Current Status of Renal Anemia Pharmacotherapy—What Can We Offer Today
Abstract
:1. Introduction
2. Erythropoiesis-Stimulating Agents
3. Hypoxia-Inducible Factor Inhibitors
4. Iron Supplementation
5. Other New Therapeutic Strategies
6. Conclusions
7. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Foreman, K.J.; Marquez, N.; Dolgert, A.; Fukutaki, K.; Fullman, N.; McGaughey, M.; Pletcher, M.A.; Smith, A.E.; Tang, K.; Yuan, C.W.; et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: Reference and alternative scenarios for 2016–40 for 195 countries and territories. Lancet 2018, 392, 2052–2090. [Google Scholar] [CrossRef] [Green Version]
- Eisenga, M.F.; Nolte, I.M.; van der Meer, P.; Bakker, S.J.L.; Gaillard, C.A.J.M. Association of different iron deficiency cutoffs with adverse outcomes in chronic kidney disease. BMC Nephrol. 2018, 19, 225. [Google Scholar] [CrossRef] [Green Version]
- Stauffer, M.E.; Fan, T. Prevalence of anemia in chronic kidney disease in the United States. PLoS ONE 2014, 9, e84943. [Google Scholar] [CrossRef] [Green Version]
- Hanna, R.M.; Streja, E.; Kalantar-Zadeh, K. Burden of Anemia in Chronic Kidney Disease: Beyond Erythropoietin. Adv Ther. 2021, 38, 52–75. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yin, Q.; Han, Y.C.; Wu, M.; Li, Z.L.; Tu, Y.; Zhou, L.T.; Wei, Q.; Liu, H.; Tang, R.N.; et al. Effect of hypoxia-inducible factor-prolyl hydroxylase inhibitors on anemia in patients with CKD: A meta-analysis of randomized controlled trials including 2804 patients. Ren. Fail. 2020, 42, 912–925. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, D.; Goldsmith, D.; Teitsson, S.; Jackson, J.; van Nooten, F. Cross-sectional survey in CKD patients across Europe describing the association between quality of life and anaemia. BMC Nephrol. 2016, 17, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaker, A.M.; Mohamed, O.M.; Mohamed, M.F.; El-Khashaba, S.O. Impact of correction of anemia in end-stage renal disease patients on cerebral circulation and cognitive functions. Saudi J. Kidney Dis. Transplant. 2018, 29, 1333–1341. [Google Scholar] [CrossRef] [PubMed]
- Majernikova, M.; Rosenberger, J.; Prihodova, L.; Jarcuskova, M.; Roland, R.; Groothoff, J.W.; van Dijk, J.P. Posttransplant anemia as a prognostic factor of mortality in kidney-transplant recipients. BioMed Res. Int. 2017, 2017, 6987240. [Google Scholar] [CrossRef]
- Eisenga, M.F.; Minović, I.; Berger, S.P.; Kootstra-Ros, J.E.; van den Berg, E.; Riphagen, I.J.; Navis, G.; van der Meer, P.; Bakker, S.J.; Gaillard, C.A. Iron deficiency, anemia, and mortality in renal transplant recipients. Transpl Int. 2016, 29, 1176–1183. [Google Scholar] [CrossRef]
- Besarab, A.; Ross, R.P.; Nasca, T.J. The use of recombinant human erythropoietin in predialysis patients. Curr. Opin. Nephrol. Hypertens. 1995, 4, 155–161. [Google Scholar] [CrossRef]
- Babitt, J.L.; Lin, H.Y. Mechanisms of anemia in CKD. J. Am. Soc. Nephrol. 2012, 23, 1631–1634. [Google Scholar] [CrossRef] [Green Version]
- Eckardt, K.U.; Agarwal, R.; Farag, Y.M.; Jardine, A.G.; Khawaja, Z.; Koury, M.J.; Luo, W.; Matsushita, K.; McCullough, P.A.; Parfrey, P.; et al. Global Phase 3 programme of vadadustat for treatment of anaemia of chronic kidney disease: Rationale, study design and baseline characteristics of dialysis-dependent patients in the INNO2VATE trials. Nephrol. Dial Transplant. 2020, gfaa204. [Google Scholar] [CrossRef]
- Kular, D.; Macdougall, I.C. HIF stabilizers in the management of renal anemia: From bench to bedside to pediatrics. Pediatr. Nephrol. 2019, 34, 365–378. [Google Scholar] [CrossRef] [Green Version]
- Tsukamoto, T.; Matsubara, T.; Akashi, Y.; Kondo, M.; Yanagita, M. Annual iron loss associated with hemodialysis. Am. J. Nephrol. 2016, 43, 32–38. [Google Scholar] [CrossRef]
- Gafter-Gvili, A.; Schechter, A.; Rozen-Zvi, B. Iron deficiency anemia in chronic kidney disease. Acta Haematol. 2019, 142, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Erslev, A. Humoral regulation of red cell production. Blood 1953, 8, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, L.O.; Goldwasser, E.; Fried, W.; Plzak, L.F. Studies on erythropoiesis. VII. The role of the kidney in the production of erythropoietin. Trans. Assoc. Am. Physicians 1957, 70, 305–317. [Google Scholar] [PubMed]
- Miyake, T.; Kung, C.K.; Goldwasser, E. Purification of human erythropoietin. J. Biol. Chem. 1977, 252, 5558–5564. [Google Scholar] [CrossRef]
- Lin, F.K.; Suggs, S.; Lin, C.H.; Browne, J.K.; Smalling, R.; Egrie, J.C.; Chen, K.K.; Fox, G.M.; Martin, F.; Stabinsky, Z. Cloning and expression of the human erythropoietin gene. Proc. Natl. Acad. Sci. USA 1985, 82, 7580–7584. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Liu, X.; Henry, L.; Harman, J.; Ross, E.A. Trends in anemia care in non-dialysis-dependent chronic kidney disease (CKD) patients in the United States (2006–2015). BMC Nephrol. 2018, 19, 318. [Google Scholar] [CrossRef] [PubMed]
- Covic, A.; Nistor, I.; Donciu, M.D.; Dumea, R.; Bolignano, D.; Goldsmith, D. Erythropoiesis-stimulating agents (ESA) for preventing the progression of chronic kidney disease: A meta-analysis of 19 studies. Am. J. Nephrol. 2014, 40, 263–279. [Google Scholar] [CrossRef]
- Locatelli, F.; Del Vecchio, L. New Strategies for Anaemia Management in Chronic Kidney Disease. Contrib. Nephrol. 2017, 189, 184–188. [Google Scholar] [CrossRef]
- Sakaguchi, Y.; Hamano, T.; Wada, A.; Masakane, I. Types of erythropoietin-stimulating agents and mortality among patients undergoing hemodialysis. J. Am. Soc. Nephrol. 2019, 30, 1037–1048. [Google Scholar] [CrossRef] [PubMed]
- Stoppa, G.; D’Amore, C.; Conforti, A.; Traversa, G.; Venegoni, M.; Taglialatela, M.; Leone, R.; ESAVIEW Study Group. Comparative safety of originator and biosimilar epoetin alfa drugs: An observational prospective multicenter study. BioDrugs 2018, 32, 367–375. [Google Scholar] [CrossRef] [Green Version]
- Belleudi, V.; Trotta, F.; Addis, A.; Ingrasciotta, Y.; Ientile, V.; Tari, M.; Gini, R.; Pastorello, M.; Scondotto, S.; Cananzi, P.; et al. Effectiveness and safety of switching originator and biosimilar epoetins in patients with chronic kidney disease in a large-scale Italian cohort study. Drug Saf. 2019, 42, 1437–1447. [Google Scholar] [CrossRef] [Green Version]
- Szczech, L.A.; Barnhart, H.X.; Inrig, J.K.; Reddan, D.N.; Sapp, S.; Califf, R.M.; Patel, U.D.; Singh, A.K. Secondary analysis of the CHOIR trial epoetin-alpha dose and achieved hemoglobin outcomes. Kidney Int. 2008, 74, 791–798. [Google Scholar] [CrossRef] [Green Version]
- Eckardt, K.U.; Scherhag, A.; Macdougall, I.C.; Tsakiris, D.; Clyne, N.; Locatelli, F.; Zaug, M.F.; Burger, H.U.; Drueke, T.B. Left ventricular geometry predicts cardiovascular outcomes associated with anemia correction in CKD. J. Am. Soc. Nephrol. 2009, 20, 2651–2660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Besarab, A.; Bolton, W.K.; Browne, J.K.; Egrie, J.C.; Nissenson, A.R.; Okamoto, D.M.; Schwab, S.J.; Goodkin, D.A. The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N. Engl. J. Med. 1998, 339, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, M.A.; Burdmann, E.A.; Chen, C.Y.; Cooper, M.E.; de Zeeuw, D.; Eckardt, K.U.; Feyzi, J.M.; Ivanovich, P.; Kewalramani, R.; Levey, A.S.; et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N. Engl. J. Med. 2009, 361, 2019–2032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kidney Disease: Improving Global Outcomes (KDIGO) Anemia Work Group. KDIGO clinical practice guideline for anemia in chronic kidney disease. Kidney Int. Suppl. 2012, 2, 279–335. [Google Scholar]
- Collins, A.J.; Foley, R.N.; Gilbertson, D.T.; Chen, S.C. United States Renal Data System public health surveillance of chronic kidney disease and end-stage renal disease. Kidney Int. Suppl. 2015, 5, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Fuller, D.S.; Bieber, B.A.; Pisoni, R.L.; Li, Y.; Morgenstern, H.; Akizawa, T.; Jacobson, S.H.; Locatelli, F.; Port, F.K.; Robinson, B.M. International comparisons to assess effects of payment and regulatory changes in the United States on anemia practice in patients on hemodialysis: The dialysis outcomes and practice patterns study. J. Am. Soc. Nephrol. 2016, 27, 2205–2215. [Google Scholar] [CrossRef] [Green Version]
- Fuller, D.S.; Zepel, L.; Bieber, B.A.; Robinson, B.M.; Pisoni, R.L. Hemodialysis facility variation in hospitalization and transfusions using medicare claims: The DOPPS Practice Monitor for US dialysis care. Am. J. Kidney Dis. 2016, 67, 337–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mimura, I.; Tanaka, T.; Nangaku, M. How the target hemoglobin of renal anemia should be? Nephron 2015, 131, 202–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koulouridis, I.; Alfayez, M.; Trikalinos, T.A.; Balk, E.M.; Jaber, B.L. Dose of erythropoiesis-stimulating agents and adverse outcomes in CKD: A metaregression analysis. Am. J. Kidney Dis. 2013, 61, 44–56. [Google Scholar] [CrossRef] [Green Version]
- Wright, D.G.; Wright, E.C.; Narva, A.S.; Noguchi, C.T.; Eggers, P.W. Association of erythropoietin dose and route of administration with clinical outcomes for patients on hemodialysis in the United States. Clin. J. Am. Soc. Nephrol. 2015, 10, 1822–1830. [Google Scholar] [CrossRef] [Green Version]
- Wen, T.; Zhang, X.; Wang, Z.; Zhou, R. Hypoxia-inducible factor prolyl hydroxylase inhibitors in patients with renal anemia: A meta-analysis of randomized trials. Nephron 2020, 144, 572–582. [Google Scholar] [CrossRef]
- Amato, L.; Addis, A.; Saulle, R.; Trotta, F.; Mitrova, Z.; Davoli, M. Comparative efficacy and safety in ESA biosimilars vs. originators in adults with chronic kidney disease: A systematic review and meta-analysis. J. Nephrol. 2018, 31, 321–332. [Google Scholar] [CrossRef]
- Camaschella, C.; Nai, A.; Silvestri, L. Iron metabolism and iron disorders revisited in the hepcidin era. Hematologica 2020, 105, 260–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theurl, I.; Aigner, E.; Theurl, M.; Nairz, M.; Seifert, M.; Schroll, A.; Sonnweber, T.; Eberwein, L.; Witcher, D.R.; Murphy, A.T.; et al. Regulation of iron homeostasis in anemia of chronic disease and iron deficiency anemia: Diagnostic and therapeutic implications. Blood 2009, 113, 5277–5286. [Google Scholar] [CrossRef] [Green Version]
- Stoffel, N.U.; Lazrak, M.; Bellitir, S.; Mir, N.E.; Hamdouchi, A.E.; Barkat, A.; Zeder, C.; Moretti, D.; Aguenaou, H.; Zimmermann, M.B. The opposing effects of acute inflammation and iron deficiency anemia on serum hepcidin and iron absorption in young women. Haematologica 2019, 104, 1143–1149. [Google Scholar] [CrossRef] [Green Version]
- Sangkhae, V.; Nemeth, E. To induce or not to induce: The fight over hepcidin regulation. Haematologica 2019, 104, 1093–1095. [Google Scholar] [CrossRef]
- Singh, A.K.; Szczech, L.; Tang, K.L.; Barnhart, H.; Sapp, S.; Wolfson, M.; Reddan, D.; CHOIR Investigators. Correction of anemia with epoetin alfa in chronic kidney disease. N. Engl. J. Med. 2006, 355, 2085–2098. [Google Scholar] [CrossRef] [Green Version]
- Bello, N.A.; Lewis, E.F.; Desai, A.S.; Anand, I.S.; Krum, H.; McMurray, J.J.; Olson, K.; Solomon, S.D.; Swedberg, K.; van Veldhuisen, D.J.; et al. Increased risk of stroke with darbepoetin alfa in anaemic heart failure patients with diabetes and chronic kidney disease. Eur. J. Heart Fail. 2015, 17, 1201–1207. [Google Scholar] [CrossRef]
- Parfrey, P.S.; Foley, R.N.; Wittreich, B.H.; Sullivan, D.J.; Zagari, M.J.; Frei, D. Double-blind comparison of full and partial anemia correction in incident hemodialysis patients without symptomatic heart disease. J. Am. Soc. Nephrol. 2005, 16, 2180–2189. [Google Scholar] [CrossRef] [Green Version]
- Akizawa, T.; Nangaku, M.; Yamaguchi, T.; Arai, M.; Koretomo, R.; Matsui, A.; Hirakata, H. A placebo-controlled, randomized trial of enarodustat in patients with chronic kidney disease followed by long-term trial. Am. J. Nephrol. 2019, 49, 165–174. [Google Scholar] [CrossRef]
- Choukroun, G.; Kamar, N.; Dussol, B.; Etienne, I.; Cassuto-Viguier, E.; Toupance, O.; Glowacki, F.; Moulin, B.; Lebranchu, Y.; Touchard, G.; et al. Correction of postkidney transplant anemia reduces progression of allograft nephropathy. J. Am. Soc. Nephrol. 2012, 23, 360–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Vecchio, L.; Locatelli, F. An overview on safety issues related to erythropoiesis-stimulating agents for the treatment of anaemia in patients with chronic kidney disease. Expert Opin. Drug Saf. 2016, 15, 1021–1030. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, F.; Del Vecchio, L.; De Nicola, L.; Minutolo, R. Are all erythropoiesis-stimulating agents created equal? Nephrol. Dial. Transplant. 2021, 36, 1369–1377. [Google Scholar] [CrossRef] [PubMed]
- Drüeke, T.B.; Locatelli, F.; Clyne, N.; Eckardt, K.U.; Macdougall, I.C.; Tsakiris, D.; Burger, H.U.; Scherhag, A.; CREATE Investigators. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N. Engl. J. Med. 2006, 355, 2071–2084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, D.W.; Pollock, C.A.; Macdougall, I.C. Erythropoiesis-stimulating agent hyporesponsiveness. Nephrology 2007, 12, 321–330. [Google Scholar] [CrossRef] [PubMed]
- McCullough, P.A.; Barnhart, H.X.; Inrig, J.K.; Reddan, D.; Sapp, S.; Patel, U.D.; Singh, A.K.; Szczech, L.A.; Califf, R.M. Cardiovascular toxicity of epoetin-alfa in patients with chronic kidney disease. Am. J. Nephrol. 2013, 37, 549–558. [Google Scholar] [CrossRef]
- Shutov, E.; Sułowicz, W.; Esposito, C.; Tataradze, A.; Andric, B.; Reusch, M.; Valluri, U.; Dimkovic, N. Roxadustat for the treatment of anemia in chronic kidney disease patients not on dialysis: A phase 3, randomized, double-blind, placebo-controlled study (ALPS). Nephrol. Dial. Transplant. 2021, 36, 1629–1639. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, J.M.; Sharma, N.; Dikdan, S. Hypoxia-Inducible Factor and Its Role in the Management of Anemia in Chronic Kidney Disease. Int. J. Mol. Sci. 2018, 19, 389. [Google Scholar] [CrossRef] [Green Version]
- Akizawa, T.; Macdougall, I.C.; Berns, J.S.; Yamamoto, H.; Taguchi, M.; Iekushi, K.; Bernhardt, T. Iron regulation by molidustat, a daily oral hypoxia-inducible factor prolyl hydroxylase inhibitor, in patients with chronic kidney disease. Nephron 2019, 143, 243–254. [Google Scholar] [CrossRef]
- Ogawa, C.; Tsuchiya, K.; Tomosugi, N.; Maeda, K. A Hypoxia-inducible factor stabilizer improves hematopoiesis and iron metabolism early after administration to treat anemia in hemodialysis patients. Int. J. Mol. Sci. 2020, 21, 7153. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Blackorby, A.; Cizman, B.; Carroll, K.; Cobitz, A.R.; Davies, R.; Jha, V.; Johansen, K.L.; Lopes, R.D.; Kler, L.; et al. Study design and baseline characteristics of patients on dialysis in the ASCEND-D trial. Nephrol. Dial. Transplant. 2021, gfab065. [Google Scholar] [CrossRef] [PubMed]
- Macdougall, I.C.; Akizawa, T.; Berns, J.S.; Bernhardt, T.; Krueger, T. Effects of Molidustat in the treatment of anemia in CKD. Clin. J. Am. Soc. Nephrol. 2019, 17, 1452. [Google Scholar] [CrossRef] [Green Version]
- Eckardt, K.U.; Agarwal, R.; Aswad, A.; Awad, A.; Block, G.A.; Bacci, M.R.; Farag, Y.M.K.; Fishbane, S.; Hubert, H.; Jardine, A.; et al. Safety and Efficacy of Vadadustat for Anemia in Patients Undergoing Dialysis. N. Engl. J. Med. 2021, 384, 1601–1612. [Google Scholar] [CrossRef]
- Wish, J.B.; Eckardt, K.U.; Kovesdy, C.P.; Fishbane, S.; Spinowitz, B.S.; Berns, J.S. Hypoxia-Inducible Factor Stabilization as an Emerging Therapy for CKD-Related Anemia: Report from a Scientific Workshop Sponsored by the National Kidney Foundation. Am. J. Kidney Dis. 2021. [Google Scholar] [CrossRef]
- Besarab, A.; Provenzano, R.; Hertel, J.; Zabaneh, R.; Klaus, S.J.; Lee, T.; Leong, R.; Hemmerich, S.; Yu, K.H.; Neff, T.B. Randomized placebo-controlled dose-ranging and pharmacodynamics study of roxadustat (FG-4592) to treat anemia in nondialysis-dependent chronic kidney disease (NDD-CKD) patients. Nephrol. Dial. Transplant. 2015, 30, 1665–1673. [Google Scholar] [CrossRef]
- Provenzano, R.; Besarab, A.; Sun, C.H.; Diamond, S.A.; Durham, J.H.; Cangiano, J.L.; Aiello, J.R.; Novak, J.E.; Lee, T.; Leong, R.; et al. Oral hypoxia-inducible factor prolyl hydroxylase inhibitor roxadustat (FG-4592) for the treatment of anemia in patients with CKD. Clin. J. Am. Soc. Nephrol. 2016, 11, 982–991. [Google Scholar] [CrossRef]
- Chen, N.; Qian, J.; Chen, J.; Yu, X.; Mei, C.; Hao, C.; Jiang, G.; Lin, H.; Zhang, X.; Zuo, L.; et al. Phase 2 studies of oral hypoxia-inducible factor prolyl hydroxylase inhibitor FG-4592 for treatment of anemia in China. Nephrol. Dial. Transplant. 2017, 32, 1373–1386. [Google Scholar] [CrossRef] [PubMed]
- Provenzano, R.; Besarab, A.; Wright, S.; Dua, S.; Zeig, S.; Nguyen, P.; Poole, L.; Saikali, K.G.; Saha, G.; Hemmerich, S.; et al. Roxadustat (FG-4592) versus epoetin alfa for anemia in patients receiving maintenance hemodialysis: A Phase 2, randomized, 6- to 19-week, open-label, active-comparator, dose-ranging, safety and exploratory efficacy study. Am. J. Kidney Dis. 2016, 67, 912–924. [Google Scholar] [CrossRef] [Green Version]
- Besarab, A.; Chernyavskaya, E.; Motylev, I.; Shutov, E.; Kumbar, L.M.; Gurevich, K.; Chan, D.T.; Leong, R.; Poole, L.; Zhong, M.; et al. Roxadustat (FG-4592): Correction of anemia in incident dialysis patients. J. Am. Soc. Nephrol. 2016, 27, 1225–1233. [Google Scholar] [CrossRef] [Green Version]
- Pergola, P.E.; Spinowitz, B.S.; Hartman, C.S.; Maroni, B.J.; Haase, V.H. Vadadustat, a novel oral HIF stabilizer, provides effective anemia treatment in nondialysis-dependent chronic kidney disease. Kidney Int. 2016, 90, 1115–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, E.R.; Smith, M.T.; Maroni, B.J.; Zuraw, Q.C.; deGoma, E.M. Clinical trial of vadadustat in patients with anemia secondary to Stage 3 or 4 chronic kidney disease. Am. J. Nephrol. 2017, 45, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Haase, V.H.; Chertow, G.M.; Block, G.A.; Pergola, P.E.; deGoma, E.M.; Khawaja, Z.; Sharma, A.; Maroni, B.J.; McCullough, P. Effects of vadadustat on hemoglobin concentrations in patients receiving hemodialysis previously treated with erythropoiesis-stimulating agents. Nephrol. Dial. Transplant. 2019, 34, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Holdstock, L.; Meadowcroft, A.M.; Maier, R.; Johnson, B.M.; Jones, D.; Rastogi, A.; Zeig, S.; Lepore, J.J.; Cobitz, A.R. Four-week studies of oral hypoxia-inducible factor-prolyl hydroxylase inhibitor GSK1278863 for treatment of anemia. J. Am. Soc. Nephrol. 2016, 27, 1234–1244. [Google Scholar] [CrossRef]
- Brigandi, R.A.; Johnson, B.; Oei, C.; Westerman, M.; Olbina, G.; de Zoysa, J.; Roger, S.D.; Sahay, M.; Cross, N.; McMahon, L.; et al. A novel hypoxia-inducible factor-prolyl hydroxylase inhibitor (GSK1278863) for anemia in CKD: A 28-day, phase 2A randomized trial. Am. J. Kidney Dis. 2016, 67, 861–871. [Google Scholar] [CrossRef] [Green Version]
- Akizawa, T.; Tsubakihara, Y.; Nangaku, M.; Endo, Y.; Nakajima, H.; Kohno, T.; Imai, Y.; Kawase, N.; Hara, K.; Lepore, J.; et al. Effects of daprodustat, a novel hypoxia-inducible factor prolyl hydroxylase inhibitor on anemia management in Japanese hemodialysis subjects. Am. J. Nephrol. 2017, 45, 127–135. [Google Scholar] [CrossRef]
- Meadowcroft, A.M.; Cizman, B.; Holdstock, L.; Biswas, N.; Johnson, B.M.; Jones, D.; Nossuli, A.K.; Lepore, J.J.; Aarup, M.; Cobitz, A.R. Daprodustat for anemia: A 24-week, open-label, randomized controlled trial in participants on hemodialysis. Clin. Kidney J. 2019, 12, 139–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parmar, D.V.; Kansagra, K.A.; Patel, J.C.; Joshi, S.N.; Sharma, N.S.; Shelat, A.D.; Patel, N.B.; Nakrani, V.B.; Shaikh, F.A.; Patel, H.V.; et al. Outcomes of desidustat treatment in people with anemia and chronic kidney disease: A Phase 2 Study. Am. J. Nephrol. 2019, 49, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Hao, C.; Peng, X.; Lin, H.; Yin, A.; Hao, L.; Tao, Y.; Liang, X.; Liu, Z.; Xing, C.; et al. Roxadustat for anemia in patients with kidney disease not receiving dialysis. N. Engl. J. Med. 2019, 381, 1001–1010. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Hao, C.; Liu, B.C.; Lin, H.; Wang, C.; Xing, C.; Liang, X.; Jiang, G.; Liu, Z.; Li, X.; et al. Roxadustat treatment for anemia in patients undergoing long-term dialysis. N. Engl. J. Med. 2019, 381, 1011–1022. [Google Scholar] [CrossRef]
- Akizawa, T.; Otsuka, T.; Reusch, M.; Ueno, M. Intermittent oral dosing of roxadustat in peritoneal dialysis chronic kidney disease patients with anemia: A Randomized, Phase 3, multicenter, open-label study. Ther. Apher. Dial. 2020, 24, 115–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fishbane, S.; El-Shahawy, M.A.; Pecoits-Filho, R.; Van, B.P.; Houser, M.T.; Frison, L.; Little, D.J.; Guzman, N.J.; Pergola, P.E. Roxadustat for treating anemia in patients with CKD not on dialysis: Results from a randomized phase 3 study. J. Am. Soc. Nephrol. 2021, 32, 737–755. [Google Scholar] [CrossRef]
- Provenzano, R.; Shutov, E.; Eremeeva, L.; Korneyeva, S.; Poole, L.; Saha, G.; Bradley, C.; Eyassu, M.; Besarab, A.; Leong, R.; et al. Roxadustat for anemia in patients with end-stage renal disease incident to dialysis. Nephrol. Dial. Transplant. 2021, 36, 1717–1730. [Google Scholar] [CrossRef]
- Akizawa, T.; Iwasaki, M.; Yamaguchi, Y.; Majikawa, Y.; Reusch, M. Phase 3, randomized, double-blind, active-comparator (darbepoetin alfa) study of oral Roxadustat in CKD patients with anemia on hemodialysis in Japan. J. Am. Soc. Nephrol. 2020, 31, 1628–1639. [Google Scholar] [CrossRef]
- Akizawa, T.; Yamaguchi, Y.; Otsuka, T.; Reusch, M. A Phase 3, Multicenter, randomized, two-arm, open-label study of intermittent oral dosing of Roxadustat for the treatment of anemia in japanese erythropoiesis-stimulating agent-naïve chronic kidney disease patients not on dialysis. Nephron 2020, 144, 372–382. [Google Scholar] [CrossRef] [PubMed]
- Coyne, D.W.; Roger, S.D.; Shin, S.K.; Kim, S.G.; Cadena, A.A.; Moustafa, M.A.; Chan, T.M.; Besarab, A.; Chou, W.; Bradley, C.; et al. Roxadustat for CKD-related anemia in non-dialysis patients. Kidney Int. Rep. 2020, 6, 624–635. [Google Scholar] [CrossRef]
- Nangaku, M.; Kondo, K.; Ueta, K.; Kokado, Y.; Kaneko, G.; Matsuda, H.; Kawaguchi, Y.; Komatsu, Y. Efficacy and safety of vadadustat compared with darbepoetin alfa in japanese anemic patients on hemodialysis: A phase 3, multicenter, randomized, double-blind study. Nephrol. Dial. Transplant. 2021, 36, 1731–1741. [Google Scholar] [CrossRef]
- Akizawa, T.; Nangaku, M.; Yonekawa, T.; Okuda, N.; Kawamatsu, S.; Onoue, T.; Endo, Y.; Hara, K.; Cobitz, A.R. Efficacy and safety of daprodustat compared with darbepoetin alfa in Japanese hemodialysis patients with anemia: A randomized, double-blind, phase 3 trial. Clin. J. Am. Soc. Nephrol. 2020, 15, 1155–1165. [Google Scholar] [CrossRef]
- Tsubakihara, Y.; Akizawa, T.; Nangaku, M.; Onoue, T.; Yonekawa, T.; Matsushita, H.; Endo, Y.; Cobitz, A. A 24-week anemia correction study of daprodustat in Japanese dialysis patients. Ther. Apher. Dial. 2020, 24, 108–114. [Google Scholar] [CrossRef]
- Bonomini, M.; Del Vecchio, L.; Sirolli, V.; Locatelli, F. New Treatment Approaches for the Anemia of CKD. Am. J. Kidney Dis. 2016, 67, 133–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semenza, G.L. Oxygen sensing, homeostasis, and disease. N. Engl. J. Med. 2011, 365, 537–547. [Google Scholar] [CrossRef] [Green Version]
- Sanghani, N.S.; Haase, V.H. Hypoxia-inducible factor activators in renal anemia: Current clinical experience. Adv. Chronic Kidney Dis. 2019, 26, 253–266. [Google Scholar] [CrossRef]
- Mastrogiannaki, M.; Matak, P.; Mathieu, J.R.; Delga, S.; Mayeux, P.; Vaulont, S.; Peyssonnaux, C. Hepatic hypoxia-inducible factor-2 down-regulates hepcidin expression in mice through an erythropoietin-mediated increase in erythropoiesis. Haematologica 2012, 97, 827–834. [Google Scholar] [CrossRef] [Green Version]
- Yeh, T.L.; Leissing, T.M.; Abboud, M.I.; Thinnes, C.C.; Atasoylu, O.; Holt-Martyn, J.P.; Zhang, D.; Tumber, A.; Lippl, K.; Lohans, C.T.; et al. Molecular and cellular mechanisms of HIF prolyl hydroxylase inhibitors in clinical trials. Chem. Sci. 2017, 8, 7651–7668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; Davidoff, O.; Niss, K.; Haase, V.H. Hypoxia-inducible factor regulates hepcidin via erythropoietin-induced erythropoiesis. J. Clin. Investig. 2012, 122, 4635–4644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qie, S.; Jiao, N.; Duan, K.; Li, J.; Liu, Y.; Liu, G. The efficacy and safety of roxadustat treatment for anemia in patients with kidney disease: A meta-analysis and systematic review. Int. Urol. Nephrol. 2021, 53, 985–997. [Google Scholar] [CrossRef] [PubMed]
- Akizawa, T.; Iwasaki, M.; Otsuka, T.; Yamaguchi, Y.; Reusch, M. Phase 3 study of roxadustat to treat anemia in non-dialysis-dependant CKD. Kidney Int. Rep. 2021, 6, 1810–1828. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Xu, Y.; Xie, J.; Liu, J.; Zhang, R.; Yan, X. Roxadustat Does Not Affect Platelet Production, Activation, and Thrombosis Formation. Arterioscler. Thromb. Vasc. Biol. 2021. [Google Scholar] [CrossRef]
- Barratt, J.; Andric, B.; Tataradze, A.; Schömig, M.; Reusch, M.; Valluri, U.; Mariat, C. Roxadustat for the treatment of anaemia in chronic kidney disease patients not on dialysis: A phase 3, randomised, open-label, active-controlled study (DOLOMITES). Nephrol. Dial. Transplant. 2021, 36, 1616–1628. [Google Scholar] [CrossRef]
- Charytan, C.; Manllo-Karim, R.; Martin, E.R.; Steer, D.; Bernardo, M.; Dua, S.L.; Moustafa, M.A.; Saha, G.; Bradley, C.; Eyassu, M.; et al. A randomized trial of Roxadustat in anemia of kidney failure: SIERRAS Study. Kidney Int. Rep. 2021, 6, 1829–1839. [Google Scholar] [CrossRef]
- Chertow, G.M.; Pergola, P.E.; Farag, Y.M.K.; Agarwal, R.; Arnold, S.; Bako, G.; Block, G.A.; Burke, S.; Castillo, F.P.; Jardine, A.G.; et al. Vadadustat in patients with anemia and non-dialysis-dependent CKD. N. Engl. J. Med. 2021, 384, 1589–1600. [Google Scholar] [CrossRef]
- Akizawa, T.; Nangaku, M.; Yamaguchi, T.; Koretomo, R.; Maeda, K.; Miyazawa, Y.; Hirakata, H. A Phase 3 Study of Enarodustat in anemic patients with CKD not requiring dialysis: The SYMPHONY ND Study. Kidney Int. Rep. 2021, 6, 1840–1849. [Google Scholar] [CrossRef]
- Akizawa, T.; Nobori, K.; Matsuda, Y.; Taki, K.; Hayashi, Y.; Hayasaki, T.; Yamamoto, H. Molidustat for the treatment of anemia in Japanese patients undergoing peritoneal dialysis: A single-arm, open-label, phase 3 study. Ther. Apher. Dial. 2021. [Google Scholar] [CrossRef]
- Provenzano, R.; Szczech, L.; Leong, R.; Saikali, K.G.; Zhong, M.; Lee, T.T.; Little, D.J.; Houser, M.T.; Frison, L.; Houghton, J.; et al. Efficacy and cardiovascular safety of Roxadustat for treatment of anemia in patients with non-dialysis-dependent CKD: Pooled results of three randomized clinical trials. Clin. J. Am. Soc. Nephrol. 2021, 16, 1190–1200. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.ema.europa.eu/en/medicines/human/summaries-opinion/evrenzo (accessed on 15 August 2021).
- Available online: https://fibrogen.gcs-web.com/news-releases/news-release-details/fibrogen-provides-additional-information-roxadustat (accessed on 15 August 2021).
- Available online: https://icer.org/assessment/anemia-in-chronic-kidney-disease-2021/ (accessed on 15 August 2021).
- Available online: https://www.fda.gov/advisory-committees/advisory-committee-calendar/updated-time-information-july-15-2021-meeting-cardiovascular-and-renal-drugs-advisory-committee#event-materials (accessed on 15 August 2021).
- Shen, G.M.; Zhao, Y.Z.; Chen, M.T.; Zhang, F.L.; Liu, X.L.; Wang, Y.; Liu, C.Z.; Yu, J.; Zhang, J.W. Hypoxia-inducible factor-1 (HIF-1) promotes LDL and VLDL uptake through inducing VLDLR under hypoxia. Biochem. J. 2012, 441, 675–683. [Google Scholar] [CrossRef]
- Flamme, I.; Oehme, F.; Ellinghaus, P.; Jeske, M.; Keldenich, J.; Thuss, U. Mimicking hypoxia to treat anemia: HIF-stabilizer BAY 85–3934 (Molidustat) stimulates erythropoietin production without hypertensive effects. PLoS ONE 2014, 9, e111838. [Google Scholar] [CrossRef] [Green Version]
- Eltzschig, H.K.; Bratton, D.L.; Colgan, S.P. Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases. Nat. Rev. Drug Discov. 2014, 13, 852–869. [Google Scholar] [CrossRef] [Green Version]
- Biggar, P.; Kim, G.H. Treatment of renal anemia: Erythropoiesis stimulating agents and beyond. Kidney Res. Clin. Pract. 2017, 36, 209–223. [Google Scholar] [CrossRef] [Green Version]
- Cowburn, A.S.; Crosby, A.; Macias, D.; Branco, C.; Colaço, R.D.; Southwood, M.; Toshner, M.; Crotty Alexander, L.E.; Morrell, N.W.; Chilvers, E.R.; et al. HIF2α-arginase axis is essential for the development of pulmonary hypertension. Proc. Natl. Acad. Sci. USA 2016, 113, 8801–8806. [Google Scholar] [CrossRef] [Green Version]
- Kraus, A.; Peters, D.J.M.; Klanke, B.; Weidemann, A.; Willam, C.; Schley, G.; Kunzelmann, K.; Eckardt, K.U.; Buchholz, B. HIF-1α promotes cyst progression in a mouse model of autosomal dominant polycystic kidney disease. Kidney Int. 2018, 94, 887–899. [Google Scholar] [CrossRef]
- Zhang, D.; Lv, F.L.; Wang, G.H. Effects of HIF-1α on diabetic retinopathy angiogenesis and VEGF expression. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 5071–5076. [Google Scholar] [CrossRef]
- Mokas, S.; Larivière, R.; Lamalice, L.; Gobeil, S.; Cornfield, D.N.; Agharazii, M.; Richard, D.E. Hypoxia-inducible factor-1 plays a role in phosphate-induced vascular smooth muscle cell calcification. Kidney Int. 2016, 90, 598–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akizawa, T.; Iekushi, K.; Matsuda, Y. P1866 to investigate the efficacy and safety of molidustat in non-dialysis patients with renal anemia who are not treated with erythropoiesis-stimulating agents: Miyabi Nd-C. Nephrol. Dial. Transplant. 2020, 35, iii2177. [Google Scholar] [CrossRef]
- Akizawa, T.; Iekushi, K.; Matsuda, Y. P1868 to investigate the efficacy and safety of molidustat in non-dialysis patients with renal anemia who are treated with erythropoiesis-stimulating agents: Miyabi Nd-M. Nephrol. Dial. Transplant. 2020, 35, iii2179. [Google Scholar] [CrossRef]
- Akizawa, T.; Nobori, K.; Matsuda, Y.; Hayashi, Y.; Hayasaki, T.; Yamamoto, H. Molidustat for anemia correction in Japanese patients undergoing hemodialysis: A single-arm, phase 3 study. Ther. Apher. Dial. 2021. [Google Scholar] [CrossRef]
- Akizawa, T.; Nangaku, M.; Yamaguchi, T.; Koretomo, R.; Maeda, K.; Yamada, O.; Hirakata, H. Two long-term phase 3 studies of enarodustat (JTZ-951) in Japanese anemic patients with chronic kidney disease not on dialysis or on maintenance hemodialysis: SYMPHONY ND-Long and HD-Long Studies. Ther. Apher. Dial. 2021. [Google Scholar] [CrossRef]
- Chapter 2: Use of iron to treat anemia in CKD. Kidney Int. Suppl. 2012, 2, 292–298. [CrossRef] [PubMed] [Green Version]
- Gardiner, R.; Roshan, D.; Brennan, A.; Connolly, D.; Murray, S.; Reddan, D. Trends in the treatment of chronic kidney disease-associated anaemia in a cohort of haemodialysis patients: The Irish experience. Ir. J. Med. Sci. 2019, 188, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.; Suttorp, M.M.; Bellocco, R.; Hoekstra, T.; Qureshi, A.R.; Dekker, F.W.; Carrero, J.J. Trends in haemoglobin, erythropoietin-stimulating agents and iron use in Swedish chronic kidney disease patients between 2008 and 2013. Nephrol. Dial. Transplant. 2016, 31, 628–635. [Google Scholar] [CrossRef] [Green Version]
- Locatelli, F.; Bárány, P.; Covic, A.; De Francisco, A.; Del Vecchio, L.; Goldsmith, D.; Hörl, W.; London, G.; Vanholder, R.; Van Biesen, W.; et al. Kidney Disease: Improving Global Outcomes guidelines on anaemia management in chronic kidney disease: A European Renal Best Practice position statement. Nephrol. Dial. Transplant. 2013, 28, 1346–1359. [Google Scholar] [CrossRef]
- Cappellini, M.D.; Comin-Colet, J.; de Francisco, A.; Dignass, A.; Doehner, W.; Lam, C.S.; Macdougall, I.C.; Rogler, G.; Camaschella, C.; Kadir, R.; et al. Iron deficiency across chronic inflammatory conditions: International expert opinion on definition, diagnosis, and management. Am. J. Hematol. 2017, 92, 1068–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Vecchio, L.; Ekart, R.; Ferro, C.J.; Malyszko, J.; Mark, P.B.; Ortiz, A.; Sarafidis, P.; Valdivielso, J.M.; Mallamaci, F.; ERA-EDTA European Renal and Cardiovascular Medicine Working (EURECA-m) Group. Intravenous iron therapy and the cardiovascular system: Risks and benefits. Clin. Kidney J. 2020, 14, 1067–1076. [Google Scholar] [CrossRef]
- Macdougall, I.C.; Bock, A.H.; Carrera, F.; Eckardt, K.U.; Gaillard, C.; Van Wyck, D.; Roubert, B.; Nolen, J.G.; Roger, S.D.; FIND-CKD Study Investigators. FIND-CKD: A randomized trial of intravenous ferric carboxymaltose versus oral iron in patients with chronic kidney disease and iron deficiency anaemia. Nephrol. Dial. Transplant. 2014, 29, 2075–2084. [Google Scholar] [CrossRef] [Green Version]
- Hougen, I.; Collister, D.; Bourrier, M.; Ferguson, T.; Hochheim, L.; Komenda, P.; Rigatto, C.; Tangri, N. Safety of Intravenous Iron in Dialysis: A Systematic Review and Meta-Analysis. Clin. J. Am. Soc. Nephrol. 2018, 13, 457–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macdougall, I.C.; Bhandari, S.; White, C.; Anker, S.D.; Farrington, K.; Kalra, P.A.; Mark, P.B.; McMurray, J.J.V.; Reid, C.; Robertson, M.; et al. intravenous iron dosing and infection risk in patients on hemodialysis: A prespecified secondary analysis of the PIVOTAL trial. J. Am. Soc. Nephrol. 2020, 31, 1118–1127. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Cole, S.R.; Kshirsagar, A.V.; Fine, J.P.; Sturmer, T.; Brookhart, M.A. Safety of dynamic intravenous iron administration strategies in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2019, 14, 728–737. [Google Scholar] [CrossRef] [PubMed]
- Rottembourg, J.; Kadri, A.; Leonard, E.; Dansaert, A.; Lafuma, A. Do two intravenous iron sucrose preparations have the same efficacy? Nephrol. Dial. Transplant. 2011, 26, 3262–3267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pergola, P.E.; Fishbane, S.; Ganz, T. Novel oral iron therapies for iron deficiency anemia in chronic kidney disease. Adv. Chronic Kidney Dis. 2019, 26, 272–291. [Google Scholar] [CrossRef] [Green Version]
- Shepshelovich, D.; Rozen-Zvi, B.; Avni, T.; Gafter, U.; Gafter-Gvili, A. Intravenous versus oral iron supplementation for the treatment of anemia in CKD: An updated systematic review and meta-analysis. Am. J. Kidney Dis. 2016, 68, 677–690. [Google Scholar] [CrossRef]
- Block, G.A.; Block, M.S.; Smits, G.; Mehta, R.; Isakova, T.; Wolf, M.; Chertow, G.M. A Pilot Randomized Trial of Ferric Citrate Coordination Complex for the Treatment of Advanced CKD. J. Am. Soc. Nephrol. 2019, 30, 1495–1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fishbane, S.; Block, G.A.; Loram, L.; Neylan, J.; Pergola, P.E.; Uhlig, K. Effects of ferric citrate in patients with nondialysis-dependent CKD and iron deficiency anemia. J. Am. Soc. Nephrol. 2017, 28, 1851–1858. [Google Scholar] [CrossRef] [Green Version]
- Umanath, K.; Greco, B.; Jalal, D.I.; McFadden, M.; Sika, M.; Koury, M.J.; Niecestro, R.; Hunsicker, L.G.; Greene, T.; Lewis, J.B.; et al. The safety of achieved iron stores and their effect on iv iron and ESA use: Post-hoc results from a randomized trial of ferric citrate as phosphate binder in dialysis. Clin. Nephrol. 2017, 87, 124–133. [Google Scholar] [CrossRef]
- Wojtaszek, E.; Glogowski, T.; Malyszko, J. Iron and chronic kidney disease: Still a challenge. Front. Med. 2020, 7, 565135. [Google Scholar] [CrossRef]
- Pisani, A.; Riccio, E.; Sabbatini, M.; Andreucci, M.; Del Rio, A.; Visciano, B. Effect of oral liposomal iron versus intravenous iron for treatment of iron deficiency anaemia in CKD patients: A randomized trial. Nephrol. Dial. Transplant. 2015, 30, 645–652. [Google Scholar] [CrossRef]
- Fishbane, S.N.; Singh, A.K.; Cournoyer, S.H.; Jindal, K.K.; Fanti, P.; Guss, C.D.; Lin, V.H.; Pratt, R.D.; Gupta, A. Ferric pyrophosphate citrate (Triferic™) administration via the dialysate maintains hemoglobin and iron balance in chronic hemodialysis patients. Nephrol. Dial. Transplant. 2015, 30, 2019–2026. [Google Scholar] [CrossRef]
- Macdougall, I.C.; Comin-Colet, J.; Breymann, C.; Spahn, D.R.; Koutroubakis, I.E. Iron sucrose: A wealth of experience in treating iron deficiency. Adv. Ther. 2020, 37, 1960–2002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalra, P.A.; Bhandari, S.; Saxena, S.; Agarwal, D.; Wirtz, G.; Kletzmayr, J.; Thomsen, L.L.; Coyne, D.W. A randomized trial of iron isomaltoside 1000 versus oral iron in non-dialysis dependent chronic kidney disease patients with anaemia. Nephrol. Dial. Transplant. 2016, 31, 646–655. [Google Scholar] [CrossRef] [Green Version]
- Roger, S.D.; Gaillard, C.A.; Bock, A.H.; Carrera, F.; Eckardt, K.U.; Van Wyck, D.B.; Cronin, M.; Meier, Y.; Larroque, S.; Macdougall, I.C.; et al. Safety of intravenous ferric carboxymaltose versus oral iron in patients with nondialysis-dependent CKD: An analysis of the 1-year FIND-CKD trial. Nephrol. Dial. Transplant. 2017, 32, 1530–1539. [Google Scholar] [CrossRef] [Green Version]
- Macdougall, I.C.; White, C.; Anker, S.D.; Bhandari, S.; Farrington, K.; Kalra, P.A.; McMurray, J.J.V.; Murray, H.; Tomson, C.R.V.; Wheeler, D.C.; et al. Intravenous Iron in Patients Undergoing Maintenance Hemodialysis. N. Engl. J. Med. 2019, 380, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Macdougall, I.C.; Strauss, W.E.; McLaughlin, J.; Li, Z.; Dellanna, F.; Hertel, J. A randomized comparison of ferumoxytol and iron sucrose for treating iron deficiency anemia in patients with CKD. Clin. J. Am. Soc. Nephrol. 2014, 9, 705–712. [Google Scholar] [CrossRef] [Green Version]
- Macdougall, I.C.; Strauss, W.E.; Dahl, N.V.; Bernard, K.; Li, Z. Ferumoxytol for iron deficiency anemia in patients undergoing hemodialysis. The FACT randomized controlled trial. Clin. Nephrol. 2019, 91, 237–245. [Google Scholar] [CrossRef]
- Schaefer, B.; Tobiasch, M.; Viveiros, A.; Tilg, H.; Kennedy, N.A.; Wolf, M.; Zoller, H. Hypophosphataemia after treatment of iron deficiency with intravenous ferric carboxymaltose or iron isomaltoside-a systematic review and meta-analysis. Br. J. Clin. Pharmacol. 2021, 87, 2256–2273. [Google Scholar] [CrossRef]
- Sheetz, M.; Barrington, P.; Callies, S.; Berg, P.H.; MbColm, J.; Marbury, T.; Decker, B.; Dyas, G.L.; Truhlar, S.M.E.; Benschop, R.; et al. Targeting the hepcidin-ferroportin pathway inanemia of chronic kidney disease. Br. J. Clin. Pharmacol. 2019, 85, 935–948. [Google Scholar] [CrossRef]
- Van Rhee, F.; Fayad, L.; Voorhees, P.; Furman, R.; Lonial, S.; Borghaei, H.; Furman, R.; Lonial, S.; Borghaei, H.; Sokol, L.; et al. Siltuximab, a novel anti-interleukin-6 monoclonal antibody, for Castleman’s disease. J. Clin. Oncol. 2010, 28, 3701–3708. [Google Scholar] [CrossRef]
- Renders, L.; Budde, K.; Rosenberger, C.; van Swelm, R.; Swinkels, D.; Dellanna, F.; Feuerer, W.; Wen, M.; Erley, C.; Bader, B.; et al. First-in-human Phase I studies of PRS-080#22, a hepcidin antagonist, in healthy volunteers and patients with chronic kidney disease undergoing hemodialysis. PLoS ONE 2019, 14, e0212023. [Google Scholar]
- Agoro, R.; Montagna, A.; Goetz, R.; Aligbe, O.; Singh, G.; Coe, L.M.; Mohammadi, M.; Rivella, S.; Sitara, D. Inhibition of fibroblast growth factor 23 (FGF23) signaling rescues renal anemia. FASEB J. 2018, 32, 3752–3764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ledford, H. ‘Biosimilar’ drugs poised to penetrate market. Draft regulations will pave the way for copycat antibodies and other large molecules. Nature 2010, 468, 18–19. [Google Scholar] [CrossRef] [Green Version]
- Nellore, R. Regulatory considerations for biosimilars. Perspect. Clin. Res. 2010, 1, 11–14. [Google Scholar] [PubMed]
- Macdougall, I.C.; Obrador, G.T. How important is transfusion avoidance in 2013? Nephrol. Dial. Transplant. 2013, 28, 1092–1099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wish, J.B.; Aronoff, G.R.; Bacon, B.R.; Brugnara, C.; Eckardt, K.U.; Ganz, T.; Macdougall, I.C.; Nunez, J.; Perahia, A.J.; Wood, J.C. Positive iron balance in chronic kidney disease: How much is too much and how to tell? Am. J. Nephrol. 2018, 47, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Babitt, J.L.; Eisenga, M.F.; Haase, V.H.; Kshirsagar, A.V.; Levin, A.; Locatelli, F.; Małyszko, J.; Swinkels, D.W.; Tarng, D.C.; Cheung, M.; et al. Controversies in optimal anemia management: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Conference. Kidney Int. 2021, 99, 1280–1295. [Google Scholar] [CrossRef]
Compound | Dose | Study Population | Duration (Weeks) | Comparator | Main Finding | Ferritin | TIBC | Hepcidin | Additional Finding | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Roxadustat | 0.7–2.0 mg/kg body weight; thrice weekly | 116 ND-CKD patients | 4 | placebo | dose-dependent increases in blood Hb | ↓ | ↑* | ↓* | Adverse events were similar roxadustat versus placebo | Besarab et al. [61] |
50–150 mg; thrice weekly | 145 ND-CKD patients | 16–24 | - | 92% of patients achieved Hb response | ↓* | ↑* | ↓* | Total cholesterol level was reduced | Provenzano et al. [62] | |
1.1–2.25 mg/kg body weight; thrice weekly | 91 ND-CKD patients | 6 | placebo | Hb increase ≥1 g/dL from baseline was achieved in 80% of subjects in the low-dose cohort and 87.1% in the high-dose cohort | ↓* | ↑* | ↓* | significant reductions in cholesterol were noted | Chen et al. [63] | |
1.0–2.0 mg/kg; thrice weekly | 54 DD-CKD patients (part 1) 90 DD-CKD patients (part 2) | 6 (part1) 19 (part 2) | rHuEPO | Roxadustat was well tolerated and effectively maintained Hb levels | ↓ | ↑ | ↓* | Hepcidin level reduction was greater at roxadustat 2.0 mg/kg versus epoetin alfa | Provenzano et al. [64] | |
1.0–2.5 mg/kg; thrice weekly | 60 DD-CKD patients | 12 | - | Roxadustat increased mean Hb and reduced hepcidin levels | ↓* | ↑* | ↓* | A greater Hb response in the cohorts receiving iron compared with no-iron cohort | Besarab et al. [65] | |
1.1–2.3 mg/kg; thrice weekly | 87 DD-CKD patients | 6 | rHuEPO | 59.1%, 88.9%, and 100% of the low-, medium-, and high-dose subjects respectively, maintained their Hb levels after 5- and 6-weeks versus 50% of the epoetin alfa-treated subjects | ↓ | ↑* | ↓ | Significant reductions in cholesterol. Hepcidin levels reduced significantly dose-dependent manner in the highest dose group versus epoetin alfa-treated group | Chen et al. [63] | |
324 ND-CKD | 24 | Darbepoetin alfa | Confirmation the noninferiority of roxadustat to darbepoetin alfa | ↔ | ↔ | ↔ | Roxadustat doses required to maintain target Hb levels did not appear to be influenced by hs-CRP as with darbepoetin-treated patients with high hs-CRP | Akizawa et al. [80] | ||
70 or 100 mg thrice weekly | 916 ND-CKD | 240 (4.5 years) | Placebo (2:1) | hemoglobin mean (SD) change from baseline over weeks 28–52 was significantly larger for roxadustat (2.00 [0.95]) versus placebo (0.16 [0.90]) | ↓* | ↑* | ↓* | Roxadustat lowered mean LDL cholesterol. There was no significant between-group difference in progression of CKD | Coyne et al. [81] | |
70 or 100 mg thrice weekly | 616 ND-CKD | 104 | Darbepoetin alfa | Hemoglobin response with roxadustat was noninferior to DA (roxadustat: 256/286, 89.5% versus DA: 213/273, 78.0%, difference 11.51%, 95% confidence interval, 5.66–17.36%) | ↓ | ↑ | Not available | There was no difference between groups regarding the composite endpoints major adverse cardiovascular events (MACE) and MACE + | Barratt et al. [94] | |
70, 100, 150, or 200 mg TIW | 741 DD-CKD (including D) | 52 | Epoetin alfa | Roxadustat was noninferior (least squares mean difference: 0.48 (95% confidence interval: 0.37, 0.59); p < 0.001) to epoetin alfa | ↓ | ↑* | ↓ | In regard to blood transfusion, roxadustat was noninferior to epoetin alfa | Charytan et al. [95] | |
Vadadustat | 450 mg; once daily | 210 ND-CKD | 20 | placebo | The primary endpoint (mean Hb level of 11.0 g/dL or more or a mean increase in Hb of 1.2 g/dL) was met in 54.9% of patients on vadadustat and 10.3% of patients on placebo | ↓* | ↑* | ↓* | Significant increases in both reticulocytes and TIBC and significant decreases in both serum hepcidin and ferritin levels | Pergola et al. [66] |
240, 370, 500, or 630 mg; once daily | 93 ND-CKD | 6 | placebo | Compared with placebo, vadadustat significantly increased Hb after 6 weeks in a dose-dependent manner | ↓* | ↑* | ↓* | Vadadustat increased the TIBC and decreased concentrations of ferritin and hepcidin. No significant changes in blood pressure, vascular endothelial growth factor, C-reactive protein, or total cholesterol | Martin et al. [67] | |
300 mg once daily or 450 mg once daily or 450 mg thrice weekly | 94 DD-CKD | 16 | Epoetin | Vadadustat maintained mean Hb concentrations in subjects on hemodialysis previously receiving epoetin | ↓ | ↑* | ↓* | The most frequently reported AEs were nausea (11.7%), diarrhea (10.6%), and vomiting (9.6%) | Haase et al. [68] | |
Daprodustat | 0.5, 2, or 5 mg once-daily | 72 ND-CKD patients | 4 | placebo | Daprodustat produced dose-dependent effects on Hb, with the highest dose resulting in a mean increase of 1 g/dL at week 4 | ↓ | ↑ | ↓ | No clinically significant elevations in plasma vascular endothelial growth factor concentrations were observed | Holdstock et al. [69] |
10, 25, 50, or 100 mg once daily | 70 ND-CKD patients | 4 | placebo | Daprodustat produced dose-dependent increase in EPO concentrations and consequent increases in reticulocytes and Hb levels | ↓ | ↑ | ↓ | A dose-dependent decrease in hepcidin levels and increase in total and unsaturated iron binding were observed in all daprodustat-treated patients | Brigandi et al. [70] | |
0.5, 2, or 5 mg once-daily | 82 DD-CKD patients | 4 | rHuEPO | Treatment with daprodustat in the 5 mg arm maintained mean Hb concentrations after the switch from recombinant human erythropoietin, whereas mean Hb decreased in the lower-dose arms | ↓ | ↑ | ↔ (5 mg) | No clinically significant elevations in plasma vascular endothelial growth factor concentrations were observed | Holdstock et al. [69] | |
10, 25, 50, or 100 mg once daily | 83 DD-CKD patients | 4 | placebo | Daprodustat produced a dose-dependent increase in EPO concentrations and consequent increases in reticulocytes and Hb levels | ↓ | ↑ | ↓ (10 and 25 mg) | A dose-dependent decrease in hepcidin levels and increase in total and unsaturated iron binding were observed in all daprodustat-treated patients | Brigandi et al. [70] | |
4, 6, 8, or 10 mg once daily | 97 DD-CKD patients | 4 | placebo | Daprodustat produced dose-dependent increase in Hb relative to placebo | ↓ | ↑ | ↓ | The doses evaluated in the study have moderately increased endogenous EPO without changes in circulating VEGF levels | Akizawa et al. [71] | |
4, 6, 8, 10 or 12 mg once daily | 216 DD-CKD patients | 24 | placebo (4 weeks then rHuEPO) | Daprodustat produced dose-dependent changes in Hb over the first weeks after switching from a stable dose of rhEPO as well as maintained Hb target levels over 24 weeks | ↓ | ↑ | ↓ | Daprodustat demonstrated an adverse event profile consistent with the HD population | Meadowcroft et al. [72] | |
Molidustat | 25, 50, and 75 mg once daily; or 25 and 50 mg twice daily | 121 ND-CKD patients | 16 | placebo | Molidustat treatment was associated with estimated increases in mean Hb levels of 1.4–2.0 g/dL | ↓ | ↔ | ↓ | No changes in cholesterol levels were observed | Macdougall et al. [58] |
25–75 mg daily | 124 ND-CKD patients | 16 | Darbepoetin alfa | Hb levels were maintained within the target range after switching to molidustat | ↓ | ↔ | ↓ | No changes in cholesterol levels were observed | Macdougall et al. [58] | |
25–150 mg daily | 199 HD—CKD patients | 16 | rHuEPO | Hb levels were maintained within the target range after switching to molidustat 75 and 150 mg | ↔ | ↔ | ↔ | No changes in cholesterol levels were observed | Macdougall et al. [58] | |
75 mg daily | 51 PD | 36 | The mean Hb level was maintained in the target range of ≥11.0 and <13.0 g/dL during the evaluation period and more broadly from Week 12 to Week 36 | ↓* | ↑* | ↓* | The responder rate (95% CI) during the evaluation period was 54.9% (40.3, 68.9) | Akizawa et al. [97] | ||
Enarodustat | 2, 4, or 6 mg once daily | 94 corr 107 conv ND-CKD | 30 | placebo (first 6 weeks) | The proportion of subjects in the conversion group who maintained Hb levels within ±1.0 g/dL of baseline did not differ between each enarodustat arm and placebo arm during Period 1. | ↓* | ↑* | ↓* | Enarodustat was associated with decreases in hepcidin and ferritin and increased TIBC and was generally well tolerated | Akizawa et al. [46] |
216 ND-CKD | 24 | darbepoetin | The mean Hb level during the evaluation period in the enarodustat arm was 10.96 g/dL (95% confidence interval [CI]: 10.84 to 11.07 g/dL) with a difference of 0.09 g/dL (95% CI: −0.07 to 0.26 g/dL) between arms, establishing its noninferiority to darepoetin | ↓* | ↑* | ↓* | No apparent differences in the incidence of adverse events between arms | Akizawa et al. [97] | ||
Desidustat | 100, 150, 200 mg, every alternate day | 117 ND-CKD | 6 | placebo | There was dose-related increase in Hb across all doses compared to placebo | ↓* | ↑* | ↓* | There was no significant change in vital signs, electrocardiographic parameters, or safety laboratory values | Parmar et al. [73] |
Compound | Study Design and Population | Duration (Weeks) | Most Important Findings | Ref. |
---|---|---|---|---|
Roxadustat | 154 ND-CKD patients received roxadustat or placebo | 8 |
| Chen et al. [74] |
305 HD-CKD patients undergoing ESA therapy for at least 6 weeks received roxadustat or epoetin afla | 26 |
| Chen et al. [75] | |
56 PD-CKD patients (43 ESA converted and 13 ESA-naïve) received roxadustat. | 24 |
| Akizawa et al. [76] | |
30 HD-CKD patients; switch from darbepoetin to roxadustat | 4 |
| Ogawa et al. [56] | |
2781 ND-CKD patients received roxadustat or placebo | 28–52 |
| Fishbane et al. [77] | |
594 ND-CKD patients received roxadustat or placebo | 28–52 |
| Shutov et al. [37] | |
1043 HD-CKD patients received roxadustat or epoetin alfa | 28–52 |
| Provenzano et al. [78] | |
303 HD-CKD patients received roxadustat or darbepoetin alfa | 24 |
| Akizawa et al. [79] | |
99 ESA-naïve, partially iron-depleted NDD-CKD patients received roxadustat at dose 50 or 70 mg | 18–24 |
| Akizawa et al. [80] | |
922 ND-CKD patients received roxadustat or placebo | 28–52 |
| Coyne et al. [81] | |
616 ND-CKD patients received roxadustat or darbepoetin alfa | 104 |
| Barratt et al. [94] | |
4277 ND-CKD received Roxadustat or placebo | 52 |
| Provenzano et al. [99] | |
Vadadustat | 255 HD-CKD patients received vadadustat and darbepoetin alfa | 52 |
| Nangaku et al. [82] |
1751 patients with ESA-untreated ND-CKD and 1725 with ESA-treated ND-CKD | 52 |
| Chertow et al. [96] | |
Daprodustat | 28 HD-CKD patients received daprodustat | 24 |
| Tsubakihara et al. [84] |
271 HD-CKD patients received daprodustat or darbepoetin | 40–52 |
| Akizawa et al. [83] | |
Molidustat | 161 ND-CKD patients ESA naïve received molidustat versus darbepoetin | 52 |
| Akizawa et al. [112] |
164 ND-CKD patients ESA treated received molidustat versus darbepoetin | 52 |
| Akizawa et al. [113] | |
51 patients on peritoneal dialysis treated with molidustat | 36 |
| Akizawa et al. [98] | |
25 HD patients ESA-naive treated with molidustat | 24 |
| Akizawa et al. [114] | |
Enarodustat | 216 subjects (102 ESA-naïve and 114 ESA-treated subjects | 24 |
| Akizawa et al. [115] |
132 ND-CKD and 136 HD patients | 52 |
| Akizawa et al. [97] |
Potential Benefits | Potential Harm |
---|---|
| Predisposition to pulmonary arterial hypertension * Tumor progression Thromboembolic disease Cyst growth-promoting effects in patients with autosomal dominant polycystic kidney disease (ADPKD) Proangiogenic effects in patients with vascular retinopathies such as diabetic retinopathy Vascular calcifications |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borawski, B.; Malyszko, J.S.; Kwiatkowska, M.; Malyszko, J. Current Status of Renal Anemia Pharmacotherapy—What Can We Offer Today. J. Clin. Med. 2021, 10, 4149. https://doi.org/10.3390/jcm10184149
Borawski B, Malyszko JS, Kwiatkowska M, Malyszko J. Current Status of Renal Anemia Pharmacotherapy—What Can We Offer Today. Journal of Clinical Medicine. 2021; 10(18):4149. https://doi.org/10.3390/jcm10184149
Chicago/Turabian StyleBorawski, Bartłomiej, Jacek Stanislaw Malyszko, Marlena Kwiatkowska, and Jolanta Malyszko. 2021. "Current Status of Renal Anemia Pharmacotherapy—What Can We Offer Today" Journal of Clinical Medicine 10, no. 18: 4149. https://doi.org/10.3390/jcm10184149
APA StyleBorawski, B., Malyszko, J. S., Kwiatkowska, M., & Malyszko, J. (2021). Current Status of Renal Anemia Pharmacotherapy—What Can We Offer Today. Journal of Clinical Medicine, 10(18), 4149. https://doi.org/10.3390/jcm10184149