Total Lesion Glycolysis Improves Tumor Burden Evaluation and Risk Assessment at Diagnosis in Hodgkin Lymphoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Selection
2.2. Assessment of PET-Related Parameters
2.3. Statistical Methods
3. Results
3.1. Characteristics of the Patients
3.2. Response to Therapy and Survival
3.3. Analysis of the Baseline FDG PET/CT Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lister, T.A.; Crowther, D.; Sutcliffe, S.B.; Glatstein, E.; Canellos, G.P.; Young, R.C.; Rosenberg, S.A.; Coltman, C.A.; Tubiana, M. Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin’s disease: Cotswolds meeting. J. Clin. Oncol. 1989, 7, 1630–1636. [Google Scholar] [CrossRef]
- Cheson, B.D.; Fisher, R.I.; Barrington, S.F.; Cavalli, F.; Schwartz, L.H.; Zucca, E.; Lister, T.A. Recommendations for initial evaluation, staging, and response assessment of hodgkin and non-hodgkin lymphoma: The lugano classification. J. Clin. Oncol. 2014, 32, 3059–3068. [Google Scholar] [CrossRef]
- Song, M.K.; Chung, J.S.; Shin, H.J.; Lee, S.M.; Lee, S.E.; Lee, H.S.; Lee, G.W.; Kim, S.J.; Lee, S.M.; Chung, D.S. Clinical significance of metabolic tumor volume by PET/CT in stages II and III of diffuse large B cell lymphoma without extranodal site involvement. Ann. Hematol. 2012, 91, 697–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheson, B.D. Role of Functional Imaging in the Management of Lymphoma. J. Clin. Oncol. 2011, 29, 1844–1854. [Google Scholar] [CrossRef] [PubMed]
- Kostakoglu, L.; Chauvie, S. Metabolic Tumor Volume Metrics in Lymphoma. Semin. Nucl. Med. 2018, 48, 50–66. [Google Scholar] [CrossRef] [PubMed]
- Cottereau, A.S.; Becker, S.; Broussais, F.; Casasnovas, O.; Kanoun, S.; Roques, M.; Charrier, N.; Bertrand, S.; Delarue, R.; Bonnet, C.; et al. Prognostic value of baseline total metabolic tumor volume (TMTV0) measured on FDG-PET/CT in patients with peripheral T-cell lymphoma (PTCL). Ann. Oncol. 2016, 27, 719–724. [Google Scholar] [CrossRef]
- Meignan, M.; Cottereau, A.S.; Versari, A.; Chartier, L.; Dupuis, J.; Boussetta, S.; Grassi, I.; Casasnovas, R.O.; Haioun, C.; Tilly, H.; et al. Baseline Metabolic Tumor Volume Predicts Outcome in High–Tumor-Burden Follicular Lymphoma: A Pooled Analysis of Three Multicenter Studies. J. Clin. Oncol. 2016, 34, 3618–3626. [Google Scholar] [CrossRef]
- Parvez, A.; Tau, N.; Hussey, D.; Maganti, M.; Metser, U. 18F-FDG PET/CT metabolic tumor parameters and radiomics features in aggressive non-Hodgkin’s lymphoma as predictors of treatment outcome and survival. Ann. Nucl. Med. 2018, 32, 410–416. [Google Scholar] [CrossRef]
- Guo, B.; Tan, X.; Ke, Q.; Cen, H. Prognostic value of baseline metabolic tumor volume and total lesion glycolysis in patients with lymphoma: A meta-analysis. PLoS ONE 2019, 14, e0210224. [Google Scholar] [CrossRef]
- Xie, M.; Wu, K.; Liu, Y.; Jiang, Q.; Xie, Y. Predictive value of F-18 FDG PET/CT quantization parameters in diffuse large B cell lymphoma: A meta-analysis with 702 participants. Med. Oncol. 2015, 32, 446. [Google Scholar] [CrossRef]
- Albano, D.; Bosio, G.; Pagani, C.; Re, A.; Tucci, A.; Giubbini, R.; Bertagna, F. Prognostic role of baseline 18F-FDG PET/CT metabolic parameters in Burkitt lymphoma. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 87–96. [Google Scholar] [CrossRef]
- Moskowitz, A.J.; Schöder, H.; Gavane, S.; Thoren, K.L.; Fleisher, M.; Yahalom, J.; McCall, S.J.; Cadzin, B.R.; Fox, S.Y.; Gerecitano, J.; et al. Prognostic significance of baseline metabolic tumor volume in relapsed and refractory Hodgkin lymphoma. Blood 2017, 130, 2196–2203. [Google Scholar] [CrossRef]
- Cottereau, A.S.; Versari, A.; Loft, A.; Casasnovas, O.; Bellei, M.; Ricci, R.; Bardet, S.; Castagnoli, A.; Brice, P.; Raemaekers, J.; et al. Prognostic value of baseline metabolic tumor volume in early-stage Hodgkin lymphoma in the standard arm of the H10 trial. Blood 2018, 131, 1456–1463. [Google Scholar] [CrossRef]
- Akhtari, M.; Milgrom, S.A.; Pinnix, C.C.; Reddy, J.P.; Dong, W.; Smith, G.L.; Mawlawi, O.; Abou Yehia, Z.; Gunther, J.; Osborne, E.M.; et al. Reclassifying patients with early-stage Hodgkin lymphoma based on functional radiographic markers at presentation. Blood 2018, 131, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Kanoun, S.; Rossi, C.; Berriolo-Riedinger, A.; Dygai-Cochet, I.; Cochet, A.; Humbert, O.; Toubeau, M.; Ferrant, E.; Brunotte, F.; Casasnovas, R.O. Baseline metabolic tumour volume is an independent prognostic factor in Hodgkin lymphoma. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 1735–1743. [Google Scholar] [CrossRef]
- Song, M.K.; Chung, J.S.; Lee, J.J.; Jeong, S.Y.; Lee, S.M.; Hong, J.S.; Chong, A.; Moon, J.H.; Kim, J.H.; Lee, S.M.; et al. Metabolic tumor volume by positron emission tomography/computed tomography as a clinical parameter to determine therapeutic modality for early stage Hodgkin’s lymphoma. Cancer Sci. 2013, 104, 1656–1661. [Google Scholar] [CrossRef]
- Mettler, J.; Müller, H.; Voltin, C.A.; Baues, C.; Klaeser, B.; Moccia, A.; Borchmann, P.; Engert, A.; Kuhnert, G.; Drzezga, A.; et al. Metabolic Tumor Volume for Response Prediction in Advanced-Stage Hodgkin Lymphoma. J. Nucl. Med. 2019, 60, 207–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albano, D.; Mazzoletti, A.; Spallino, M.; Muzi, C.; Zilioli, V.R.; Pagani, C.; Tucci, A.; Rossetti, C.; Giubbini, R.; Bertagna, F. Prognostic role of baseline 18F-FDG PET/CT metabolic parameters in elderly HL: A two-center experience in 123 patients. Ann. Hematol 2020, 99, 1321–1330. [Google Scholar] [CrossRef]
- Prieto Prieto, J.C.; Vallejo Casas, J.A.; Hatzimichael, E.; Fotopoulos, A.; Kiortsis, D.-N.; Sioka, C. The contribution of metabolic parameters of FDG PET/CT prior and during therapy of adult patients with lymphomas. Ann. Nucl. Med. 2020, 34, 707–717. [Google Scholar] [CrossRef] [PubMed]
- Hasenclever, D.; Diehl, V. A prognostic score for advanced Hodgkin’s disease. International Prognostic Factors Project on Advanced Hodgkin’s Disease. N. Engl. J. Med. 1998, 339, 1506–1514. [Google Scholar] [CrossRef] [PubMed]
- Eichenauer, D.A.; Engert, A.; Dreyling, M. Hodgkin lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29, iv19–iv29. [Google Scholar] [CrossRef]
- Meignan, M.; Gallamini, A.; Meignan, M.; Gallamini, A.; Haioun, C. Report on the First International Workshop on interim-PET scan in lymphoma. Leuk Lymphoma 2009, 50, 1257–1260. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boellaard, R.; Delgado-Bolton, R.; Oyen, W.J.; Giammarile, F.; Tatsch, K.; Eschner, W.; Verzijlbergen, F.J.; Barrington, S.F.; Pike, L.C.; Weber, W.A.; et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 328–354. [Google Scholar] [CrossRef] [PubMed]
- Casasnovas, R.O.; Kanoun, S.; Tal, I.; Cottereau, A.S.; Edeline, V.; Brice, P.; Bouabdallah, R.; Salles, G.A.; Stamatoullas, A.; Dupuis, J.; et al. Baseline total metabolic volume (TMTV) to predict the outcome of patients with advanced Hodgkin lymphoma (HL) enrolled in the AHL2011 LYSA trial. J. Clin. Oncol. 2016, 34 (Suppl. 15), 7509. [Google Scholar] [CrossRef]
- Kanoun, S.; Tal, I.; Berriolo-Riedinger, A.; Rossi, C.; Riedinger, J.M.; Vrigneaud, J.M.; Legrand, L.; Humbert, O.; Casasnovas, O.; Brunotte, F.; et al. Influence of Software Tool and Methodological Aspects of Total Metabolic Tumor Volume Calculation on Baseline [18F] FDG PET to Predict Survival in Hodgkin Lymphoma. PLoS ONE 2015, 10, e0140830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carbone, P.P.; Kaplan, H.S.; Musshoff, K.; Smithers, D.W.; Tubiana, M. Report of the Committee on Hodgkin’s Disease Staging Classification. Cancer Res. 1971, 31, 1860–1861. [Google Scholar]
- Andre, M.P.; Girinsky, T.; Federico, M.; Reman, O.; Fortpied, C.; Gotti, M.; Casasnovas, O.; Brice, P.; van der Maazen, R.W.; Re, A.; et al. Early Positron Emission Tomography Response-Adapted Treatment in Stage I and II Hodgkin Lymphoma: Final Results of the Randomized EORTC/LYSA/FIL H10 Trial. J. Clin. Oncol. 2017, 35, 1786–1794. [Google Scholar] [CrossRef]
- Engert, A.; Plütschow, A.; Eich, H.T.; Lohri, A.; Dörken, B.; Borchmann, P.; Berger, B.; Greil, R.; Willborn, K.C.; Wilhelm, M.; et al. Reduced Treatment Intensity in Patients with Early-Stage Hodgkin’s Lymphoma. N. Engl. J. Med. 2010, 363, 640–652. [Google Scholar] [CrossRef] [Green Version]
- Eich, H.T.; Diehl, V.; Görgen, H.; Pabst, T.; Markova, J.; Debus, J.; Ho, A.; Dörken, B.; Rank, A.; Grosu, A.L.; et al. Intensified Chemotherapy and Dose-Reduced Involved-Field Radiotherapy in Patients With Early Unfavorable Hodgkin’s Lymphoma: Final Analysis of the German Hodgkin Study Group HD11 Trial. J. Clin. Oncol. 2010, 28, 4199–4206. [Google Scholar] [CrossRef]
- Kumar, A.; Burger, I.A.; Zhang, Z.; Drill, E.N.; Migliacci, J.C.; Ng, A.; LaCasce, A.; Wall, D.; Witzig, T.E.; Ristow, K.; et al. Definition of bulky disease in early stage Hodgkin lymphoma in computed tomography era: Prognostic significance of measurements in the coronal and transverse planes. Haematologica 2016, 101, 1237–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogasch, J.M.; Hundsdoerfer, P.; Hofheinz, F.; Wedel, F.; Schatka, I.; Amthauer, H.; Furth, C. Pretherapeutic FDG-PET total metabolic tumor volume predicts response to induction therapy in pediatric Hodgkin’s lymphoma. BMC Cancer 2018, 18, 521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, C.Y.; Hong, C.M.; Kim, D.H.; Son, S.H.; Jeong, S.Y.; Lee, S.W.; Lee, J.; Ahn, B.C. Prognostic value of whole-body metabolic tumour volume and total lesion glycolysis measured on 18F-FDG PET/CT in patients with extranodal NK/T-cell lymphoma. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 1321–1329. [Google Scholar] [CrossRef] [PubMed]
- Procházka, V.; Gawande, R.S.; Cayci, Z.; Froelich, J.W.; Cao, Q.; Wilke, C.; Dusenbery, K.; Weisdorf, D.J.; Bachanova, V. Positron Emission Tomography–Based Assessment of Metabolic Tumor Volume Predicts Survival after Autologous Hematopoietic Cell Transplantation for Hodgkin Lymphoma. Biol. Blood Marrow Transplant 2018, 24, 64–70. [Google Scholar] [CrossRef] [Green Version]
- Pike, L.C.; Kirkwood, A.A.; Patrick, P.; Radford, J.; Burton, C.; Stevens, L.; Clifton-Hadley, L.; Johnson, P.W.; Barrington, S.F. Can baseline PET-CT features predict outcomes in advanced Hodgkin lymphoma? A prospective evaluation of UK patients in the RATHL trial (CRUK/07/033). Hematol. Oncol. 2017, 35, 37–38. [Google Scholar] [CrossRef] [Green Version]
- Adams, M.C.; Turkington, T.G.; Wilson, J.M.; Wong, T.Z. A systematic review of the factors affecting accuracy of SUV measurements. AJR Am. J. Roentgenol. 2010, 195, 310–320. [Google Scholar] [CrossRef]
Median Age (Range) | 37 (14–83) |
---|---|
Age> 45: | 32 (31%) |
Age > 60: | 17 (17%) |
Gender: M/F | 61 (60%)/40 (40%) |
Ann Arbor stage: | |
I–II | 47 (46%) |
III–IV | 54 (53%) |
B symptoms: | 42 (42%) |
Bulky: | 10 (10%) |
ECOG PS: | |
0–1 | 63 (62%) |
>1 | 38 (38%) |
Albumin < 4 g/dL | 49 (50%) |
Hb < 10.5 g/dL | 49 (50%) |
Leucocytes ≥ 15,000/microL | 12 (12%) |
Lymphopenia < 600/microL or <8% | 16 (16%) |
Elevated ESR (I–II AA stages) | 20 (43%) |
More than 3 nodal sites (I–II AA stages) | 12 (39%) |
More than 4 nodal sites (I–II AA stages) | 3 (10%) |
GHSG > 0: | 78 (77%) |
EORTC > 0: | 72 (71%) |
IPS: | |
0–3 | 82 (81%) |
>3 | 19 (19%) |
Radiotherapy: | 22 (22%) |
Median baseline MTV (range) | 95.4 (3.1–912.7) |
Median baseline TLG (range) | 528.5 (7.4–5167.6) |
Median baseline SUVmax (range) | 11.9 (1.7–23.5) |
4y-PFS (95%CI) | p | 4y-OS | p | |
---|---|---|---|---|
Age: | 0.063 | <0.001 | ||
0–44 years | 82% (77–87) | 100% (NA) | ||
>44 year | 67% (58–79) | 74% (65–83) | ||
Age: | 0.06 | <0.001 | ||
0–60 years | 82% (77–86) | 97% (94–99) | ||
>60 years | 47% (26–68) | 67% (54–80) | ||
Sex: | 0.98 | 0.52 | ||
Male | 79% (73–84) | 91% (87–95) | ||
Female | 76% (68–84) | 94% (90–98) | ||
AA stage: | 0.66 | 0.39 | ||
I–II | 82% (76–88) | 96% (93–99) | ||
III–IV | 73% (66–80) | 88% (83–93) | ||
B-symptoms: | 0.27 | 0.81 | ||
Yes | 69% (60–79) | 93% (87–98) | ||
No | 82% (77–87) | 91% (87–95) | ||
Bulky: | 0.45 | 0.91 | ||
Yes | 70% (55–84) | 86% (72–99) | ||
No | 78% (73–83) | 93% (90–96) | ||
ECOG PS: | 0.54 | 0.76 | ||
0–1 | 79% (73–85) | 91% (88–95) | ||
>1 | 79% (72–85) | 95% (91–98) | ||
Albumin: | 0.18 | 0.019 | ||
<4 | 73% (66–80) | 83% (77–89) | ||
≥4 | 80% (74–87) | 100% (NA) | ||
Hb: | 0.79 | 0.2 | ||
<10.5 g/dL | 71% (54–88) | 100% (NA) | ||
≥10.5 g/dL | 78% (73–83) | 90% (87–94) | ||
Leucocytes: | 0.32 | 0.46 | ||
≥15,000/microL | 75% (62–87) | 91% (82–100) | ||
<15,000/microL | 78% (73–83) | 92% (89–95) | ||
Lymphocytes: | 0.2 | 0.43 | ||
<600/microL and <8% | 69% (57–80) | 93% (86–100) | ||
>600/microL or <8% | 80% (75–85) | 92% (88–95) | ||
IPS (whole series): | 0.18 | 0.6 | ||
0–3 | 80% (75–85) | 91% (88–95) | ||
>3 | 66% (51–80) | 94% (88–100) | ||
IPS (III–IV AA stages): | 0.81 | 0.61 | ||
0–3 | 75% (67–83) | 86% (79–93) | ||
>3 | 66% (49–82) | 93% (87–100) | ||
ESR (I-II AA stages): | 0.015 | 0.57 | ||
Normal | 91% (85–97) | 100% (NA) | ||
Elevated | 70% (60–80) | 90% (83–97) | ||
Number of nodal sites (I–II AA stages): | 0.018 | 0.49 | ||
0–2 | 95% (90–100) | 95% (87–100) | ||
3 or more | 67% (53–80) | 92% (88–100) | ||
Number of nodal sites (I–II AA stages): | 0.51 | 0.41 | ||
0–3 | 86% (79–92) | 96% (93–100) | ||
4 or more | 67% (39–94) | 67% (39–94) |
All Patients | MTV | TLG | SUVmax | |||||||
---|---|---|---|---|---|---|---|---|---|---|
N = 101 | Low | High | p | Low | High | p | Low | High | p | |
Median age (range) | 37 (14–83) | 33 (15–83) | 37 (14–82) | 0.66 | 30 (14–83) | 39 (15–82) | 0.31 | 36 (14–83) | 37 (15–82) | 0.96 |
Age > 45: | 32 (31%) | 8 (35%) | 24 (31%) | 0.8 | 7 (27%) | 25 (33%) | 0.63 | 12 (32%) | 20 (32%) | 1 |
Age > 60: | 17 (17%) | 3 (13%) | 14 (18%) | 0.81 | 3 (11%) | 14 (19%) | 0.59 | 6 (16%) | 11 (17%) | 1 |
Gender: M/F | 61 (60%)/40 (40%) | 11 (48%)/12 (52%) | 50 (64%)/28 (36%) | 0.22 | 14 (54%)/12 (46%) | 47 (63%)/28 (37%) | 0.49 | 21 (55%)/17 (45%) | 40 (63%)/23 (56%) | 0.53 |
AA stage: | 0.002 | <0.001 | 0.044 | |||||||
I | 1 (1%) | 1 (4%) | 0 (0%) | 1 (4%) | 0 (0%) | 1 (3%) | 0 (0%) | |||
II | 46 (45%) | 17 (74%) | 29 (37%) | 20 (77%) | 26 (35%) | 23 (60%) | 23 (36%) | |||
III | 27 (27%) | 4 (17%) | 23 (29%) | 5 (19%) | 22 (29%) | 8 (21%) | 19 (30%) | |||
IV | 27 (27%) | 1 (4%) | 26 (33%) | 0 (%) | 27 (36%) | 6 (16%) | 21 (33%) | |||
AA stage: | 0.001 | <0.001 | 0.013 | |||||||
I–II | 47 (46%) | 18(78%) | 29 (37%) | 21 (81%) | 26 (35%) | 24 (63%) | 23 (36%) | |||
III–IV | 54 (53%) | 5 (22%) | 49 (63%) | 5 (19%) | 49 (65%) | 14 (37%) | 40 (63%) | |||
B-symptoms: | 42 (42%) | 3 (13%) | 39 (50%) | 0.002 | 4 (15%) | 38 (51%) | 0.002 | 11 (29%) | 31 (49%) | 0.061 |
Bulky: | 10 (10%) | 1 (4%) | 9 (11%) | 0.54 | 0 (0%) | 10 (13%) | 0.11 | 3 (8%) | 7 (11%) | 0.86 |
ECOG PS > 1 | 38 (38%) | 6 (26%) | 32 (41%) | 0.23 | 6 (23%) | 32 (43%) | 0.1 | 12 (32%) | 26 (41%) | 0.4 |
Albumin < 4 g/dL | 49 (50%) | 3 (14%) | 46 (61%) | <0.001 | 3 (13%) | 46 (62%) | <0.001 | 10 (29%) | 39 (62%) | 0.003 |
Hb < 10.5 g/dL | 49 (50%) | 1 (4%) | 17 (22%) | 0.11 | 1 (4%) | 17 (23%) | 0.062 | 5 (13%) | 13 (21%) | 0.43 |
Leucocytes ≥ 15,000/microL | 12 (12%) | 0 (0%) | 12 (15%) | 0.1 | 0 (0%) | 12 (16%) | 0.069 | 1 (3%) | 11 (17%) | 0.06 |
Lymphopenia < 600/microL or <8% | 16 (16%) | 0 (0%) | 16 (20%) | 0.041 | 0 (0%) | 16 (21%) | 0.024 | 3 (8%) | 13 (21%) | 0.1 |
IPS: | 0.02 | 0.011 | 5 (13%) | 14 (22%) | 0.3 | |||||
0–3 | 82 (81%) | 23 (100%) | 59 (76%) | 26 (100%) | 56 (75%) | |||||
>3 | 19 (19%) | 0 (0%) | 19 (24%) | 0 (0%) | 19 (25%) |
N | 4y-PFS | p | 4y-OS | p | |
---|---|---|---|---|---|
AA stage: | 0.55 | 0.77 | |||
I | 1 | 100% (NA) | 100% (NA) | ||
II | 46 | 82% (76–88) | 96% (92–99) | ||
III | 27 | 85% (78–92) | 88% (82–95) | ||
IV | 27 | 58% (45–72) | 88% (79–96) | ||
AA stage: | 0.18 | 0.97 | |||
I–III | 74 | 83% (79–88) | 93% (90–96) | ||
IV | 27 | 58% (45–72) | 88% (79–96) | ||
MTV: | 0.007 | 0.11 | |||
0–32.5 | 23 | 100% (NA) | 100% (NA) | ||
>32.5 | 78 | 71% (65–77) | 89% (86–93) | ||
TLG: | 0.003 | 0.07 | |||
0–167.8 | 26 | 100% (NA) | 100% (NA) | ||
>167.8 | 75 | 70% (64–76) | 89% (85–93) | ||
SUVmax: | 0.056 | 0.13 | |||
0–10.4 | 38 | 92% (88–96) | 94% (89–100) | ||
>10.4 | 63 | 70% (63–76) | 90% (86–94) | ||
PET/CT parameters: | 0.008 | 0.090 | |||
0–1 | 26 | 100% (NA) | 100% (NA) | ||
2 | 19 | 84% (76–93) | 90% (80–99) | ||
3 | 56 | 65% (58–72) | 88% (84–93) | ||
PET/CT parameters: | 0.007 | 0.035 | |||
0–2 | 45 | 93% (90–97) | 96% (92–100) | ||
3 | 56 | 65% (58–72) | 88% (84–93) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herraez, I.; Bento, L.; Daumal, J.; Repetto, A.; Del Campo, R.; Perez, S.; Ramos, R.; Ibarra, J.; Mestre, F.; Bargay, J.; et al. Total Lesion Glycolysis Improves Tumor Burden Evaluation and Risk Assessment at Diagnosis in Hodgkin Lymphoma. J. Clin. Med. 2021, 10, 4396. https://doi.org/10.3390/jcm10194396
Herraez I, Bento L, Daumal J, Repetto A, Del Campo R, Perez S, Ramos R, Ibarra J, Mestre F, Bargay J, et al. Total Lesion Glycolysis Improves Tumor Burden Evaluation and Risk Assessment at Diagnosis in Hodgkin Lymphoma. Journal of Clinical Medicine. 2021; 10(19):4396. https://doi.org/10.3390/jcm10194396
Chicago/Turabian StyleHerraez, Ines, Leyre Bento, Jaume Daumal, Alessandra Repetto, Raquel Del Campo, Sandra Perez, Rafael Ramos, Javier Ibarra, Francesc Mestre, Joan Bargay, and et al. 2021. "Total Lesion Glycolysis Improves Tumor Burden Evaluation and Risk Assessment at Diagnosis in Hodgkin Lymphoma" Journal of Clinical Medicine 10, no. 19: 4396. https://doi.org/10.3390/jcm10194396
APA StyleHerraez, I., Bento, L., Daumal, J., Repetto, A., Del Campo, R., Perez, S., Ramos, R., Ibarra, J., Mestre, F., Bargay, J., Lopez, P., Garcias-Ladaria, J., Sampol, A., & Gutierrez, A. (2021). Total Lesion Glycolysis Improves Tumor Burden Evaluation and Risk Assessment at Diagnosis in Hodgkin Lymphoma. Journal of Clinical Medicine, 10(19), 4396. https://doi.org/10.3390/jcm10194396