A Complete Digital Workflow for Planning, Simulation, and Evaluation in Orthognathic Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Acquisition of Patients’ CT and 3D Dentition Data
2.2. Cloud-Based Platform for Collaboration
2.3. Reproduction of the 3D NHP Model Based on Cloud-Based Storage
2.4. Cloud-Based Collaboration for Surgical Planning and Simulation
2.5. Comprehensive Evaluation Using Identical 3D Landmarks on Simulation and Postoperative Models
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shaheen, E.; Sun, Y.; Jacobs, R.; Politis, C. Three-dimensional printed final occlusal splint for orthognathic surgery: Design and validation. Int. J. Oral Maxillofac. Surg. 2017, 46, 67–71. [Google Scholar] [CrossRef]
- Vale, F.; Scherzberg, J.; Cavaleiro, J.; Sanz, D.; Caramelo, F.; Malo, L.; Marcelino, J.P. 3D virtual planning in orthognathic surgery and CAD/CAM surgical splints generation in one patient with craniofacial microsomia: A case report. Dent. Press J. Orthod. 2016, 21, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Metzger, M.C.; Hohlweg-Majert, B.; Schwarz, U.; Teschner, M.; Hammer, B.; Schmelzeisen, R. Manufacturing splints for orthognathic surgery using a three-dimensional printer. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2008, 105, e1–e7. [Google Scholar] [CrossRef]
- Aboul-Hosn Centenero, S.; Hernandez-Alfaro, F. 3D planning in orthognathic surgery: CAD/CAM surgical splints and prediction of the soft and hard tissues results—Our experience in 16 cases. J. Cranio Maxillofac. Surg. 2012, 40, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Assael, L.A. The biggest movement: Orthognathic surgery undergoes another paradigm shift. J. Oral Maxillofac. Surg. 2008, 66, 419–420. [Google Scholar] [CrossRef] [PubMed]
- Bell, R.B. Computer planning and intraoperative navigation in cranio-maxillofacial surgery. Oral Maxillofac. Surg. Clin. N. Am. 2010, 22, 135–156. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Palau, J.; Prieto-Gundin, A.; Cazalla, A.A.; Serrano, M.B.; Fructuoso, G.G.; Ferrandis, F.P.; Baro, A.R. Three-dimensional planning in craniomaxillofacial surgery. Ann. Maxillofac. Surg. 2016, 6, 281–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.S.; Hsu, S.S.; Chen, Y.R. Systematic review of the surgery-first approach in orthognathic surgery. Biomed. J. 2014, 37, 184–190. [Google Scholar] [CrossRef]
- Lin, H.H.; Lo, L.J. Three-dimensional computer-assisted surgical simulation and intraoperative navigation in orthognathic surgery: A literature review. J. Formos. Med. Assoc. 2015, 114, 300–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCormick, S.U.; Drew, S.J. Virtual model surgery for efficient planning and surgical performance. J. Oral Maxillofac. Surg. 2011, 69, 638–644. [Google Scholar] [CrossRef]
- Mori, Y.; Shimizu, H.; Minami, K.; Kwon, T.G.; Mano, T. Development of a simulation system in mandibular orthognathic surgery based on integrated three-dimensional data. Oral Maxillofac. Surg. 2011, 15, 131–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, J.; Ip, H.H.S.; Samman, N.; Wang, D.; Kot, C.S.B.; Yeung, R.W.K.; Tideman, H. Computer-assisted three-dimensional surgical planning and simulation: 3D virtual osteotomy. J. Oral Maxillofac. Surg. 2000, 29, 11–17. [Google Scholar] [CrossRef]
- Fawzy, H.H.; Choi, J.W. Evaluation of virtual surgical plan applicability in 3D simulation-guided two-jaw surgery. J. Cranio Maxillofac. Surg. 2019, 47, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.H.; Lonic, D.; Lo, L.J. 3D printing in orthognathic surgery—A literature review. J. Formos. Med. Assoc. 2018, 117, 547–558. [Google Scholar] [CrossRef]
- Kim, D.S.; Woo, S.Y.; Yang, H.J.; Huh, K.H.; Lee, S.S.; Heo, M.S.; Choi, S.C.; Hwang, S.J.; Yi, W.J. An integrated orthognathic surgery system for virtual planning and image-guided transfer without intermediate splint. J. Cranio Maxillofac. Surg. 2014, 42, 2010–2017. [Google Scholar] [CrossRef]
- Uribe, F.; Janakiraman, N.; Shafer, D.; Nanda, R. Three-dimensional cone-beam computed tomography-based virtual treatment planning and fabrication of a surgical splint for asymmetric patients: Surgery first approach. Am. J. Orthod. Dentofac. Orthop. 2013, 144, 748–758. [Google Scholar] [CrossRef]
- Yuan, R.; Luo, M.; Sun, Z.; Shi, S.; Xiao, P.; Xie, Q. RayPlus: A Web-Based Platform for Medical Image Processing. J. Digit. Imaging 2017, 30, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Schendel, S.A.; Montgomery, K. A Web-based, integrated simulation system for craniofacial surgical planning. Plast. Reconstr. Surg. 2009, 123, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Luebbers, H.T.; Agbaje, J.O.; Schepers, S.; Vrielinck, L.; Lambrichts, I.; Politis, C. Accuracy of upper jaw positioning with intermediate splint fabrication after virtual planning in bimaxillary orthognathic surgery. J. Craniofac. Surg. 2013, 24, 1871–1876. [Google Scholar] [CrossRef] [PubMed]
- Moorrees, C.F. Natural head position-a revival. Am. J. Orthod. Dentofac. Orthop. 1994, 105, 512–513. [Google Scholar] [CrossRef]
- Lundström, A.; Lundström, F.; Lebret, L.; Moorrees, C. Natural head position and natural head orientation basic considerations in cephalometric analysis and research. Eur. J. Orthod. 1995, 17, 111–120. [Google Scholar] [CrossRef]
- Kim, D.S.; Yang, H.J.; Huh, K.H.; Lee, S.S.; Heo, M.S.; Choi, S.C.; Hwang, S.J.; Yi, W.J. Three-dimensional natural head position reproduction using a single facial photograph based on the POSIT method. J. Cranio Maxillofac. Surg. 2014, 42, 1315–1321. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Yang, H.J.; Choi, M.H.; Woo, S.Y.; Huh, K.H.; Lee, S.S.; Heo, M.S.; Choi, S.C.; Hwang, S.J.; Yi, W.J. Real-time augmented model guidance for mandibular proximal segment repositioning in orthognathic surgery, using electromagnetic tracking. J. Cranio Maxillofac. Surg. 2019, 47, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Uechi, J.; Okayama, M.; Shibata, T.; Muguruma, T.; Hayashi, K.; Endo, K.; Mizoguchi, I. A novel method for the 3-dimensional simulation of orthognathic surgery by using a multimodal image-fusion technique. Am. J. Orthod. Dentofac. Orthop. 2006, 130, 786–798. [Google Scholar] [CrossRef]
- Lee, S.J.; Woo, S.Y.; Huh, K.H.; Lee, S.S.; Heo, M.S.; Choi, S.C.; Han, J.J.; Yang, H.J.; Hwang, S.J.; Yi, W.J. Virtual skeletal complex model- and landmark-guided orthognathic surgery system. J. Cranio Maxillofac. Surg. 2016, 44, 557–568. [Google Scholar] [CrossRef] [PubMed]
- Myronenko, A.; Song, X.B. Point Set Registration: Coherent Point Drift. IEEE Trans. Pattern Anal. 2010, 32, 2262–2275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, M.H.; Lee, S.J.; Yang, H.J.; Huh, K.H.; Lee, S.S.; Heo, M.S.; Choi, S.C.; Hwang, S.J.; Yi, W.J. Automatic Reproduction of Natural Head Position Using a Portable 3D Scanner Based on Immediate Calibration. Appl. Sci. 2020, 10, 174. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Lee, S.J.; Choi, M.H.; Yang, H.J.; Kim, J.E.; Huh, K.H.; Lee, S.S.; Heo, M.S.; Hwang, S.J.; Yi, W.J. Quantitative Augmented Reality-Assisted Free-Hand Orthognathic Surgery Using Electromagnetic Tracking and Skin-Attached Dynamic Reference. J. Craniofac. Surg. 2020, 31, 2175–2181. [Google Scholar] [CrossRef]
- Greenspan, M.; Yurick, M. Approximate kd tree search for efficient ICP. In Proceedings of the Fourth International Conference on 3-D Digital Imaging and Modeling. 3DIM 2003, Banff, AB, Canada, 6–10 October 2003; IEEE: Piscataway, NJ, USA, 2003; pp. 442–448. [Google Scholar]
- Kim, S.H.; Kim, D.S.; Huh, K.H.; Lee, S.S.; Heo, M.S.; Choi, S.C.; Hwang, S.J.; Yi, W.J. Direct and continuous localization of anatomical landmarks for image-guided orthognathic surgery. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2013, 116, 402–410. [Google Scholar] [CrossRef]
- Xia, J.J.; Gateno, J.; Teichgraeber, J.F.; Yuan, P.; Li, J.; Chen, K.C.; Jajoo, A.; Nicol, M.; Alfi, D.M. Algorithm for planning a double-jaw orthognathic surgery using a computer-aided surgical simulation (CASS) protocol. Part 2: Three-dimensional cephalometry. Int. J. Oral Maxillofac. Surg. 2015, 44, 1441–1450. [Google Scholar] [CrossRef] [Green Version]
- Baan, F.; Liebregts, J.; Xi, T.; Schreurs, R.; de Koning, M.; Berge, S.; Maal, T. A New 3D Tool for Assessing the Accuracy of Bimaxillary Surgery: The OrthoGnathicAnalyser. PLoS ONE 2016, 11, e0149625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swinkels, W.; Sun, Y.; Stukken, B.; Politis, C.; Claesen, L. Cloud-based Orthognathic Surgical Planning Platform. In Proceedings of the 2005 13th IEEE International NEW Circuits and Systems Conference, NEWCAS, Grenoble, France, 7–10 June 2015; pp. 1–4. [Google Scholar]
- Yuan, R.; Shi, S.; Chen, J.; Cheng, G. Radiomics in RayPlus: A Web-Based Tool for Texture Analysis in Medical Images. J. Digit. Imaging 2019, 32, 269–275. [Google Scholar] [CrossRef]
- Rückschloß, T.; Ristow, O.; Müller, M.; Kühle, R.; Zingler, S.; Engel, M.; Hoffmann, J.; Freudlsperger, C. Accuracy of patient-specific implants and additive-manufactured surgical splints in orthognathic surgery—A three-dimensional retrospective study. J. Cranio Maxillofac. Surg. 2019, 47, 847–853. [Google Scholar] [CrossRef]
- Li, B.; Zhang, L.; Sun, H.; Yuan, J.; Shen, S.G.; Wang, X. A novel method of computer aided orthognathic surgery using individual CAD/CAM templates: A combination of osteotomy and repositioning guides. Br. J. Oral Maxillofac. Surg. 2013, 51, e239–e244. [Google Scholar] [CrossRef] [PubMed]
- Mulier, D.; Shaheen, E.; Shujaat, S.; Fieuws, S.; Jacobs, R.; Politis, C. How accurate is digital-assisted Le Fort I maxillary osteotomy? A three-dimensional perspective. Int. J. Oral Maxillofac. Surg. 2020, 49, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.; Gabrick, K.; Wu, R.; Madari, S.; Sawh-Martinez, R.; Steinbacher, D. Conformity of the Actual to the Planned Result in Orthognathic Surgery. Plast. Reconstr. Surg. 2019, 144, 89e–97e. [Google Scholar] [CrossRef]
- Nattestad, A.; Vedtofte, P. Mandibular autorotation in orthognathic surgery: A new method of locating the centre of mandibular rotation and determining its consequence in orthognathic surgery. J. Cranio Maxillofac. Surg. 1992, 20, 163–170. [Google Scholar] [CrossRef]
- Rekow, E.D.; Worms, F.W.; Erdman, A.G.; Speidel, T.M. Treatment-induced errors in occlusion following orthognathic surgery. Am. J. Orthod. 1985, 88, 425–432. [Google Scholar] [CrossRef]
- Liebregts, J.; Baan, F.; de Koning, M.; Ongkosuwito, E.; Berge, S.; Maal, T.; Xi, T. Achievability of 3D planned bimaxillary osteotomies: Maxillafirst versus mandible-first surgery. Sci. Rep. 2017, 7, 9314. [Google Scholar] [CrossRef] [Green Version]
- Heufelder, M.; Wilde, F.; Pietzka, S.; Mascha, F.; Winter, K.; Schramm, A.; Rana, M. Clinical accuracy of waferless maxillary positioning using customized surgical guides and patient specific osteosynthesis in bimaxillary orthognathic surgery. J. Cranio Maxillofac. Surg. 2017, 45, 1578–1585. [Google Scholar] [CrossRef] [PubMed]
- Schouman, T.; Rouch, P.; Imholz, B.; Fasel, J.; Courvoisier, D.; Scolozzi, P. Accuracy evaluation of CAD/CAM generated splints in orthognathic surgery: A cadaveric study. Head Face Med. 2015, 11, 24. [Google Scholar] [CrossRef]
- Tankersley, A.C.; Nimmich, M.C.; Battan, A.; Griggs, J.A.; Caloss, R. Comparison of the Planned Versus Actual Jaw Movement Using Splint-Based Virtual Surgical Planning: How Close Are We at Achieving the Planned Outcomes? J. Oral Maxillofac. Surg. 2019, 77, 1675–1680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khechoyan, D.Y. Orthognathic surgery: General considerations. Semin. Plast. Surg. 2013, 27, 133–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wirthlin, J.O.; Shetye, P.R. Orthodontist’s Role in Orthognathic Surgery. Semin. Plast. Surg. 2013, 27, 137–144. [Google Scholar]
- Frost, V.; Peterson, G. Psychological aspects of orthognathic surgery: How people respond to facial change. Oral Surg. Oral Med. Oral Pathol. 1991, 71, 538–542. [Google Scholar] [CrossRef]
- Barone, S.; Morice, A.; Picard, A.; Giudice, A. Surgery-first orthognathic approach vs conventional orthognathic approach: A systematic review of systematic reviews. J. Stomatol. Oral Maxillofac. Surg. 2021, 122, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Almukhtar, A.; Ju, X.Y.; Khambay, B.; McDonald, J.; Ayoub, A. Comparison of the Accuracy of Voxel Based Registration and Surface Based Registration for 3D Assessment of Surgical Change following Orthognathic Surgery. PLoS ONE 2014, 9, e93402. [Google Scholar] [CrossRef] [Green Version]
- Verhelst, P.J.; Verstraete, L.; Shaheen, E.; Shujaat, S.; Darche, V.; Jacobs, R.; Swennen, G.; Politis, C. Three-dimensional cone beam computed tomography analysis protocols for condylar remodelling following orthognathic surgery: A systematic review. Int. J. Oral Maxillofac. Surg. 2020, 49, 207–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaber, R.M.; Shaheen, E.; Falter, B.; Araya, S.; Politis, C.; Swennen, G.R.J.; Jacobs, R. A Systematic Review to Uncover a Universal Protocol for Accuracy Assessment of 3-Dimensional Virtually Planned Orthognathic Surgery. J. Oral Maxillofac. Surg. 2017, 75, 2430–2440. [Google Scholar] [CrossRef]
Patients | Translation (mm) | Rotation (°) | ||||
---|---|---|---|---|---|---|
Left –Right | Advance –Setback | Impaction –Elongation | Pitch | Roll | Yaw | |
1 | 3.44 | 0.19 | 2.98 | 0.00 | −3.10 | 1.15 |
2 | −1.38 | 1.05 | 0.59 | 2.82 | 3.35 | −2.65 |
3 | −1.72 | 0.12 | −1.19 | 5.57 | 3.03 | −3.33 |
4 | 0.69 | −0.49 | 1.54 | 6.27 | 1.57 | 1.18 |
5 | −0.24 | 1.12 | −1.87 | 3.42 | −4.67 | 0.00 |
6 | −0.90 | −2.76 | 5.41 | 8.31 | 3.22 | 0.00 |
7 | 0.38 | 1.88 | 3.41 | 8.22 | 0.00 | −1.27 |
8 | 0.36 | 0.01 | 0.00 | 0.00 | 0.00 | −1.14 |
9 | 2.20 | 1.90 | 1.63 | 1.83 | 3.02 | 0.00 |
10 | 0.72 | −1.43 | 1.45 | 5.41 | −0.13 | −2.68 |
11 | 1.28 | −0.28 | −0.63 | 4.13 | −4.68 | 2.41 |
12 | −1.91 | 0.11 | −1.09 | 7.37 | 1.56 | 0.00 |
13 | −0.75 | 3.99 | 2.65 | 2.86 | 0.00 | −1.10 |
14 | 1.63 | −0.54 | 2.63 | 7.51 | −1.44 | 2.84 |
15 | −0.71 | −0.14 | −0.71 | 2.04 | 4.60 | −1.65 |
16 | 2.09 | 1.14 | 2.86 | 4.20 | 1.51 | 0.00 |
17 | 0.57 | 0.13 | −0.68 | 6.56 | 0.00 | 1.20 |
18 | 1.02 | −0.01 | 1.30 | 4.47 | −3.33 | 2.65 |
19 | 0.06 | −0.12 | −0.47 | 9.97 | 3.69 | 0.00 |
20 | −1.11 | 1.14 | −0.54 | 9.02 | 1.59 | −2.69 |
21 | 0.77 | 0.09 | −0.26 | 12.56 | 1.56 | 1.32 |
22 | −1.32 | 2.32 | −0.97 | 3.78 | 1.48 | −2.23 |
23 | −0.96 | 1.30 | 4.23 | 5.97 | 3.91 | 0.00 |
24 | −1.50 | −1.74 | −1.05 | 9.28 | 0.00 | −2.37 |
Mean ± SD | 0.11 ± 1.40 | 0.37 ± 1.40 | 0.88 ± 1.98 | 5.48 ± 3.18 | 0.70 ± 2.63 | −0.35 ± 1.79 |
Absolute Mean ± SD | 1.16 ± 0.74 | 1.00 ± 1.01 | 1.67 ± 1.32 | 5.48 ± 3.12 | 2.14 ± 1.59 | 1.41 ± 1.10 |
Landmarks | Left –Right | Advance –Setback | Impaction –Elongation | RMS |
---|---|---|---|---|
Right incisor | 0.48 ± 0.49 | 0.79 ± 0.65 | 1.03 ± 0.84 | 1.58 ± 0.89 |
Left incisor | 0.52 ± 0.49 | 0.83 ± 0.77 | 1.09 ± 0.91 | 1.67 ± 1.01 |
Right canine | 0.45 ± 0.49 | 0.79 ± 0.56 | 1.05 ± 0.84 | 1.59 ± 0.81 |
Left canine | 0.59 ± 0.38 | 0.96 ± 0.76 | 1.00 ± 0.90 | 1.72 ± 0.91 |
Right 1st molar | 0.58 ± 0.44 | 0.83 ± 0.65 | 0.75 ± 0.52 | 1.42 ± 0.67 |
Left 1st molar | 0.65 ± 0.56 | 0.88 ± 0.76 | 0.99 ± 0.79 | 1.72 ± 0.85 |
Right 2nd molar | 0.90 ± 0.70 | 0.82 ± 0.43 | 1.07 ± 0.72 | 1.81 ± 0.72 |
Left 2nd molar | 0.70 ± 0.62 | 1.00 ± 0.73 | 1.00 ± 0.67 | 1.82 ± 0.74 |
Mean ± SD | 0.61 ± 0.55 | 0.86 ± 0.68 * | 1.00 ± 0.79 * | 1.67 ± 0.84 |
Displacement by Planning | Translational Discrepancy | Rotational Discrepancy | ||||
---|---|---|---|---|---|---|
Left –Right | Advance– Setback | Impaction– Elongation | Pitch | Roll | Yaw | |
Left–Right | 0.09 | −0.18 | 0.11 | 0.27 | 0.15 | −0.12 |
Advance–Setback | −0.02 | 0.57 ** | −0.32 | 0.20 | 0.04 | 0.00 |
Impaction–Elongation | 0.30 | −0.09 | 0.23 | 0.26 | 0.05 | 0.00 |
Pitch | −0.10 | −0.02 | 0.13 | −0.34 | −0.16 | −0.05 |
Roll | 0.38 | 0.14 | −0.23 | 0.04 | −0.22 | 0.18 |
Yaw | −0.28 | −0.01 | 0.31 | −0.19 | 0.09 | −0.41 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-J.; Yoo, J.-Y.; Woo, S.-Y.; Yang, H.J.; Kim, J.-e.; Huh, K.-H.; Lee, S.-S.; Heo, M.-S.; Hwang, S.J.; Yi, W.-J. A Complete Digital Workflow for Planning, Simulation, and Evaluation in Orthognathic Surgery. J. Clin. Med. 2021, 10, 4000. https://doi.org/10.3390/jcm10174000
Lee S-J, Yoo J-Y, Woo S-Y, Yang HJ, Kim J-e, Huh K-H, Lee S-S, Heo M-S, Hwang SJ, Yi W-J. A Complete Digital Workflow for Planning, Simulation, and Evaluation in Orthognathic Surgery. Journal of Clinical Medicine. 2021; 10(17):4000. https://doi.org/10.3390/jcm10174000
Chicago/Turabian StyleLee, Sang-Jeong, Ji-Yong Yoo, Sang-Yoon Woo, Hoon Joo Yang, Jo-eun Kim, Kyung-Hoe Huh, Sam-Sun Lee, Min-Suk Heo, Soon Jung Hwang, and Won-Jin Yi. 2021. "A Complete Digital Workflow for Planning, Simulation, and Evaluation in Orthognathic Surgery" Journal of Clinical Medicine 10, no. 17: 4000. https://doi.org/10.3390/jcm10174000
APA StyleLee, S. -J., Yoo, J. -Y., Woo, S. -Y., Yang, H. J., Kim, J. -e., Huh, K. -H., Lee, S. -S., Heo, M. -S., Hwang, S. J., & Yi, W. -J. (2021). A Complete Digital Workflow for Planning, Simulation, and Evaluation in Orthognathic Surgery. Journal of Clinical Medicine, 10(17), 4000. https://doi.org/10.3390/jcm10174000