Expression and Clinical Utility of Transcription Factors Involved in Epithelial–Mesenchymal Transition during Thyroid Cancer Progression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tissue Samples, Histology, and Patient Staging
2.2. Determination of BRAFV600E Mutation
2.3. Extraction and Analysis of mRNA
2.4. Western Blot
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thiery, J.P.; Sleeman, J.P. Complex networks orchestrate epithelial-mesenchymal transitions. Nat. Rev. Mol. Cell Biol. 2006, 7, 131–142. [Google Scholar] [CrossRef]
- Thiery, J.P.; Acloque, H.; Huang, R.Y.; Nieto, M.A. Epithelial-mesenchymal transitions in development and disease. Cell 2009, 139, 871–890. [Google Scholar] [CrossRef]
- Gaponova, A.V.; Rodin, S.; Mazina, A.A.; Volchkov, P.V. Epithelial-mesenchymal transition: Role in cancer progression and the perspectives of antitumor treatment. Acta Nat. 2020, 12, 4–23. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.L.; Luo, M.; Huang, C.; Chen, H.N.; Zhou, Z.G. Epigenetic regulation of epithelial to mesenchymal transition in the cancer metastatic cascade: Implications for cancer therapy. Front. Oncol. 2021, 11, 657546. [Google Scholar] [CrossRef]
- Burger, G.A.; Danen, E.H.J.; Beltman, J.B. Deciphering Epithelial-Mesenchymal Transition Regulatory Networks in Cancer through Computational Approaches. Front. Oncol. 2017, 7, 162. [Google Scholar] [CrossRef] [PubMed]
- Grigore, A.D.; Jolly, M.K.; Jia, D.; Farach-Carson, M.C.; Levine, H. Tumor budding: The name is EMT. Partial EMT. J. Clin. Med. 2016, 5, 51. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Antin, P.; Berx, G.; Blanpain, C.; Brabletz, T.; Bronner, M. Guidelines and definitions for research on Epithelial-Mesenchymal Transition. Nat. Rev. Mol. Cell Biol. 2020, 21, 341–352. [Google Scholar] [CrossRef] [Green Version]
- Aiello, N.M.; Maddipati, R.; Norgard, R.J.; Balli, D.; Li, J.; Yuan, S.; Yamazoe, T.; Black, T.; Sahmoud, A.; Furth, E.E.; et al. EMT subtype influences epithelial plasticity and mode of cell migration. Dev. Cell 2018, 45, 681–695. [Google Scholar] [CrossRef] [Green Version]
- Suarez-Carmona, M.; Lesage, J.; Cataldo, D.; Gilles, C. EMT and inflammation: Inseparable actors of cancer progression. Mol. Oncol. 2017, 11, 805–823. [Google Scholar] [CrossRef]
- Revilla, G.; Corcoy, R.; Moral, A.; Escolà-Gil, J.C.; Mato, E. Cross-Talk between Inflammatory Mediators and the Epithelial Mesenchymal Transition Process in the Development of Thyroid Carcinoma. Int. J. Mol. Sci. 2019, 20, 2466. [Google Scholar] [CrossRef] [Green Version]
- Daly, C.S.; Flemban, A.; Shafei, M.; Conway, M.E.; Qualtrough, D.; Dean, S.J. Hypoxia modulates the stem cell population and induces EMT in the MCF-10A breast epithelial cell line. Oncol. Rep. 2018, 39, 483–490. [Google Scholar] [CrossRef] [Green Version]
- Joseph, J.P.; Harishankar, M.K.; Pillai, A.A.; Devi, A. Hypoxia induced EMT: A review on the mechanism of tumor progression and metastasis in OSCC. Oral Oncol. 2018, 80, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Horejs, C.M.; Serio, A.; Purvis, A.; Gormley, A.J.; Bertazzo, S.; Poliniewicz, A.; Wang, A.J.; DiMaggio, P.; Hohenester, E.; Stevens, M.M. Biologically-active laminin-111 fragment that modulates the epithelial-to-mesenchymal transition in embryonic stem cells. Proc. Natl. Acad. Sci. USA 2014, 111, 5908–5913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.K.; Lee, K.; Radisky, D.C.; Nelson, C.M. Extracellular matrix proteins regulate epithelial-mesenchymal transition in mammary epithelial cells. Differentiation 2013, 86, 126–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhavan, A.; Griffith, O.L.; Soroceanu, L.; Leonoudakis, D.; Luciani-Torres, M.G.; Daemen, A.; Gray, J.W.; Muschler, J.L. Loss of cell-surface laminin anchoring promotes tumor growth and is associated with poor clinical outcomes. Cancer Res. 2012, 72, 2578–2588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannelli, G.; Bergamini, C.; Fransvea, E.; Sgarra, C.; Antonaci, S. Laminin-5 with transforming growth factor-beta1 induces epithelial to mesenchymal transition in hepatocellular carcinoma. Gastroenterology 2005, 129, 1375–1383. [Google Scholar] [CrossRef]
- Peng, D.H.; Ungewiss, C.; Tong, P.; Byers, L.A.; Wang, J.; Canales, J.R.; Villalobos, P.A.; Uraoka, N.; Mino, B.; Behrens, C.; et al. ZEB1 induces LOXL2-mediated collagen stabilization and deposition in the extracellular matrix to drive lung cancer invasion and metastasis. Oncogene 2017, 36, 1925–1938. [Google Scholar] [CrossRef] [Green Version]
- Petrini, I.; Barachini, S.; Carnicelli, V.; Galimberti, S.; Modeo, L.; Boni, R.; Sollini, M.; Erba, P.A. ED-B fibronectin expression is a marker of epithelial-mesenchymal transition in translational oncology. Oncotarget 2017, 8, 4914–4921. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Tian, X.J.; Xing, J. Signal Transduction Pathways of EMT Induced by TGF-β, SHH, and WNT and Their Crosstalks. J. Clin. Med. 2016, 5, 41. [Google Scholar] [CrossRef]
- Goossens, S.; Vandamme, N.; Van Vlierberghe, P.; Berx, G. EMT transcription factors in cancer development re-evaluated: Beyond EMT and MET. Biochim. Biophys. Acta Rev. Cancer 2017, 1868, 584–591. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute. 2019 SEER Cancer Statistics Review, 1975–2016. 2020. Available online: https://seer.cancer.gov/csr/1975_2016/ (accessed on 16 May 2021).
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikiforv, Y.E.; Biddinger, P.W.; Thompson, L.D.R. Diagnostic Pathology and Molecular Genetics of the Thyroid; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2009. [Google Scholar]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell 2014, 159, 676–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, E.T.; Nikiforova, M.N.; Zhu, Z.; Knauf, J.A.; Nikiforov, Y.E.; Fagin, J.A. High prevalence of BRAF mutations in thyroid cancer: Genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 2003, 63, 1454–1457. [Google Scholar]
- Soares, P.; Trovisco, V.; Rocha, A.S.; Lima, J.; Castro, P.; Preto, A.; Máximo, V.; Botelho, T.; Seruca, R.; Sobrinho-Simões, M. BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene 2003, 22, 4578–4580. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal 2013, 6, pl1. [Google Scholar] [CrossRef] [Green Version]
- Baldini, E.; Sorrenti, S.; Di Gioia, C.; De Vito, C.; Antonelli, A.; Gnessi, L.; Carbotta, G.; D’Armiento, E.; Miccoli, P.; De Antoni, E.; et al. Cervical lymph node metastases from thyroid cancer: Does thyroglobulin and calcitonin measurement in fine needle aspirates improve the diagnostic value of cytology? BMC Clin. Pathol. 2013, 13, 7. [Google Scholar] [CrossRef] [PubMed]
- Baldini, E.; Tuccilli, C.; Arlot-Bonnemains, Y.; Chesnel, F.; Sorrenti, S.; De Vito, C.; Catania, A.; D’Armiento, E.; Antonelli, A.; Fallahi, P.; et al. Deregulated expression of VHL mRNA variants in papillary thyroid cancer. Mol. Cell Endocrinol. 2017, 443, 121–127. [Google Scholar] [CrossRef]
- Chomczynsky, P.; Sacchi, P. Single step method of RNA isolation by guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987, 162, 156–159. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, RESEARCH0034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulisse, S.; Baldini, E.; Sorrenti, S.; Barollo, S.; Prinzi, N.; Catania, A.; Nesca, A.; Gnessi, L.; Pelizzo, M.R.; Mian, C.; et al. In papillary thyroid carcinoma BRAFV600E is associated with increased expression of the urokinase plasminogen activator and its cognate receptor, but not with disease-free interval. Clin. Endocrinol. 2012, 77, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Ulisse, S.; Baldini, E.; Sorrenti, S.; Barollo, S.; Gnessi, L.; Catania, A.; Pellizzo, M.R.; Nardi, F.; Mian, C.; De Antoni, E.; et al. High expression of the urokinase plasminogen activator and its cognate receptor associates with advanced stages and reduced disease-free interval in papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 2011, 96, 504–508. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.D. Straightforward Statistics for the Behavioral Sciences; Brooks/Cole Publishing Company: Pacific Grove, CA, USA, 1996. [Google Scholar]
- Senga, S.S.; Grose, R.P. Hallmarks of cancer-the new testament. Open Biol. 2021, 11, 200358. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
- Imani, S.; Hosseinifard, H.; Cheng, J.; Wei, C.; Fu, J. Prognostic Value of EMT-inducing transcription factors (EMT-TFs) in metastatic breast cancer: A systematic review and meta-analysis. Sci. Rep. 2016, 6, 28587. [Google Scholar] [CrossRef] [PubMed]
- Ahmadiankia, N.; Khosravi, A. Significance of epithelial-to-mesenchymal transition inducing transcription factors in predicting distance metastasis and survival in patients with colorectal cancer: A systematic review and meta-analysis. J. Res. Med. Sci. 2020, 25, 60. [Google Scholar] [CrossRef]
- Seo, J.; Ha, J.; Kang, E.; Cho, S. The role of epithelial-mesenchymal transition-regulating transcription factors in anti-cancer drug resistance. Arch. Pharm. Res. 2021, 44, 281–292. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Mirzaei, S.; Hashemi, F.; Zarrabi, A.; Zabolian, A.; Saleki, H.; Sharifzadeh, S.O.; Soleymani, L.; Daneshi, S.; Hushmandi, K.; et al. New insight towards development of paclitaxel and docetaxel resistance in cancer cells: EMT as a novel molecular mechanism and therapeutic possibilities. Biomed. Pharmacother. 2021, 141, 111824. [Google Scholar] [CrossRef] [PubMed]
- Assani, G.; Zhou, Y. Effect of modulation of epithelial-mesenchymal transition regulators Snail1 and Snail2 on cancer cell radiosensitivity by targeting of the cell cycle, cell apoptosis and cell migration/invasion. Oncol. Lett. 2019, 17, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Hombach-Klonisch, S.; Natarajan, S.; Thanasupawat, T.; Medapati, M.; Pathak, A.; Ghavami, S.; Klonisch, T. Mechanisms of therapeutic resistance in cancer (stem) cells with emphasis on thyroid cancer cells. Front. Endocrinol. 2014, 5, 37. [Google Scholar] [CrossRef] [Green Version]
- Shakib, H.; Rajabi, S.; Dehghan, M.H.; Mashayekhi, F.J.; Safari-Alighiarloo, N.; Hedayati, M. Epithelial-to-mesenchymal transition in thyroid cancer: A comprehensive review. Endocrine 2019, 66, 435–455. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Y.; Cheng, R.; Gong, W.; Ding, T.; Zhai, Q.; Wang, Y.; Meng, B.; Sun, B. Expression of epithelial-mesenchymal transition regulators TWIST, SLUG and SNAIL in follicular thyroid tumours may relate to widely invasive, poorly differentiated and distant metastasis. Histopathology 2019, 74, 780–791. [Google Scholar] [CrossRef] [PubMed]
- Buehler, D.; Hardin, H.; Shan, W.; Montemayor-Garcia, C.; Rush, P.S.; Asioli, S.; Chen, H.; Lloyd, R.V. Expression of epithelial-mesenchymal transition regulators SNAI2 and TWIST1 in thyroid carcinomas. Mod. Pathol. 2013, 26, 54–61. [Google Scholar] [CrossRef]
- Di Maro, G.; Orlandella, F.M.; Bencivenga, T.C.; Salerno, P.; Ugolini, C.; Basolo, F.; Maestro, R.; Salvatore, G. Identification of targets of Twist1 transcription factor in thyroid cancer cells. J. Clin. Endocrinol. Metab. 2014, 99, E1617–E1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salerno, P.; Garcia-Rostan, G.; Piccinin, S.; Bencivenga, T.C.; Di Maro, G.; Doglioni, C.; Basolo, F.; Maestro, R.; Fusco, A.; Santoro, M.; et al. TWIST1 plays a pleiotropic role in determining the anaplastic thyroid cancer phenotype. J. Clin. Endocrinol. Metab. 2011, 96, E772–E781. [Google Scholar] [CrossRef] [Green Version]
- Hardy, R.G.; Vicente-Dueñas, C.; González-Herrero, I.; Anderson, C.; Flores, T.; Hughes, S.; Tselepis, C.; Ross, J.A.; Sánchez-García, I. Snail family transcription factors are implicated in thyroid carcinogenesis. Am. J. Pathol. 2007, 171, 1037–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitsutake, N.; Knauf, J.A.; Mitsutake, S.; Mesa, C., Jr.; Zhang, L.; Fagin, J.A. Conditional BRAFV600E expression induces DNA synthesis, apoptosis, dedifferentiation, and chromosomal instability in thyroid PCCL3 cells. Cancer Res. 2005, 65, 2465–2473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puli, O.R.; Danysh, B.P.; McBeath, E.; Sinha, D.K.; Hoang, N.M.; Powell, R.T.; Danysh, H.E.; Cabanillas, M.E.; Cote, G.J.; Hofmann, M.C. The Transcription Factor ETV5 Mediates BRAFV600E-Induced Proliferation and TWIST1 Expression in Papillary Thyroid Cancer Cells. Neoplasia 2018, 20, 1121–1134. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, B.; Dhingra, J.K.; Mahalingam, M. BRAF and Epithelial-Mesenchymal Transition: Lessons from Papillary Thyroid Carcinoma and Primary Cutaneous Melanoma. Adv. Anat. Pathol. 2016, 23, 244–271. [Google Scholar] [CrossRef]
- Baquero, P.; Sánchez-Hernández, I.; Jiménez-Mora, E.; Orgaz, J.L.; Jiménez, B.; Chiloeches, A. (V600E)BRAF promotes invasiveness of thyroid cancer cells by decreasing E-cadherin expression through a Snail-dependent mechanism. Cancer Lett. 2013, 335, 232–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, R.; Bonnefond, S.; Morshed, S.A.; Latif, R.; Davies, T.F. Stemness is derived from thyroid cancer cells. Front. Endocrinol. 2014, 5, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orlandella, F.M.; Di Maro, G.; Ugolini, C.; Basolo, F.; Salvatore, G. TWIST1/miR-584/TUSC2 pathway induces resistance to apoptosis in thyroid cancer cells. Oncotarget 2016, 7, 70575–70588. [Google Scholar] [CrossRef] [Green Version]
- Wieczorek-Szukala, K.; Lewinski, A. The Role of Snail-1 in Thyroid Cancer-What We Know So Far. J. Clin. Med. 2021, 10, 2324. [Google Scholar] [CrossRef]
- Sorrenti, S.; Carbotta, G.; Di Matteo, F.M.; Catania, A.; Pironi, D.; Tartaglia, F.; Tarroni, D.; Gagliardi, F.; Tripodi, D.; Watanabe, M.; et al. Evaluation of Clinicopathological and Molecular Parameters on Disease Recurrence of Papillary Thyroid Cancer Patient: A Retrospective Observational Study. Cancers 2020, 12, 3637. [Google Scholar] [CrossRef] [PubMed]
Gene | Primer Sequence | Exons | Amplicon Length |
---|---|---|---|
GAPDH | F: 5′-ATCATCAGCAATGCCTCCTG-3′ R: 5′-GGCCATCCACAGTCTTCTG-3′ | 6 to 7 8 | 136 bp |
RPL13a | F: 5′-ACCGTGCGAGGTATGCTG-3′ R: 5′-TAGGCTTCAGACGCACGAC-3′ | 4 to 5 6 | 148 bp |
SDHA | F: 5′-GCATAAGAACATCGGAACTGC-3′ R: 5′-GGTCGAACGTCTTCAGGTG-3′ | 12 13 | 147 bp |
Twist1 | F: 5′-ATGTCATTGTTTCCAGAGAAGG-3′ R: 5′-CCACGCCCTGTTTCTTTG-3′ | 16 17 | 137 bp |
Snail1 | F: 5′-ACCCACACTGGCGAGAAG-3′ R: 5′-CAGGGACATTCGGGAGAAG-3′ | 19 20 | 150 bp |
Snail2 | F: 5′-GGTTGCTTCAAGGACACATTAG-3′ R: 5′-TGGAGAAGGTTTTGGAGCAG-3′ | 12 13 | 162 bp |
Zeb1 | F: 5′-ACCACCCTTGAAAGTGATCC-3′ R: 5′-CTGATTCTACACCGCCCAAA-3′ | 2 3 | 115 bp |
Zeb2 | F: 5′-CCCTTCTGCGACATAAATACG-3′ R: 5′-CGAGTGAAGCCTTGAGTGC-3′ | 1 2 | 113 bp |
E-cadherin | F:5′-CATTCTGGGGATTCTTGGAG-3′ R: 5′-CCGCCTCCTTCTTCATCATA-3′ | 1 2 | 156 bp |
Vimentin | F:5′-GAGAGAGGAAGCCGAAAACAC-3′ R: 5′-TCCACTTTGCGTTCAAGGTC-3′ | 1 2 | 90 bp |
(A) Correlation Coefficient | |||||||
Twist1 | Snail1 | Snail2 | Zeb1 | Zeb2 | E-Cadherin | Vimentin | |
Twist1 p-value | 1.000 | 0.120 | 0.448 | 0.464 | 0.360 | −0.155 | 0.128 |
- | 0.246 | <0.001 | <0.001 | <0.001 | 0.133 | 0.220 | |
Snail1 p-value | 1.000 | 0.339 | 0.378 | 0.369 | 0.376 | 0.393 | |
- | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
Snail2 p-value | 1.000 | 0.581 | 0.552 | −0.007 | 0.335 | ||
- | <0.001 | <0.001 | 0.943 | 0.001 | |||
Zeb1 p-value | 1.000 | 0.745 | 0.005 | 0.330 | |||
- | <0.001 | 0.961 | 0.001 | ||||
Zeb2 p-value | 1.000 | −0.089 | 0.343 | ||||
- | 0.392 | 0.001 | |||||
E-Cadherin p-value | 1.000 | 0.292 | |||||
- | 0.004 | ||||||
Vimentin p-value | 1.000 | ||||||
- | |||||||
(B) Correlation Coefficient | |||||||
Twist1 | Snail1 | Snail2 | Zeb1 | Zeb2 | E-Cadherin | Vimentin | |
Twist1 p-value | 1.000 | 0.249 | 0.694 | 0.291 | 0.502 | −0.181 | 0.265 |
- | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Snail1 p-value | 1.000 | 0.321 | 0.235 | 0.192 | 0.276 | 0.264 | |
- | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
Snail2 p-value | 1.000 | 0.552 | 0.697 | −0.019 | 0.256 | ||
- | <0.001 | <0.001 | 0.714 | <0.001 | |||
Zeb1 p-value | 1.000 | 0.720 | −0.095 | 0.076 | |||
- | <0.001 | 0.061 | 0.135 | ||||
Zeb2 p-value | 1.000 | −0.060 | 0.343 | ||||
- | 0.242 | <0.05 | |||||
E-Cadherin p-value | 1.000 | 0.096 | |||||
- | 0.060 | ||||||
Vimentin p-value | 1.000 | ||||||
- |
Twist1 | p | Snail1 | p | Snail2 | p | Zeb1 | p | Zeb2 | p | |
---|---|---|---|---|---|---|---|---|---|---|
Gender | ||||||||||
Male (n = 19) Female (n = 76) | 0.94 1.21 | 0.42 | 0.38 0.36 | 0.72 | 0.58 0.69 | 0.72 | 0.60 0.77 | 0.21 | 0.56 0.68 | 0.38 |
Age (year) Corr. Coeff. | −0.124 | 0.23 | −0.111 | 0.29 | −0.088 | 0.40 | −0.076 | 0.47 | −0.022 | 0.84 |
Histology | ||||||||||
Classical Variant (n = 72) Other Variants (n = 23) | 1.14 0.97 | 0.70 | 0.37 0.32 | 0.82 | 0.60 0.82 | 0.50 | 0.72 0.84 | 0.40 | 0.66 0.79 | 0.65 |
BRAF | ||||||||||
Wild Type (n = 38) V600E (n = 38) | 0.68 1.35 | 0.06 | 0.55 0.31 | 0.09 | 0.53 0.84 | 0.04 | 0.66 0.66 | 0.69 | 0.56 0.73 | 0.85 |
pT | ||||||||||
T1–2 (n = 39) T3–4 (n = 56) | 1.04 1.09 | 0.88 | 0.42 0.33 | 0.16 | 0.68 0.62 | 0.75 | 0.80 0.60 | 0.33 | 0.55 0.78 | 0.42 |
pN | ||||||||||
N0 (n = 56) N1 (n = 39) | 1.14 0.98 | 0.40 | 0.34 0.36 | 0.58 | 0.69 0.61 | 0.90 | 0.79 0.58 | 0.31 | 0.72 0.66 | 0.73 |
TNM Stage | ||||||||||
I–II (n = 60) III–IV (n = 35) | 1.25 0.79 | 0.36 | 0.37 0.36 | 0.50 | 0.66 0.61 | 0.98 | 0.78 0.72 | 0.61 | 0.58 0.79 | 0.31 |
Recurrences | ||||||||||
No (n = 63) Yes (n = 16) | 0.79 1.40 | 0.47 | 0.39 0.32 | 0.58 | 0.69 0.70 | 0.71 | 0.72 0.58 | 0.45 | 0.64 0.49 | 0.60 |
Twist1 | p | Snai1 | p | Snai2 | p | Zeb1 | p | Zeb2 | p | |
---|---|---|---|---|---|---|---|---|---|---|
Gender | ||||||||||
Male (n = 93) Female (n = 271) | −0.326 −0.329 | 0.07 | −0.305 −0.235 | 0.41 | −0.153 −0.278 | 0.04 | −0.105 −0.168 | 0.69 | −0.132 −0.257 | 0.26 |
Age (year) Corr. Coeff. | 0.016 | 0.76 | −0.054 | 0.30 | 0.066 | 0.21 | −0.016 | 0.76 | −0.016 | 0.76 |
Histological variants | ||||||||||
Classical (n = 249) Follicular (n = 81) Tall cell (n = 28) | −0.320 −0.401 0.099 | <0.001 | −0.219 −0.285 −0.311 | 0.56 | −0.226 −0.426 −0.106 | 0.02 | −0.206 0.273 −0.682 | 0.001 | −0.209 −0.269 −0.127 | 0.68 |
BRAF/RAS status | ||||||||||
BRAF-like (n = 272) RAS-like (n = 116) | −0.239 −0.441 | <0.001 | −0.278 −0.179 | 0.12 | −0.163 −0.441 | <0.001 | −0.209 0.205 | <0.001 | −0.155 −0.310 | 0.08 |
TDS Corr. Coeff. | −0.245 | <0.001 | 0.245 | <0.001 | −0.071 | 0.16 | 0.327 | <0.001 | 0.046 | 0.37 |
pT | ||||||||||
T1–2 (n = 231) T3–4 (n = 131) | −0.359 −0.242 | <0.01 | −0.231 −0.309 | 0.36 | −0.306 −0.153 | 0.40 | −0.045 −0.313 | 0.02 | −0.230 −0.282 | 0.33 |
pN | ||||||||||
N0 (n = 172) N1 (n = 153) | −0.357 −0.239 | <0.01 | −0.289 −0.221 | 0.44 | −0.338 −0.138 | 0.02 | −0.086 −0.164 | 0.81 | −0.199 −0.240 | 0.83 |
TNM Stage | ||||||||||
I–II (n = 231) III–IV (n = 131) | −0.350 −0.261 | <0.01 | −0.232 −0.315 | 0.19 | −0.299 −0.129 | 0.28 | −0.095 −0.307 | 0.05 | −0.233 −0.252 | 0.43 |
Recurrences | ||||||||||
No (n = 301) Yes (n = 22) | −0.311 −0.394 | 0.48 | −0.288 −0.337 | 0.68 | −0.207 −0.500 | 0.07 | −0.142 −0.548 | 0.02 | −0.230 −0.377 | 0.40 |
(A) | E-cadherin | p | Vimentin | p |
Gender | ||||
Male (n = 19) Female (n = 76) | 1.05 0.78 | 0.153 | 0.83 0.92 | 0.309 |
Age (year) Corr. Coeff. | 0.022 | 0.835 | −0.173 | 0.096 |
PTC histology | ||||
Classical Variant (n = 72) Other Variants (n = 23) | 0.85 0.76 | 0.262 | 0.92 0.97 | 0.758 |
BRAF | ||||
Wild Type (n = 38) V600E (n = 38) | 0.84 0.94 | 0.905 | 0.90 0.92 | 0.767 |
pT | ||||
T1–2 (n = 39) T3–4 (n = 56) | 0.95 0.73 | 0.104 | 0.95 0.90 | 0.161 |
pN | ||||
N0 (n = 56) N1 (n = 39) | 0.80 0.81 | 0.256 | 0.92 0.90 | 0.478 |
TNM Stage | ||||
I–II (n = 60) III–IV (n = 35) | 0.80 0.81 | 0.814 | 0.92 0.90 | 0.274 |
Recurrence | ||||
No (n = 63) Yes (n = 16) | 0.94 0.73 | 0.102 | 0.90 0.84 | 0.282 |
(B) | E-cadherin | p | Vimentin | p |
Gender | ||||
Male (n = 93) Female (n = 271) | 0.158 −0.074 | 0.625 | 0.092 −0.206 | 0.021 |
Age (year) Corr. Coeff. | −0.065 | 0.216 | −0.165 | 0.002 |
PTC histology | ||||
Classical variant (n = 249) Follicular variant (n = 81) Tall cell variant (n = 28) | 0.074 −0.300 −0.177 | 0.012 | −0.150 −0.167 −0.318 | 0.203 |
BRAF-like vs. RAS-like | ||||
BRAF-like (n = 272) RAS-like (n = 116) | −0.00005 −0.145 | 0.048 | −0.100 −0.241 | 0.028 |
TDS | 0.029 | 0.564 | 0.008 | 0.871 |
pT | ||||
T1–2 (n = 231) T3–4 (n = 131) | −0.029 −0.024 | 0.757 | −0.194 −0.091 | 0.260 |
pN | ||||
N0 (n = 172) N1 (n = 153) | −0.025 −0.079 | 0.919 | −0.239 −0.044 | 0.021 |
TNM Stage | ||||
I–II (n = 250) III–IV (n = 112) | 0.065 −0.154 | 0.054 | −0.163 −0.149 | 0.667 |
Recurrence | ||||
No (n = 301) Yes (n = 22) | −0.097 0.169 | 0.222 | −0.133 −0.297 | 0.539 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldini, E.; Tuccilli, C.; Pironi, D.; Catania, A.; Tartaglia, F.; Di Matteo, F.M.; Palumbo, P.; Arcieri, S.; Mascagni, D.; Palazzini, G.; et al. Expression and Clinical Utility of Transcription Factors Involved in Epithelial–Mesenchymal Transition during Thyroid Cancer Progression. J. Clin. Med. 2021, 10, 4076. https://doi.org/10.3390/jcm10184076
Baldini E, Tuccilli C, Pironi D, Catania A, Tartaglia F, Di Matteo FM, Palumbo P, Arcieri S, Mascagni D, Palazzini G, et al. Expression and Clinical Utility of Transcription Factors Involved in Epithelial–Mesenchymal Transition during Thyroid Cancer Progression. Journal of Clinical Medicine. 2021; 10(18):4076. https://doi.org/10.3390/jcm10184076
Chicago/Turabian StyleBaldini, Enke, Chiara Tuccilli, Daniele Pironi, Antonio Catania, Francesco Tartaglia, Filippo Maria Di Matteo, Piergaspare Palumbo, Stefano Arcieri, Domenico Mascagni, Giorgio Palazzini, and et al. 2021. "Expression and Clinical Utility of Transcription Factors Involved in Epithelial–Mesenchymal Transition during Thyroid Cancer Progression" Journal of Clinical Medicine 10, no. 18: 4076. https://doi.org/10.3390/jcm10184076
APA StyleBaldini, E., Tuccilli, C., Pironi, D., Catania, A., Tartaglia, F., Di Matteo, F. M., Palumbo, P., Arcieri, S., Mascagni, D., Palazzini, G., Tripodi, D., Maturo, A., Vergine, M., Tarroni, D., Lori, E., Ferent, I. C., De Vito, C., Fallahi, P., Antonelli, A., ... Ulisse, S. (2021). Expression and Clinical Utility of Transcription Factors Involved in Epithelial–Mesenchymal Transition during Thyroid Cancer Progression. Journal of Clinical Medicine, 10(18), 4076. https://doi.org/10.3390/jcm10184076