Improvement in Metabolic Co-Morbidities after Implantation of CardioMEMS in Patients with Heart Failure with Preserved Ejection Fraction Phenotype
Abstract
:1. Introduction
2. Methods
2.1. Metabolic Parameters
2.2. Statistical Analysis
3. Results
3.1. Baseline
3.2. Trend in Metabolic Labs
3.3. Secondary Analysis
3.4. Medication Usage
4. Discussion
5. Limitations and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ambrosy, A.P.; Fonarow, G.C.; Butler, J.; Chioncel, O.; Greene, S.J.; Vaduganathan, M.; Nodari, S.; Lam, C.S.P.; Sato, N.; Shah, A.N.; et al. The global health and economic burden of hospitalizations for heart failure: Lessons learned from hospitalized heart failure registries. J. Am. Coll. Cardiol. 2014, 63, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- Savji, N.; Meijers, W.C.; Bartz, T.M.; Bhambhani, V.; Cushman, M.; Nayor, M.; Kizer, J.R.; Sarma, A.; Blaha, M.J.; Gansevoort, R.T.; et al. The association of obesity and cardiometabolic traits with incident HFpEF and HFrEF. JACC Heart Fail. 2018, 6, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E.; Drazner, M.H.; Fonarow, G.C.; Geraci, S.A.; Horwich, T.; Januzzi, J.L.; et al. 2013 ACCF/AHA guideline for the management of heart failure: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2013, 128, e240–e327. [Google Scholar] [CrossRef] [PubMed]
- Hunter, W.G.; Kelly, J.P.; McGarrah, R.W.; Kraus, W.E.; Shah, S.H. Metabolic dysfunction in heart failure: Diagnostic, prognostic, and pathophysiologic insights from metabolomic profiling. Curr. Heart Fail. Rep. 2016, 13, 119–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von Haehling, S.; Doehner, W.; Anker, S.D. Nutrition, metabolism, and the complex pathophysiology of cachexia in chronic heart failure. Cardiovasc. Res. 2007, 73, 298–309. [Google Scholar] [CrossRef] [PubMed]
- Anker, S.D.; Chua, T.P.; Ponikowski, P.; Harrington, D.; Swan, J.W.; Kox, W.J.; Poole-Wilson, P.A.; Coats, A.S. Hormonal changes and catabolic/anabolic imbalance in chronic heart failure and their importance for cardiac cachexia. Circulation 1997, 96, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. EMPA-REG outcome investigators. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef] [PubMed]
- Abraham, W.T.; Adamson, P.B.; Bourge, R.C.; Aaron, M.F.; Costanzo, M.R.; Stevenson, L.W.; Strickland, W.; Neelagaru, S.; Raval, N.; Krueger, S.; et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: A randomised controlled trial. Lancet 2011, 377, 658–666. [Google Scholar] [CrossRef]
- Alberti, K.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C. Harmonizing the metabolic syndrome. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, A.B.; Imamura, T.; Besser, S.; Rodgers, D.; Chung, B.; Raikhelkar, J.; Kalantari, S.; Smith, B.; Sarswat, N.; LaBuhn, C.; et al. Metabolic dysfunction in continuous-flow left ventricular assist devices patients and outcomes. J. Am. Heart Assoc. 2019, 8, e013278. [Google Scholar] [CrossRef] [PubMed]
- Uriel, N.; Naka, Y.; Colombo, P.C.; Farr, M.; Pak, S.-W.; Cotarlan, V.; Albu, J.B.; Gallagher, D.; Mancini, D.; Ginsberg, H.N.; et al. Improved diabetic control in advanced heart failure patients treated with left ventricular assist devices. Eur. J. Heart Fail. 2011, 13, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Begley, A.; Jackson, R.; Harrison, M.; Pellicori, P.; Clark, A.L.; Cleland, J.G.F. Body mass index and all-cause mortality in heart failure patients with normal and reduced ventricular ejection fraction: A dose–response meta-analysis. Clin. Res. Cardiol. 2018, 108, 119–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulus, W.J.; Tschöpe, C. A Novel paradigm for heart failure with preserved ejection fraction. J. Am. Coll. Cardiol. 2013, 62, 263–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenchaiah, S.; Evans, J.C.; Levy, D.; Wilson, P.W.; Benjamin, E.; Larson, M.; Kannel, W.B.; Vasan, R.S. Obesity and the risk of heart failure. N. Engl. J. Med. 2002, 347, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Aboumsallem, J.P.; Muthuramu, I.; Mishra, M.; De Geest, B. Cholesterol-lowering gene therapy prevents heart failure with preserved ejection fraction in obese type 2 diabetic mice. Int. J. Mol. Sci. 2019, 20, 2222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simmonds, S.; Cuijpers, I.; Heymans, S.; Jones, E.A.V. Cellular and molecular differences between HFpEF and HFrEF: A step ahead in an improved pathological understanding. Cells 2020, 9, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razeghi, P.; Sharma, S.; Ying, J.; Li, Y.-P.; Stepkowski, S.; Reid, M.B.; Taegtmeyer, H. Atrophic remodeling of the heart in vivo simultaneously activates pathways of protein synthesis and degradation. Circulation 2003, 108, 2536–2541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiattarella, G.G.; Rodolico, D.; Hill, J.A. Metabolic inflammation in heart failure with preserved ejection fraction. Cardiovasc. Res. 2020, 117, 423–434. [Google Scholar] [CrossRef] [PubMed]
Baseline Characteristics * | |
---|---|
Age, years | 73 ± 12 |
Female | 22 (69%) |
Caucasian | 29 (100%) |
Creatinine (mg/dL) | 1.3 (1.0, 1.8) |
NYHA Class 3 | 29 (100%) |
HF etiology, NICM | 18 (62%) |
History of Hypertension | 19 (66%) |
History of Pulmonary Hypertension | 24 (83%) |
History of Atrial Fibrillation | 11 (38%) |
History of Sleep Apnea | 10 (34%) |
History of Smoking | 3 (10%) |
History of COPD | 3 (10%) |
Diabetes Mellitus Medication | 12 (41%) |
Cholesterol Medication | 22 (76%) |
eGFR (mL/min/1.73 m2) | 38 (21, 54) |
CKD Stage | |
2 | 5 (17%) |
3A | 4 (14%) |
3B | 10 (35%) |
4 | 7 (24%) |
5 | 3 (10%) |
BNP (pg/mL) | 280 (150, 480) |
Hemodynamic and Metabolic Profile * | Baseline Values | At Six-Month Follow-Up | % Change | p-Value |
---|---|---|---|---|
Pulmonary Artery Diastolic Pressure (mmHg) | 20.1 ± 5.7 | 15.9 ± 5.8 | 20.9 | <0.001 |
Systolic Blood Pressure (mmHg) | 135 ± 19 | 126 ± 16 | 6.7 | <0.001 |
Weight in kilograms (kg) | 102.6 ± 22.7 | 100.0 ± 23.2 | 2.5 | 0.006 |
Body Mass Index (kg/m2) | 38.0 ± 8.3 | 37.0 ± 8.2 | 2.6 | 0.002 |
High Density Lipoprotein (mg/dL) | 42.4 ± 11.3 | 47 ± 11.9 | 10.8 | <0.001 |
Triglycerides (mg/dL) | 130 (100, 180) | 110 (105, 140) | 15.4 | 0.001 |
Hemoglobin A1C (%) | 6.8 (5.7, 7.3) | 6.5 (5.7, 7) | 4.4 | 0.81 |
Secondary Outcomes | At 6 Months Post-Implant |
---|---|
% Improvement in eGFR † | 18.4% |
Change in CKD Class: †† (a) Worsening (b) Improvement | 7% (2/29) 41% (12/29) |
% Death/Dialysis | 0% |
% Re-Admission rate | 17% (5/29) |
% Improvement in NYHA Class ††† | 31% (9/29) |
% Improvement in BNP †††† | 55.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, A.; Van Zyl, J.; Nayyar, N.; Hall, S.; Jermyn, R. Improvement in Metabolic Co-Morbidities after Implantation of CardioMEMS in Patients with Heart Failure with Preserved Ejection Fraction Phenotype. J. Clin. Med. 2021, 10, 4308. https://doi.org/10.3390/jcm10194308
Alam A, Van Zyl J, Nayyar N, Hall S, Jermyn R. Improvement in Metabolic Co-Morbidities after Implantation of CardioMEMS in Patients with Heart Failure with Preserved Ejection Fraction Phenotype. Journal of Clinical Medicine. 2021; 10(19):4308. https://doi.org/10.3390/jcm10194308
Chicago/Turabian StyleAlam, Amit, Johanna Van Zyl, Navdeep Nayyar, Shelley Hall, and Rita Jermyn. 2021. "Improvement in Metabolic Co-Morbidities after Implantation of CardioMEMS in Patients with Heart Failure with Preserved Ejection Fraction Phenotype" Journal of Clinical Medicine 10, no. 19: 4308. https://doi.org/10.3390/jcm10194308
APA StyleAlam, A., Van Zyl, J., Nayyar, N., Hall, S., & Jermyn, R. (2021). Improvement in Metabolic Co-Morbidities after Implantation of CardioMEMS in Patients with Heart Failure with Preserved Ejection Fraction Phenotype. Journal of Clinical Medicine, 10(19), 4308. https://doi.org/10.3390/jcm10194308