Genetic Polymorphisms of GGH and ABCC2 Are Associated with Methotrexate Intolerance in Patients with Rheumatoid Arthritis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. DNA Extraction and Genotyping
- Active transport of MTX: RFC-1-G80A (SMP rs1051266);
- MTX polyglutamate formation: GGH-T401C (SNP rs11545078);
- Folate cycle and purine synthesis: MTHFR-C677T (SNP rs1801133), MTHFR-A1298C (SNP rs1801131), DHFR (SNP 1105525), SHMT1-c1303C > T (SNP rs1979277) and ITPase-C94A (SNP rs34743033), and the latter is located in the noncoding sequence;
- MTX extraction pumps: ABCC2-C24T (SNP rs717620), ABCB1-c3435C > T (SNP rs1045642) and SLCO1B1 (SNP rs11045879), the last of which is located in the noncoding sequence.
2.3. Variables
- Sociodemographic characteristics: age and sex;
- Disease-related variables: disease duration (months), age at diagnosis, time since bDMARD initiation (months), and duration of MTX treatment (months);
- Disease activity at the time of the study visit: c-reactive protein (CRP) in mg/dL, erythrocyte sedimentation rate (ESR) in mm/h, number of tender joints (NTJ), number of swollen joints (NSJ), physician assessment (visual analogue scale ranging from 0–10 points), patient assessment (visual analogue scale ranging from 0–10 points), Disease Activity Score 28 (DAS28), Simple Disease Activity Index (SDAI), and Clinical Disease Activity Index (CDAI).
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smolen, J.S.; Aletaha, D.; Barton, A.; Burmester, G.R.; Emery, P.; Firestein, G.S.; Kavanaugh, A.; McInnes, I.B.; Solomon, D.H.; Strand, V.; et al. Rheumatoid arthritis. Nat. Rev. Dis. Prim. 2018, 4, 18001. [Google Scholar] [CrossRef] [PubMed]
- Smolen, J.S.; Landewé, R.B.M.; Bijlsma, J.W.J. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological diasease-modifying antirheumatic drugs: 2019 update. Ann. Rheum. Dis. 2020, 79, 685–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, J.A.; Saag, K.G.; Bridges, S.L. 2015 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Rheumatol. 2016, 68, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Smolen, J.S.; Aletaha, D. Rheumatoid arthritis therapy reappraisal: Strategies, opportunities and challenges. Nat. Rev. Rheumatol. 2015, 11, 276–289. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K.; Yuasa, H. Molecular Basis for Pharmacokinetics and Pharmacodynamics of Methotrexate in Rheumatoid Arthritis Therapy. Drug Metab. Pharmacokinet. 2014, 29, 12–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, S.F.; Bluett, J.; Ling, S. Pharmacogenetics of methotrexate response in rheumatoid arthritis: An update. Pharmacogenomics 2020, 21, 3–6. [Google Scholar] [CrossRef]
- Hakamata, J.; Hashiguchi, M.; Kaneko, Y. Risk factors for abnormal hepatic enzime elevation by methotrexate treatment in patients with rheumatoid arthritis: A hospital based-cohort study. Mod. Rheumatol 2018, 28, 611–620. [Google Scholar] [CrossRef]
- Sundbaum, J.K.; Baecklund, E.; Eriksson, N.; Hallberg, P.; Kohnke, H.; Wadelius, M. MTHFR, TYMS and SLCO1B1 polymorphisms and adverse liver effects of methotrexate in rheumatoid arthritis. Pharmacogenomics 2020, 21, 337–346. [Google Scholar] [CrossRef]
- Huang, J.; Fan, H.; Qiu, Q.; Liu, K.; Lv, S.; Li, J.; Yang, H.; Shu, X.; Xu, Y.; Lu, X.; et al. Are gene polymorphisms related to adverse events of methotrexate in patients with rheumatoid arthritis? A retrospective cohort study based on an updated meta-analysis. Ther. Adv. Chronic Dis. 2020, 11, 1–17. [Google Scholar] [CrossRef]
- Owen, S.A.; Lunt, M.; Bowes, J.; Hider, S.L.; Bruce, I.N.; Thomson, W.; Barton, A. MTHFR gene polymorphisms and outcome of methotrexate treatment in patients with rheumatoid arthritis: Analysis of key polymorphisms and meta-analysis of C677T and A1298C polymorphisms. Pharmacogenomics J. 2011, 13, 137–147. [Google Scholar] [CrossRef]
- Bohanec, G.P.; Logar, D.; Lestan, B. Genetic determinants of methotrexate toxicity in rheumatoid arthritis patients: A study of polymorphisms affecting methotrexate transport and folate metabolism. Eur. J. Clin. Pharmacol. 2008, 64, 1057–1068. [Google Scholar] [CrossRef]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O., III; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010, 62, 2569–2581. [Google Scholar] [CrossRef] [PubMed]
- von Elm, E.; Altman, D.G.; Egger, M. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Bedoui, Y.; Guillot, X.; Sélambarom, J.; Guiraud, P.; Giry, C.; Jaffar-Bandjee, M.C.; Ralandison, S.; Gasque, P. Methotrexate an Old Drug with New Tricks. Int. J. Mol. Sci. 2019, 20, 5023. [Google Scholar] [CrossRef] [Green Version]
- Burmester, G.R.; Pope, J.E. Novel treatment strategies in rheumatoid arthritis. Lancet 2017, 389, 2338–2348. [Google Scholar] [CrossRef]
- Sundbaum, J.K.; Eriksson, N.; Hallberg, P.; Lehto, N.; Wadelius, M.; Baecklund, E. Methotrexate treatment in rheumatoid arthritis and elevated liver enzymes: A long-term follow-up of predictors, surveillance, and outcome in clinical practice. Int. J. Rheum. Dis. 2019, 22, 1226–1232. [Google Scholar] [CrossRef]
- Dervieux, T.; Kremer, J.; Lein, D.O. Contribution of common polymorphisms in reduced folate carrier and gamma-glutamylhydrolase to methotrexate polyglutamate levels in patients with rheumatoid arthritis. Pharmacogenetics 2004, 14, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Bournissen, F.; Moghrabi, A.; Krajinovic, M. Therapeutic responses in childhood acute lymphoblastic leukemia (ALL) and haplotypes of gamma glutamyl hydrolase (GGH) gene. Leuk. Res. 2007, 31, 1023–1025. [Google Scholar] [CrossRef] [PubMed]
- Cáliz, R.; del Amo, J.; Balsa, A. The C677T polymorphism in the MTHFR gene is associated with the toxicity of methotrexate in a Spanish rheumatoid arthritis population. Scand. J. Rheumatol. 2012, 41, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Uribarri, M.; Ruiz-Larrañaga, O.; Arteta, D.; Hernández, L.; Alcaro, M.C.; Martínez, A.; Escorza-Treviño, S.; Estonba, A.; Migliorini, P.; Czirják, L.; et al. Influence of MTHFR C677T polymorphism on methotrexate monotherapy discontinuation in rheumatoid arthritis patients: Results from the GAPAID European project. Clin. Exp. Rheumatol. 2015, 33, 699–705. [Google Scholar]
- Wang, S.; Zuo, S.; Liu, Z.; Ji, X.; Yao, Z.; Wang, X. Association of MTHFR and RFC1 gene polymorphisms with methotrexate efficacy and toxicity in Chinese Han patients with rheumatoid arthritis. J. Int. Med. Res. 2020, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weisberg, I.; Tran, P.; Christensen, B.; Sibani, S.; Rozen, R. A Second Genetic Polymorphism in Methylenetetrahydrofolate Reductase (MTHFR) Associated with Decreased Enzyme Activity. Mol. Genet. Metab. 1998, 64, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Kranz, J.; Hessel, S.; Aretz, J.; Seidel, A.; Petzinger, E.; Geyer, J.; Lampen, A. The role of the efflux carriers Abcg2 and Abcc2 for the hepatobiliary elimination of benzo[a]pyrene and its metabolites in mice. Chem. -Biol. Interact. 2014, 224, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Jekic, B.; Maksimovic, N.; Damnjanovic, T.; Biljana, J.; Nela, M.; Tatjana, D. Methotrexate pharmacogenetics in the treatment of rheumatoid arthritis. Pharmacogenomics 2019, 20, 1235–1245. [Google Scholar] [CrossRef]
Variable | Intolerant (bDMARDs Monotherapy) Mean (SD) n = 107 | Tolerant (MTX and bDMARDs Combo Therapy) Mean (SD) n = 120 | p-Value * |
---|---|---|---|
Sex (female), n (%) | 89 (83.2%) | 89 (74.2%) | 0.100 |
Age (years) | 61.3 (13.2) | 58.8 (10.9) | 0.133 |
Age at diagnosis (years) | 45.1 (14.0) | 43.5 (10.4) | 0.344 |
Moths between diagnosis and MTX initiation | 27.6 (65.2) | 23.6 (48.9) | 0.612 |
NTD | 1.8 (2.8) | 1.9 (3.0) | 0.888 |
NSJ | 0.7 (2.0) | 0.7 (1.5) | 0.753 |
CRP (mg/dL) | 1.4 (3.3) | 2.8 (7.7) | 0.065 |
ESR (mm/h) | 18.6 (16.6) | 20.1 (18.6) | 0.511 |
Patient’s VAS (0–10) | 3.4 (2.4) | 3.7 (2.5) | 0.365 |
Physician’s VAS (0–10) | 2.9 (2.1) | 2.9 (2.2) | 0.967 |
DAS28 ESR | 2.8 (1.1) | 2.9 (1.2) | 0.589 |
DAS28 CRP | 2.7 (1.1) | 2.8 (1.2) | 0.355 |
SDAI | 10.2 (8.2) | 11.8 (11.8) | 0.239 |
CDAI | 8.8 (7.4) | 9.0 (7.4) | 0.785 |
Gen (SNP) | Intolerant (bDMARDs Monotherapy) n = 107 n [% (95% CI)] | Tolerant (MTX and bDMARDs Combo Therapy) n = 120 n [% (95% CI)] | p-Value * | |
---|---|---|---|---|
Active Transport of MTX | ||||
RFC-1-G80A (SNP rs1051266) | Homozygotic AA | 33 [30.8 (22.1–39.6)] | 26 [21.7 (14.3–29.1)] | 0.213 |
Homozygotic GG | 24 [22.4 (14.5–30.3)] | 36 [30.0 (21.8–38.2)] | ||
Heterozygotic AG | 50 [46.7 (37.3–56.2)] | 58 [48.3 (39.4–57.2)] | ||
MTX Polyglutamate Formation | ||||
GGH-T401C (SNP rs11545078) | Homozygotic AA | 2 [1.9 (−0.7–4.5)] | 1 [0.8 (−0.8–2.4)] | 0.138 |
Homozygotic GG | 83 [77.6 (69.7–85.5)] | 105 [87.5 (81.6–93.4)] | 0.048 | |
Heterozygotic AG | 22 [20.6 (12.9–28.3)] | 14 [11.7 (5.9–17.5)] | 0.138 | |
Folate Cycle and Purine Synthesis | ||||
MTHFR-C677T (SNP rs1801133) | Homozygotic AA | 15 [14.0 (7.4–20.6)] | 22 [18.3 (11.4–25.2)] | 0.207 |
Homozygotic GG | 42 [39.3 (30.1–48.6)] | 34 [28.3 (20.2–36.4)] | ||
Heterozygotic AG | 50 [46.7 (37.3–56.2)] | 64 [53.3 (44.4–62.2)] | ||
MTHFR-A1298C (SNP rs1801131) | Homozygotic TT | 50 [45.8 (40.5–49.6)] | 66 [55.0 (46.1–63.9)] | 0.428 |
Homozygotic GG | 8 [7.5 (5.1–12.5)] | 9 [7.5 (2.8–12.2)] | ||
Heterozygotic TG | 49 [45.8 (36.4–55.2)] | 45 [37.5 (28.8–45.3)] | ||
DHFR (SNP 1105525) | Homozygotic AA | 0 [0 (0–0)] | 4 [3.3 (0.1–6.5)] | 0.160 |
Homozygotic GG | 82 [76.6 (68.6–84.6)] | 90 [75 (67.3–82.8)] | ||
Heterozygotic AG | 25 [23.4 (15.4–31.4)] | 26 [21.7 (14.3–29.1)] | ||
SHMT1-c1303C > T (SNP rs1979277) | Homozygotic AA | 14 [13.1 (6.7–19.5)] | 12 [10.0 (4.6–15.4)] | 0.766 |
Homozygotic GG | 47 [43.9 (34.5–53.3)] | 55 [45.8 (38.0–54.7)] | ||
Heterozygotic AG | 46 [43.0 (33.6–52.4)] | 53 [44.2 (35.3–53.1)] | ||
ITPase-C94A (SNP rs34743033) | Homozygotic AA | 2 [1.9 (−0.7–4.5)] | 0 [0] | 0.294 |
Homozygotic GG | 93 [86.9 (80.5–93.3)] | 104 [86.7 (80.6–92.8)] | ||
Heterozygotic AG | 12 [11.2 (5.2–17.2)] | 16 [13.3 (7.2–19.4)] | ||
MTX Extraction Pump | ||||
ABCC2-C24T (SNP rs717620) | Homozygotic TT | 14 [13.1 (6.7–19.5)] | 15 [12.5 (6.6–18.4)] | 0.073 |
Homozygotic CC | 55 [51.4 (41.9–60.9)] | 45 [37.5 (28.8–46.2)] | 0.035 | |
Heterozygotic TC | 38 [35.5 (26.4–44.6)] | 60 [50.0 (51.2–68.7)] | 0.035 | |
ABCB1-c3434C > T (SNP rs1045642) | Homozygotic AA | 26 [24.3 (16.2–32.4)] | 25 [20.8 (13.5–28.1)] | 0.801 |
Homozygotic GG | 31 [29.0 (20.4–37.6)] | 38 [31.7 (23.4–40.0)] | ||
Heterozygotic AG | 50 [46.7 (37.3–56.2)] | 57 [47.5 (38.6–56.4)] | ||
SLCO1B1 (SNP rs11045879) | Homozygotic TT | 75 [70.1 (61.4–78.8)] | 80 [66.7 (58.3–75.1)] | 0.213 |
Homozygotic CC | 2 [1.9 (0.7–4.5)] | 8 [6.7 (2.2–11.2)] | ||
Heterozygotic TC | 30 [28.0 (19.5–36.5)] | 32 [26.7 (18.8–34.6)] |
Gen (SNP) | Intolerant (bDMARDs Monotherapy) n = 107; n (%) | Tolerant (MTX and bDMARDs Combo Therapy) n = 120; n (%) | p-Value * | OR (IC 95%) | p-Value ** |
---|---|---|---|---|---|
Active Transport of MTX | |||||
RFC-1-G80A GG or AG (vs. AA) | 74 (69.2) | 94 (78.3) | 0.116 | 0.62 (0.34–1.13) | 0.119 |
MTX Polyglutamate Formation | |||||
GGH-T401C AA or AG (vs. GG) | 24 (22.4) | 15 (12.5) | 0.048 | 2.13 (1.06–4.29) | 0.035 |
Folate Cycle and Purine Synthesis | |||||
MTHFR-C677T AA or AG (vs. GG) | 65 (60.7) | 86 (71.7) | 0.082 | 0.61 (0.35–1.07) | 0.084 |
MTHFR–A1298C GG or TG (vs. TT) | 99 (92.5) | 111 (92.5) | 0.995 | 1.39 (0.82–2.33) | 0.219 |
DHFR AA or AG (vs. GG) | 25 (23.4) | 30 (25) | 0.774 | 0.87 (0.48–1.60) | 0.664 |
SHMT1-c1303C > T GG or AG (vs. AA) | 93 (86.9) | 108 (90) | 0.466 | 0.74 (0.33–1.68) | 0.470 |
ITPase-C94A AA or AG (vs. GG) | 14 (13.1) | 16 (13.3) | 0.956 | 1.06 (0.50–2.26) | 0.883 |
MTX Extraction Pump | |||||
ABCC2-C24T TT or TC (vs. CC) | 52 (48.6) | 75 (62.5) | 0.035 | 0.59 (0.35–1.00) | 0.050 |
ABCB1-c3434C > T GG or AG (vs. AA) | 81 (75.7) | 95 (79.2) | 0.532 | 0.78 (0.42–1.45) | 0.435 |
SLC01B1 TT or TC (vs. CC) | 105 (98.1) | 112 (93.3) | 0.107 | 3.75 (0.78–18.1) | 0.099 |
Gen (SNP) | OR (IC 95%) Intolerant vs. Tolerant | p-Value ** |
---|---|---|
GGH-T401C AA or AG (vs. GG) | 2.14 (1.05–4.39) | 0.037 |
ABCC2-C24T TT or TC (vs. CC) | 0.54 (0.32–0.93) | 0.026 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escudero-Contreras, A.; López-Medina, C.; Collantes-Estévez, E.; Ortega-Castro, R.; Calvo-Gutiérrez, J.; Mena-Vázquez, N.; Panero-Lamothe, B.; Manzanares-Martín, B.; Cáliz-Cáliz, R.; Jiménez-Morales, A.; et al. Genetic Polymorphisms of GGH and ABCC2 Are Associated with Methotrexate Intolerance in Patients with Rheumatoid Arthritis. J. Clin. Med. 2021, 10, 4070. https://doi.org/10.3390/jcm10184070
Escudero-Contreras A, López-Medina C, Collantes-Estévez E, Ortega-Castro R, Calvo-Gutiérrez J, Mena-Vázquez N, Panero-Lamothe B, Manzanares-Martín B, Cáliz-Cáliz R, Jiménez-Morales A, et al. Genetic Polymorphisms of GGH and ABCC2 Are Associated with Methotrexate Intolerance in Patients with Rheumatoid Arthritis. Journal of Clinical Medicine. 2021; 10(18):4070. https://doi.org/10.3390/jcm10184070
Chicago/Turabian StyleEscudero-Contreras, Alejandro, Clementina López-Medina, Eduardo Collantes-Estévez, Rafaela Ortega-Castro, Jerusalem Calvo-Gutiérrez, Natalia Mena-Vázquez, Blanca Panero-Lamothe, Bárbara Manzanares-Martín, Rafael Cáliz-Cáliz, Alberto Jiménez-Morales, and et al. 2021. "Genetic Polymorphisms of GGH and ABCC2 Are Associated with Methotrexate Intolerance in Patients with Rheumatoid Arthritis" Journal of Clinical Medicine 10, no. 18: 4070. https://doi.org/10.3390/jcm10184070
APA StyleEscudero-Contreras, A., López-Medina, C., Collantes-Estévez, E., Ortega-Castro, R., Calvo-Gutiérrez, J., Mena-Vázquez, N., Panero-Lamothe, B., Manzanares-Martín, B., Cáliz-Cáliz, R., Jiménez-Morales, A., Ruiz-Jiménez, M., & Font-Ugalde, P. (2021). Genetic Polymorphisms of GGH and ABCC2 Are Associated with Methotrexate Intolerance in Patients with Rheumatoid Arthritis. Journal of Clinical Medicine, 10(18), 4070. https://doi.org/10.3390/jcm10184070