. Cyberpsychol. Behav. Soc. Netw. 2017, 20, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Hayes, A.F.; Preacher, K.J. Conditional process modeling: Using structural equation modeling to examine contingent causal processes. In Structural Equation Modeling: A Second Course; Hancock, G.R., Mueller, R.O., Eds.; IAP Information Age Publishing: Charlotte, NC, USA, 2013; pp. 219–266. [Google Scholar]
- Błachnio, A.; Przepiórka, A.; Pantic, I. Internet use, Facebook intrusion, and depression: Results of a cross-sectional study. Eur. Psychiatry 2015, 30, 681–684. [Google Scholar] [CrossRef]
- Chak, K.; Leung, L. Shyness and locus of control as predictors of internet addiction and internet use. Cyberpsychol. Behav. 2004, 7, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Hamburger, Y.A.; Ben-Artzi, E. The Relationship between Extraversion and Neuroticism and the Different Uses of the Internet. Comput. Hum. Behav. 2000, 16, 441–449. [Google Scholar] [CrossRef]
- Wilson, K.; Fornasier, S.; White, K.M. Psychological Predictors of Young Adults’ Use of Social Networking Sites. Cyberpsychology Behav. Soc. Netw. 2010, 13, 173–177. [Google Scholar] [CrossRef] [Green Version]
- Bajec, B. Relationship between time perspective and job satisfaction. Int. J. Hum. Resour. Dev. Manag. 2018, 8, 145–165. [Google Scholar] [CrossRef]
- Sailer, U.; Rosenberg, P.; Nima, A.A.; Gamble, A.; Gärling, T.; Archer, T.; Garcia, D. A happier and less sinister past, a more hedonistic and less fatalistic present and a more structured future: Time perspective and well-being. PeerJ 2014, 2, e303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barber, L.K.; Munz, D.C.; Bagsby, P.G.; Grawitch, M.J. When does time perspective matter? Self-control as a moderator between time perspective and academic achievement. Personal. Individ. Differ. 2009, 46, 250–253. [Google Scholar] [CrossRef]
- Zhang, J.W.; Howell, R.T. Do time perspectives predict unique variance in life satisfaction beyond personality traits? Personal. Individ. Differ. 2011, 50, 1261–1266. [Google Scholar] [CrossRef]
- Cox, W.M.; Fadardi, J.S.; Pothos, E.M. The addiction-Stroop test: Theoretical considerations and procedural recommendations. Psychol. Bull. 2006, 132, 443–476. [Google Scholar] [CrossRef]
- Hussain, Z.; Griffiths, M.D. Problematic Social Networking Site Use and Comorbid Psychiatric Disorders: A Systematic Review of Recent Large-Scale Studies. Front. Psychiatry 2018, 9, 686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purdon, C.; Clark, D.A. Obsessive intrusive thoughts in nonclinical subjects. Part I. Content and relation with depressive, anxious and obsessional symptoms. Behav. Res. Ther. 1993, 31, 713–720. [Google Scholar] [CrossRef]
- Wenzlaff, R.M.; Wegner, D.M.; Roper, D.W. Depression and Mental Control: The Resurgence of Unwanted Negative Thoughts. J. Personal. Soc. Psychol. 1988, 55, 882–892. [Google Scholar] [CrossRef]
- Caci, B.; Cardaci, M.; Miceli, S. Development and Maintenance of Self-Disclosure on Facebook: The Role of Personality Traits. SAGE Open 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Baker, D.A.; Algorta, G.P. The Relationship between Online Social Networking and Depression: A Systematic Review of Quantitative Studies. Cyberpsychol. Behav. Soc. Netw. 2016, 19, 638–648. [Google Scholar] [CrossRef] [Green Version]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.Y.; Podsakoff, N.P. Common Method Biases in Behavioral Research: A Critical Review of the Literature and Recommended Remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef] [PubMed]
- Mattila, A.S.; Enz, C.A. The role of emotions in service encounters. J. Serv. Res. 2002, 4, 268–277. [Google Scholar] [CrossRef] [Green Version]
- Matranga, D.; Restivo, V.; Maniscalco, L.; Bono, F.; Pizzo, G.; Lanza, G.; Gaglio, V.; Mazzucco, W.; Miceli, S. Lifestyle medicine and psychological well-being toward health promotion: A cross-sectional study on Palermo (Southern Italy) undergraduates. Int. J. Environ. Res. Public Health 2020, 17, 5444. [Google Scholar] [CrossRef] [PubMed]
Elapsed Time | Social Network Anxiety | Social Performance Impairment | Interpersonal Irritability | |
---|---|---|---|---|
Item_07 | 0.77 | |||
Item_08 | 0.63 | |||
Item_06 | 0.51 | |||
Item_05 | 0.32 | |||
Item_13 | 0.82 | |||
Item_14 | 0.60 | |||
Item_16 | 0.59 | |||
Item_15 | 0.44 | |||
Item_11 | −0.81 | |||
Item_09 | −0.78 | |||
Item_10 | −0.57 | |||
Item_12 | −0.31 | |||
Item_04 | −0.65 | |||
Item_01 | −0.63 | |||
Item_02 | −0.46 | |||
Item_03 | −0.31 | |||
Explained variance | 13.46 | 12.29 | 12.83 | 10.36 |
Social Network Addiction | Interpersonal Irritability | Elapsed Time | Social Performance Impairment | Social Network Anxiety | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Step | Adj R2 | ∆F | Adj R2 | ∆F | Adj R2 | ∆F | Adj R2 | ∆F | Adj R2 | ∆F |
1 | 0.06 | 6.54 ** | 0.01 | 1.72 | 0.06 | 6.51 ** | 0.04 | 5.01 ** | 0.03 | 4.16 * |
2 | 0.17 | 5.66 *** | 0.09 | 4.17 *** | 0.15 | 4.63 *** | 0.12 | 4.24 *** | 0.10 | 3.77 ** |
3 | 0.23 | 12.91 *** | 0.16 | 8.76 *** | 0.19 | 5.52 ** | 0.24 | 14.44 ** | 0.13 | 3.61 * |
4 | 0.31 | 2.05 * | 0.27 | 2.48 ** | 0.19 | 1.12 | 0.27 | 1.63 | 0.23 | 3.18 *** |
Social Network Addiction | Interpersonal Irritability | Elapsed Time | Social Performance Impairment | Social Network Anxiety | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beta | LL | UL | Beta | LL | UL | Beta | LL | UL | Beta | LL | UL | Beta | LL | UL | |
Covariates | |||||||||||||||
- Gender | 0.23 *** | 0.11 | 0.36 | 0.13 | −0.00 | 0.27 | 0.21 ** | 0.07 | 0.35 | 0.21 ** | 0.08 | 0.35 | 0.18 * | 0.04 | 0.32 |
- Age | −0.08 | −0.21 | 0.05 | 0.01 | −0.12 | 0.14 | −0.13 | −0.27 | 0.01 | −0.06 | −0.19 | 0.07 | −0.04 | −0.18 | 0.09 |
Time perspective | |||||||||||||||
- Present-Hedonistic (PH) | −0.02 | −0.17 | 0.17 | −0.06 | −0.21 | 0.08 | −0.012 | −0.16 | 0.14 | −0.03 | −0.17 | 0.12 | 0.02 | −0.13 | 0.17 |
- Present-Fatalistic (PF) | 0.16 * | 0.01 | 0.31 | 0.20 ** | 0.05 | 0.36 | 0.098 | −0.06 | 0.26 | 0.04 | −0.11 | 0.19 | 0.19 * | 0.04 | 0.35 |
- Past-Positive (PP) | 0.14 * | 0.01 | 0.28 | −0.01 | −0.15 | 0.13 | 0.20 ** | 0.05 | 0.34 | 0.14 * | 0.01 | 0.28 | 0.10 | −0.04 | 0.24 |
- Past-Negative (PN) | 0.17 * | 0.02 | 0.31 | 0.13 | −0.02 | 0.28 | 0.18 * | 0.02 | 0.34 | 0.10 | −0.05 | 0.25 | 0.11 | −0.05 | 0.26 |
- Future (FU) | 0.02 | −0.11 | 0.16 | 0.16 * | 0.02 | 0.30 | −0.01 | −0.15 | 0.14 | −0.14 * | −0.28 | −0.01 | 0.10 | −0.04 | 0.24 |
Attentional style (AS) | |||||||||||||||
- Internal (I) | 0.34 *** | 0.19 | 0.49 | 0.28 *** | 0.12 | 0.43 | 0.23 *** | 0.07 | 0.39 | 0.39 *** | 0.24 | 0.54 | 0.19 * | 0.03 | 0.34 |
- External € | −0.19 ** | −0.33 | −0.05 | −0.21 ** | −0.35 | −0.06 | −0.12 | −0.28 | 0.03 | −0.15 * | −0.29 | −0.01 | −0.12 | −0.27 | 0.02 |
Interaction terms | |||||||||||||||
- PH × IAS | −0.08 | −0.22 | 0.07 | −0.15 | −0.29 | 0.01 | −0.01 | −0.16 | 0.15 | −0.13 | −0.27 | 0.03 | 0.011 | −0.14 | 0.16 |
- PF × IAS | 0.12 | −0.03 | 0.26 | 0.16 * | 0.01 | 0.31 | 0.05 | −0.11 | 0.20 | 0.02 | −0.13 | 0.17 | 0.20 * | 0.05 | 0.35 |
- PP × IAS | 0.17 * | 0.03 | 0.29 | 0.056 | −0.08 | 0.19 | 0.08 | −0.07 | 0.21 | 0.21 ** | 0.07 | 0.33 | 0.22 ** | 0.07 | 0.34 |
- PN × IAS | 0.06 | −0.09 | 0.22 | 0.024 | −0.13 | 0.18 | 0.03 | −0.13 | 0.2 | 0.06 | −0.09 | 0.22 | 0.10 | −0.06 | 0.26 |
- FU × IAS | −0.10 | −0.23 | 0.03 | −0.06 | −0.20 | 0.08 | −0.08 | −0.22 | 0.07 | −0.07 | −0.21 | 0.07 | −0.12 | −0.26 | 0.02 |
- PH × EAS | 0.07 | −0.09 | 0.22 | 0.20 * | 0.02 | 0.35 | −0.07 | −0.24 | 0.11 | 0.07 | −0.10 | 0.23 | 0.09 | −0.09 | 0.25 |
- PF × EAS | −0.08 | −0.23 | 0.07 | −0.27 ** | −0.40 | −0.09 | 0.08 | −0.08 | 0.24 | −0.01 | −0.16 | 0.14 | −0.17 * | −0.32 | −0.01 |
- PP × EAS | −0.20 ** | −0.35 | −0.06 | −0.18 * | −0.33 | −0.03 | −0.19 ** | −0.35 | −0.04 | −0.18 * | −0.33 | −0.03 | −0.06 | −0.22 | 0.09 |
- PN × EAS | −0.11 | −0.23 | 0.05 | −0.03 | −0.17 | 0.12 | −0.12 | −0.26 | 0.04 | −0.13 | −0.26 | 0.03 | −0.04 | −0.18 | 0.11 |
- FU × EAS | 0.11 | −0.03 | 0.23 | 0.17 * | 0.02 | 0.29 | 0.06 | −0.09 | 0.19 | 0.12 | −0.02 | 0.25 | 0.01 | −0.13 | 0.14 |
Adjusted R2 | 0.31 | 0.27 | 0.19 | 0.27 | 0.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miceli, S.; Scrima, F.; Cardaci, M.; Quatrosi, G.; Vetri, L.; Roccella, M.; Caci, B. Does Attentional Style Moderate the Relationship between Time Perspective and Social Network Addiction? A Cross-Sectional Study on a Sample of Social Networking Sites Users. J. Clin. Med. 2021, 10, 3983. https://doi.org/10.3390/jcm10173983
Miceli S, Scrima F, Cardaci M, Quatrosi G, Vetri L, Roccella M, Caci B. Does Attentional Style Moderate the Relationship between Time Perspective and Social Network Addiction? A Cross-Sectional Study on a Sample of Social Networking Sites Users. Journal of Clinical Medicine. 2021; 10(17):3983. https://doi.org/10.3390/jcm10173983
Chicago/Turabian StyleMiceli, Silvana, Fabrizio Scrima, Maurizio Cardaci, Giuseppe Quatrosi, Luigi Vetri, Michele Roccella, and Barbara Caci. 2021. "Does Attentional Style Moderate the Relationship between Time Perspective and Social Network Addiction? A Cross-Sectional Study on a Sample of Social Networking Sites Users" Journal of Clinical Medicine 10, no. 17: 3983. https://doi.org/10.3390/jcm10173983
APA StyleMiceli, S., Scrima, F., Cardaci, M., Quatrosi, G., Vetri, L., Roccella, M., & Caci, B. (2021). Does Attentional Style Moderate the Relationship between Time Perspective and Social Network Addiction? A Cross-Sectional Study on a Sample of Social Networking Sites Users. Journal of Clinical Medicine, 10(17), 3983. https://doi.org/10.3390/jcm10173983