The Role of Immunotherapy in the Treatment of Advanced Cervical Cancer: Current Status and Future Perspectives
Abstract
:1. Introduction
2. Immune Response to Cancer and Immune Checkpoint Inhibition: Rationale for Immunotherapy in Cervical Cancer
3. ICI Monotherapy and Combination in Cervical Cancer
3.1. Pembrolizumab
3.2. Nivolumab
3.3. Other Anti-PD-1 Agents
3.4. Anti-CTLA-4 Therapy
3.5. Anti-PD-1/PD-L1 and Anti CTLA-4 Combinations
3.6. Role for ICI in Small Cell Neuroendocrine Carcinoma of the Cervix
4. Challenges of ICI Therapy in Cervical Carcinoma
4.1. Role of Biomarkers
4.2. Resistance Mechanisms and Treatment Strategies
4.2.1. Immunosuppressive Microenvironment
4.2.2. Role of VEGF Signalling
4.2.3. Tumour Antigen Presentation
4.2.4. Co-Inhibitory Signalling Pathways
5. Immunotherapy beyond ICI
5.1. Cancer Vaccines
5.2. Genome Editing Tools
5.3. Cell Based Therapy—Engineered T Cells
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
APC | antigen presenting cells |
CIN | cervical intraepithelial neoplasia |
CPS | combined positive score |
CRISPR | clustered regularly interspaced palindromic repeats |
CTLA-4 | cytotoxic T lymphocyte associated protein 4 |
HPV | human papilloma virus |
ICI | immune checkpoint inhibitors |
IHC | immunohistochemistry |
LAG-3 | lymphocyte-activation gene 3 |
mDOR | median duration of response |
MHC | major histocompatibility complex |
NECC | neuroendocrine carcinoma of the cervix |
NSCLC | non-small cell lung carcinoma |
ORR | objective response rate |
OS | overall survival |
PD-1 | programmed death-1 |
PDL1 | programmed death ligand-1 |
SCC | squamous cell carcinoma |
TALENs | Transcription Activator-Like Effector Nucleases |
TIGIT | T cell immunoglobulin and ITIM domain |
TILs | tumour infiltrating lymphocytes |
TIM-3 | T cell immunoglobulin and mucin-domain–containing molecule 3 |
TMB | tumour mutational burden |
VEGF | vascular endothelial growth factor |
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Walboomers, J.M.; Jacobs, M.V.; Manos, M.M.; Bosch, F.X.; Kummer, J.A.; Shah, K.V.; Snijders, P.J.; Peto, J.; Meijer, C.J.; Muñoz, N. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 1999, 189, 12–19. [Google Scholar] [CrossRef]
- Gupta, S.; Maheshwari, A.; Parab, P.; Mahantshetty, U.; Hawaldar, R.; Sastri, S.; Kerkar, R.; Engineer, R.; Tongaonkar, H.; Ghosh, J.; et al. Neoadjuvant Chemotherapy Followed by Radical Surgery Versus Concomitant Chemotherapy and Radiotherapy in Patients With Stage IB2, IIA, or IIB Squamous Cervical Cancer: A Randomized Controlled Trial. J. Clin. Oncol. 2018, 36, 1548–1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, M.; Brader, K.R.; Levenback, C.; Burke, T.W.; Atkinson, E.N.; Scott, W.R.; Gershenson, D.M. Phase II study of vinorelbine in advanced and recurrent squamous cell carcinoma of the cervix. J. Clin. Oncol. 1998, 16, 1094–1098. [Google Scholar] [CrossRef]
- Miller, D.S.; Blessing, J.A.; Bodurka, D.; Bonebrake, A.J.; Schorge, J.O. Evaluation of pemetrexed (Alimta, LY231514) as second line chemotherapy in persistent or recurrent carcinoma of the cervix: A phase II study of the Gynecologic Oncology Group. Gynecol. Oncol. 2008, 110, 65–70. [Google Scholar] [CrossRef]
- Lhommé, C.; Fumoleau, P.; Fargeot, P.; Krakowski, Y.; Dieras, V.; Chauvergne, J.; Vennin, P.; Rebattu, P.; Roche, H.; Misset, J.-L.; et al. Results of a European Organization for Research and Treatment of Cancer/Early Clinical Studies Group Phase II Trial of First-Line Irinotecan in Patients With Advanced or Recurrent Squamous Cell Carcinoma of the Cervix. J. Clin. Oncol. 1999, 17, 3136–3142. [Google Scholar] [CrossRef] [PubMed]
- Tewari, K.S.; Sill, M.W.; Penson, R.T.; Huang, H.; Ramondetta, L.M.; Landrum, L.M.; Oaknin, A.; Reid, T.J.; Leitao, M.M.; E Michael, H.; et al. Bevacizumab for advanced cervical cancer: Final overall survival and adverse event analysis of a randomised, controlled, open-label, phase 3 trial (Gynecologic Oncology Group 240). Lancet 2017, 390, 1654–1663. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.S.; Mellman, I. Oncology meets immunology: The cancer-immunity cycle. Immunity 2013, 39, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- André, T.; Shiu, K.-K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab in Microsatellite-Instability–High Advanced Colorectal Cancer. N. Engl. J. Med. 2020, 383, 2207–2218. [Google Scholar] [CrossRef] [PubMed]
- Emens, L.A.; Ascierto, P.A.; Darcy, P.; Demaria, S.; Eggermont, A.M.; Redmond, W.L.; Seliger, B.; Marincola, F.M. Cancer immunotherapy: Opportunities and challenges in the rapidly evolving clinical landscape. Eur. J. Cancer 2017, 81, 116–129. [Google Scholar] [CrossRef] [PubMed]
- Low, J.L.; Walsh, R.J.; Ang, Y.; Chan, G.; Soo, R.A. The evolving immuno-oncology landscape in advanced lung cancer: First-line treatment of non-small cell lung cancer. Ther. Adv. Med. Oncol. 2019, 11, 1758835919870360. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.C.; Desai, K.; Zhang, T.; Ornstein, M.C. The Immunotherapy Landscape in Renal Cell Carcinoma. BioDrugs 2020, 34, 733–748. [Google Scholar] [CrossRef] [PubMed]
- Allouch, S.; Malki, A.; Allouch, A.; Gupta, I.; Vranic, S.; Al Moustafa, A.-E. High-Risk HPV Oncoproteins and PD-1/PD-L1 Interplay in Human Cervical Cancer: Recent Evidence and Future Directions. Front. Oncol. 2020, 10, 914. [Google Scholar] [CrossRef] [PubMed]
- Tewari, K.S.; Monk, B.J.; Vergote, I.; Miller, A.; de Melo, A.C.; Kim, H.S.; Kim, Y.M.; Lisyanskaya, A.; Samouëlian, V.; Lorusso, D.; et al. VP4-2021: EMPOWER-Cervical 1/GOG-3016/ENGOT-cx9: Interim analysis of phase III trial of cemiplimab vs. investigator’s choice (IC) chemotherapy (chemo) in recurrent/metastatic (R/M) cervical carcinoma. Ann. Oncol. 2021, 32, 940–941. [Google Scholar] [CrossRef]
- Frenel, J.S.; Le Tourneau, C.; O’Neil, B.; Ott, P.A.; Piha-Paul, S.A.; Gomez-Roca, C.; van Brummelen, E.M.J.; Rugo, H.S.; Thomas, S.; Saraf, S.; et al. Safety and Efficacy of Pembrolizumab in Advanced, Programmed Death Ligand 1–Positive Cervical Cancer: Results From the Phase Ib KEYNOTE-028 Trial. J. Clin. Oncol. 2017, 35, 4035–4041. [Google Scholar] [CrossRef]
- Chung, H.; Ros, W.; Delord, J.-P.; Perets, R.; Italiano, A.; Shapira-Frommer, R.; Manzuk, L.; Piha-Paul, S.; Xu, L.; Zeigenfuss, S.; et al. Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Cervical Cancer: Results From the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2019, 37, 1470–1478. [Google Scholar] [CrossRef]
- Naumann, R.W.; Hollebecque, A.; Meyer, T.; Devlin, M.-J.; Oaknin, A.; Kerger, J.; López-Picazo, J.M.; Machiels, J.-P.; Delord, J.-P.; Evans, T.R.J.; et al. Safety and Efficacy of Nivolumab Monotherapy in Recurrent or Metastatic Cervical, Vaginal, or Vulvar Carcinoma: Results From the Phase I/II CheckMate 358 Trial. J. Clin. Oncol. 2019, 37, 2825–2834. [Google Scholar] [CrossRef]
- Santin, A.D.; Deng, W.; Frumovitz, M.; Buza, N.; Bellone, S.; Huh, W.; Khleif, S.; Lankes, H.A.; Ratner, E.S.; O’Cearbhaill, R.E.; et al. Phase II evaluation of nivolumab in the treatment of persistent or recurrent cervical cancer (NCT02257528/NRG-GY002). Gynecol. Oncol. 2020, 157, 161–166. [Google Scholar] [CrossRef]
- Lheureux, S.; Butler, M.; Clarke, B.; Cristea, M.C.; Martin, L.P.; Tonkin, K.; Fleming, G.F.; Tinker, A.V.; Hirte, H.W.; Tsoref, D.; et al. Association of Ipilimumab With Safety and Antitumor Activity in Women With Metastatic or Recurrent Human Papillomavirus-Related Cervical Carcinoma. JAMA Oncol. 2018, 4, e173776. [Google Scholar] [CrossRef]
- US Food and Drug Administration. 2018. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pembrolizumab-advanced-cervical-cancer-disease-progression-during-or-after-chemotherapy (accessed on 30 June 2021).
- Drescher, C.; Moore, K.; Liu, J.; O’Malley, D.; Wang, E.; Wang, J.-Z.; Subbiah, V.; Wilky, B.; Yuan, G.; Dupont, C.; et al. Phase I/II, open-label, multiple ascending dose trial of AGEN2034, an anti—PD-1 monoclonal antibody, in advanced solid malignancies: Results of dose escalation in advanced cancer and expansion cohorts in subjects with relapsed/refractory cervical cancer. Ann. Oncol. 2018, 29, viii412–viii413. [Google Scholar] [CrossRef]
- Kudo, M. Scientific Rationale for Combination Immunotherapy of Hepatocellular Carcinoma with Anti-PD-1/PD-L1 and Anti-CTLA-4 Antibodies. Liver Cancer 2019, 8, 413–426. [Google Scholar] [CrossRef]
- Baas, P.; Scherpereel, A.; Nowak, A.; Fujimoto, N.; Peters, S.; Tsao, A.; Mansfield, A.; Popat, S.; Jahan, T.; Antonia, S.; et al. ID:2908 First-Line Nivolumab + Ipilimumab vs Chemotherapy in Unresectable Malignant Pleural Mesothelioma: CheckMate 743. J. Thorac. Oncol. 2020, 15, e42. [Google Scholar] [CrossRef]
- Motzer, R.J.; I Rini, B.; McDermott, D.F.; Frontera, O.A.; Hammers, H.J.; A Carducci, M.; Salman, P.; Escudier, B.; Beuselinck, B.; Amin, A.; et al. Nivolumab plus ipilimumab versus sunitinib in first-line treatment for advanced renal cell carcinoma: Extended follow-up of efficacy and safety results from a randomised, controlled, phase 3 trial. Lancet Oncol. 2019, 20, 1370–1385. [Google Scholar] [CrossRef]
- Naumann, R.W.; Oaknin, A.; Meyer, T.; Lopez-Picazo, J.M.; Lao, C.; Bang, Y.J.; Boni, V.; Sharfman, W.H.; Park, J.C.; Devriese, L.A.; et al. LBA62Efficacy and safety of nivolumab (Nivo) + ipilimumab (Ipi) in patients (pts) with recurrent/metastatic (R/M) cervical cancer: Results from CheckMate 358. Ann. Oncol. 2019, 30, v898–v899. [Google Scholar] [CrossRef]
- O’Malley, D.; Oaknin, A.; Monk, B.; Leary, A.; Selle, F.; Alexandre, J.; Randall, L.; Rojas, C.; Neffa, M.; Kryzhanivska, A.; et al. LBA34 Single-agent anti-PD-1 balstilimab or in combination with anti-CTLA-4 zalifrelimab for recurrent/metastatic (R/M) cervical cancer (CC): Preliminary results of two independent phase II trials. Ann. Oncol. 2020, 31, S1164–S1165. [Google Scholar] [CrossRef]
- Callahan, M.K.; Odunsi, K.; Sznol, M.; Nemunaitis, J.J.; Ott, P.A.; Dillon, P.M.; Park, A.J.; Schwarzenberger, P.; Ricciardi, T.; Macri, M.J.; et al. Phase 1 study to evaluate the safety and tolerability of MEDI4736 (durvalumab, DUR) + tremelimumab (TRE) in patients with advanced solid tumors. J. Clin. Oncol. 2017, 35, 3069. [Google Scholar] [CrossRef]
- Coward, J.; Lemech, C.; Meniawy, T.; Dupont, C.; Gonzalez, A.; Lim, M.; Savitsky, D.; Carini, M.; Hu, S.; Shebanova, O.; et al. Phase I/II study of CTLA-4 inhibitor AGEN1884 + PD-1 Inhibitor AGEN2034 in patients with advanced/refractory solid tumors, with expansion into 2L cervical cancer and solid tumors. Ann. Oncol. 2018, 29, viii417. [Google Scholar] [CrossRef]
- Tempfer, C.B.; Tischoff, I.; Dogan, A.; Hilal, Z.; Schultheis, B.; Kern, P.; Rezniczek, G.A. Neuroendocrine carcinoma of the cervix: A systematic review of the literature. BMC Cancer 2018, 18, 530. [Google Scholar] [CrossRef] [Green Version]
- Paraghamian, S.E.; Longoria, T.C.; Eskander, R.N. Metastatic small cell neuroendocrine carcinoma of the cervix treated with the PD-1 inhibitor, nivolumab: A case report. Gynecol. Oncol. Res. Pract. 2017, 4, 3. [Google Scholar] [CrossRef] [Green Version]
- Castle, P.E.; Pierz, A.; Stoler, M.H. A systematic review and meta-analysis on the attribution of human papillomavirus (HPV) in neuroendocrine cancers of the cervix. Gynecol. Oncol. 2018, 148, 422–429. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Dvorkin, M.; Chen, Y.; Reinmuth, N.; Hotta, K.; Trukhin, D.; Statsenko, G.; Hochmair, M.J.; Özgüroğlu, M.; Ji, J.H.; et al. Durvalumab plus platinum–etoposide versus platinum–etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): A randomised, controlled, open-label, phase 3 trial. Lancet 2019, 394, 1929–1939. [Google Scholar] [CrossRef]
- Horn, L.; Mansfield, A.S.; Szczęsna, A.; Havel, L.; Krzakowski, M.; Hochmair, M.J.; Huemer, F.; Losonczy, G.; Johnson, M.L.; Nishio, M.; et al. First-Line Atezolizumab plus Chemotherapy in Extensive-Stage Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2220–2229. [Google Scholar] [CrossRef]
- Ready, N.E.; Ott, P.A.; Hellmann, M.D.; Zugazagoitia, J.; Hann, C.L.; de Braud, F.; Antonia, S.J.; Ascierto, P.A.; Moreno, V.; Atmaca, A.; et al. Nivolumab Monotherapy and Nivolumab Plus Ipilimumab in Recurrent Small Cell Lung Cancer: Results From the CheckMate 032 Randomized Cohort. J. Thorac. Oncol. 2020, 15, 426–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mezache, L.; Paniccia, B.; Nyinawabera, A.; Nuovo, G.J. Enhanced expression of PD L1 in cervical intraepithelial neoplasia and cervical cancers. Mod. Pathol. 2015, 28, 1594–1602. [Google Scholar] [CrossRef] [PubMed]
- Koncar, R.F.; Feldman, R.; Bahassi, E.M.; Hashemi Sadraei, N. Comparative molecular profiling of HPV-induced squamous cell carcinomas. Cancer Med. 2017, 6, 1673–1685. [Google Scholar] [CrossRef] [PubMed]
- Heeren, A.M.; Punt, S.; Bleeker, M.C.; Gaarenstroom, K.N.; Van Der Velden, J.; Kenter, G.G.; de Gruijl, T.D.; Jordanova, E.S. Prognostic effect of different PD-L1 expression patterns in squamous cell carcinoma and adenocarcinoma of the cervix. Mod. Pathol. 2016, 29, 753–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frederick, J.; Guerrero, L.; Evans, T.; Barreto, J.; Kulangara, K. Abstract 749: Pathology training for combined positive score algorithm for the assessment of PD-L1 in human cancer tissues. Cancer Res. 2020, 80, 749. [Google Scholar]
- Goodman, A.M.; Piccioni, D.; Kato, S.; Boichard, A.; Wang, H.-Y.; Frampton, G.; Lippman, S.M.; Connelly, C.; Fabrizio, D.; Miller, V.; et al. Prevalence of PDL1 Amplification and Preliminary Response to Immune Checkpoint Blockade in Solid Tumors. JAMA Oncol. 2018, 4, 1237–1244. [Google Scholar] [CrossRef] [Green Version]
- Rotman, J.; Den Otter, L.A.; Bleeker, M.C.; Samuels, S.S.; Heeren, A.M.; Roemer, M.G.; Kenter, G.G.; Zijlmans, H.J.M.A.A.; van Trommel, N.E.; de Gruijl, T.D.; et al. PD-L1 and PD-L2 Expression in Cervical Cancer: Regulation and Biomarker Potential. Front. Immunol. 2020, 11, 596825. [Google Scholar] [CrossRef]
- Wood, M.A.; Weeder, B.; David, J.; Nellore, A.; Thompson, R.F. Burden of tumor mutations, neoepitopes, and other variants are weak predictors of cancer immunotherapy response and overall survival. Genome Med. 2020, 12, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.; Dai, J.; Wang, D.; Lu, H.; Dai, H.; Ye, H.; Gu, J.; Chen, S.; Huang, B. Assessment of tumor mutation burden calculation from gene panel sequencing data. Onco Targets Ther. 2019, 12, 3401–3409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalmers, Z.R.; Connelly, C.F.; Fabrizio, D.; Gay, L.; Ali, S.M.; Ennis, R.; Schrock, A.; Campbell, B.; Shlien, A.; Chmielecki, J.; et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017, 9, 34. [Google Scholar] [CrossRef]
- Gandara, D.R.; Kowanetz, M.; Mok, T.S.K.; Rittmeyer, A.; Fehrenbacher, L.; Fabrizio, D.; Otto, G.; Malboeuf, C.; Lieber, D.; Paul, S.M.; et al. Blood-based biomarkers for cancer immunotherapy: Tumor mutational burden in blood (bTMB) is associated with improved atezolizumab (atezo) efficacy in 2L+ NSCLC (POPLAR and OAK). Ann. Oncol. 2017, 28, v460. [Google Scholar] [CrossRef]
- Marabelle, A.; Fakih, M.; Lopez, J.; Shah, M.; Shapira-Frommer, R.; Nakagawa, K.; Chung, H.C.; Kindler, H.L.; A Lopez-Martin, J.; Miller, W.H.; et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: Prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020, 21, 1353–1365. [Google Scholar] [CrossRef]
- Wong, Y.-F.; Cheung, T.-H.; Poon, K.-Y.; Wang, V.W.; Li, J.C.; Lo, K.W.-K.; Yim, S.-F.; Yu, M.-Y.; Lahr, G.; Chung, T.K.-H. The role of microsatellite instability in cervical intraepithelial neoplasia and squamous cell carcinoma of the cervix. Gynecol. Oncol. 2003, 89, 434–439. [Google Scholar] [CrossRef]
- VanderWalde, A.; Spetzler, D.; Xiao, N.; Gatalica, Z.; Marshall, J. Microsatellite instability status determined by next-generation sequencing and compared with PD-L1 and tumor mutational burden in 11,348 patients. Cancer Med. 2018, 7, 746–756. [Google Scholar] [CrossRef] [Green Version]
- Heeren, A.M.; Rotman, J.; Stam, A.G.M.; Pocorni, N.; Gassama, A.A.; Samuels, S.; Bleeker, M.C.G.; Mom, C.H.; Zijlmans, H.J.M.A.A.; Kenter, G.G.; et al. Efficacy of PD-1 blockade in cervical cancer is related to a CD8+ FoxP3+ CD25+ T-cell subset with operational effector functions despite high immune checkpoint levels. J. ImmunoTher. Cancer 2019, 7, 43. [Google Scholar] [CrossRef] [Green Version]
- Cortellini, A.; Bersanelli, M.; Buti, S.; Cannita, K.; Santini, D.; Perrone, F.; Giusti, R.; Tiseo, M.; Michiara, M.; Di Marino, P.; et al. A multicenter study of body mass index in cancer patients treated with anti-PD-1/PD-L1 immune checkpoint inhibitors: When overweight becomes favorable. J. ImmunoTher. Cancer 2019, 7, 57. [Google Scholar] [CrossRef]
- Mullen, M.; Gonzalez-Perez, R.R. Leptin-Induced JAK/STAT Signaling and Cancer Growth. Vaccines 2016, 4, 26. [Google Scholar] [CrossRef]
- Shah, S.; Wood, K.; Labadie, B.; Won, B.; Brisson, R.; Karrison, T.; Hensing, T.; Kozloff, M.; Bao, R.; Patel, J.D.; et al. Clinical and molecular features of innate and acquired resistance to anti-PD-1/PD-L1 therapy in lung cancer. Oncotarget 2017, 9, 4375–4384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, R.J.; Soo, R.A. Resistance to immune checkpoint inhibitors in non-small cell lung cancer: Biomarkers and therapeutic strategies. Ther. Adv. Med. Oncol. 2020, 12, 1758835920937902. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Song, Y.; Lu, Y.-L.; Sun, J.-Z.; Wang, H.-W. Increased expression of programmed death (PD)-1 and its ligand PD-L1 correlates with impaired cell-mediated immunity in high-risk human papillomavirus-related cervical intraepithelial neoplasia. Immunology 2013, 139, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Chao, H.T.; Wang, P.H.; Tseng, J.Y.; Lai, C.R.; Chiang, S.C.; Yuan, C.C. Lymphocyte-infiltrated FIGO Stage IIB squamous cell carcinoma of the cervix is a prominent factor for disease-free survival. Eur. J. Gynaecol. Oncol. 1999, 20, 136–140. [Google Scholar]
- Duan, Q.; Zhang, H.; Zheng, J.; Zhang, L. Turning Cold into Hot: Firing up the Tumor Microenvironment. Trends Cancer 2020, 6, 605–618. [Google Scholar] [CrossRef]
- De Vos van Steenwijk, P.J.; Ramwadhdoebe, T.H.; Goedemans, R.; Doorduijn, E.M.; Van Ham, J.J.; Gorter, A.; van Hall, T.; Kuijjer, M.L.; van Poelgeest, M.I.E.; van der Burg, S.H.; et al. Tumor-infiltrating CD14-positive myeloid cells and CD8-positive T-cells prolong survival in patients with cervical carcinoma. Int. J. Cancer 2013, 133, 2884–2894. [Google Scholar] [CrossRef]
- Heeren, A.M.; Koster, B.D.; Samuels, S.; Ferns, D.M.; Chondronasiou, D.; Kenter, G.G.; Jordanova, E.S.; de Gruijl, T.D. High and interrelated rates of PD-L1+ CD14+ antigen-presenting cells and regulatory T cells mark the microenvironment of metastatic lymph nodes from patients with cervical cancer. Cancer Immunol. Res. 2015, 3, 48. [Google Scholar] [CrossRef] [Green Version]
- Rotman, J.; Mom, C.H.; Jordanova, E.S.; De Gruijl, T.D.; Kenter, G.G. ‘DURVIT’: A phase-I trial of single low-dose durvalumab (Medi4736) IntraTumourally injected in cervical cancer: Safety, toxicity and effect on the primary tumour- and lymph node microenvironment. BMC Cancer 2018, 18, 888. [Google Scholar] [CrossRef]
- Scholl, S.; Popovic, M.; de la Rochefordiere, A.; Girard, E.; Dureau, S.; Mandic, A.; Koprivsek, K.; Samet, N.; Craina, M.; Margan, M.; et al. Clinical and genetic landscape of treatment naive cervical cancer: Alterations in PIK3CA and in epigenetic modulators associated with sub-optimal outcome. EBioMedicine 2019, 43, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Collins, N.B.; Al Abosy, R.; Miller, B.; Bi, K.; Manguso, R.; Yates, K.; Haining, W.N. PI3K activated tumors evade tumor immunity by promoting an inhibitory myeloid microenvironment. J. Immunol. 2019, 202, 58.17. [Google Scholar]
- Peng, W.; Chen, J.Q.; Liu, C.; Malu, S.; Creasy, C.; Tetzlaff, M.T.; Xu, C.; McKenzie, J.A.; Zhang, C.; Liang, X.; et al. Loss of PTEN Promotes Resistance to T Cell–Mediated Immunotherapy. Cancer Discov. 2016, 6, 202–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Aguiar, R.B.; de Moraes, J.Z. Exploring the Immunological Mechanisms Underlying the Anti-vascular Endothelial Growth Factor Activity in Tumors. Front. Immunol. 2019, 10, 1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, R.; Tanaka, T.; Akasaki, Y.; Murayama, Y.; Yoshida, K.; Sasaki, H. The role of vascular endothelial growth factor in the hypoxic and immunosuppressive tumor microenvironment: Perspectives for therapeutic implications. Med. Oncol. 2019, 37, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voron, T.; Colussi, O.; Marcheteau, E.; Pernot, S.; Nizard, M.; Pointet, A.-L.; Latreche, S.; Bergaya, S.; Benhamouda, N.; Tanchot, C.; et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J. Exp. Med. 2015, 212, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Socinski, M.A.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodríguez-Abreu, D.; Moro-Sibilot, D.; Thomas, C.A.; Barlesi, F.; et al. Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC. N. Engl. J. Med. 2018, 378, 2288–2301. [Google Scholar] [CrossRef]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef]
- Rini, B.I.; Plimack, E.R.; Stus, V.; Gafanov, R.; Hawkins, R.; Nosov, D.; Pouliot, F.; Alekseev, B.; Soulières, D.; Melichar, B.; et al. Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1116–1127. [Google Scholar] [CrossRef]
- Yoshida, K.; Suzuki, S.; Sakata, J.; Utsumi, F.; Niimi, K.; Yoshikawa, N.; Nishino, K.; Shibata, K.; Kikkawa, F.; Kajiyama, H. The upregulated expression of vascular endothelial growth factor in surgically treated patients with recurrent/radioresistant cervical cancer of the uterus. Oncol. Lett. 2018, 16, 515–521. [Google Scholar] [CrossRef] [Green Version]
- Lan, C.; Shen, J.; Wang, Y.; Li, J.; Liu, Z.; He, M.; Cao, X.; Ling, J.; Huang, J.; Zheng, M.; et al. Camrelizumab Plus Apatinib in Patients With Advanced Cervical Cancer (CLAP): A Multicenter, Open-Label, Single-Arm, Phase II Trial. J. Clin. Oncol. 2020, 38, 4095–4106. [Google Scholar] [CrossRef]
- Grau, J.F.; Farinas-Madrid, L.; Oaknin, A. A randomized phase III trial of platinum chemotherapy plus paclitaxel with bevacizumab and atezolizumab versus platinum chemotherapy plus paclitaxel and bevacizumab in metastatic (stage IVB), persistent, or recurrent carcinoma of the cervix: The BEATcc study (ENGOT-Cx10/GEICO 68-C/JGOG1084/GOG-3030). Int. J. Gynecol. Cancer 2020, 30, 139–143. [Google Scholar]
- Syn, N.L.; Teng, M.W.L.; Mok, T.S.K.; Soo, R.A. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 2017, 18, e731–e741. [Google Scholar] [CrossRef]
- Sade-Feldman, M.; Jiao, Y.J.; Chen, J.H.; Rooney, M.S.; Barzily-Rokni, M.; Eliane, J.-P.; Bjorgaard, S.L.; Hammond, M.R.; Vitzthum, H.; Blackmon, S.M.; et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat. Commun. 2017, 8, 1136. [Google Scholar] [CrossRef]
- Gettinger, S.; Choi, J.; Hastings, K.; Truini, A.; Datar, I.; Sowell, R.; Wurtz, A.; Dong, W.; Cai, G.; Melnick, M.A.; et al. Impaired HLA Class I Antigen Processing and Presentation as a Mechanism of Acquired Resistance to Immune Checkpoint Inhibitors in Lung Cancer. Cancer Discov. 2017, 7, 1420–1435. [Google Scholar] [CrossRef] [Green Version]
- Morrice, N.A.; Powis, S.J. A role for the thiol-dependent reductase ERp57 in the assembly of MHC class I molecules. Curr. Biol. 1998, 8, 713–716. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.; Cho, H.; Perry, C.; Song, J.; Ylaya, K.; Lee, H.; Kim, J.-H. Downregulation of ERp57 expression is associated with poor prognosis in early-stage cervical cancer. Biomarkers 2013, 18, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Zhang, Y.; Zhang, J.-P.; Liang, J.; Li, L.; Zheng, L. Tim-3 expression defines regulatory T cells in human tumors. PLoS ONE 2013, 8, e58006. [Google Scholar] [CrossRef] [Green Version]
- Fourcade, J.; Sun, Z.; Benallaoua, M.; Guillaume, P.; Luescher, I.F.; Sander, C.; Kirkwood, J.M.; Kuchroo, V.; Zarour, H.M. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J. Exp. Med. 2010, 207, 2175–2186. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Zhou, X.; Huang, X.; Li, Q.; Gao, L.; Jiang, L.; Huang, M.; Zhou, J. Tim-3 expression in cervical cancer promotes tumor metastasis. PLoS ONE 2013, 8, e53834. [Google Scholar] [CrossRef]
- Chen, F.; Sherwood, T.; De Costa, A.; Yee-Toy, N.; Lung, P.; Easton, A.; Sumrow, B.; Bonvini, E.; Moore, P.A. Immunohistochemistry analyses of LAG-3 expression across different tumor types and co-expression with PD-1. J. Clin. Oncol. 2020, 38, e15086. [Google Scholar] [CrossRef]
- Huang, R.-Y.; Francois, A.; McGray, A.R.; Miliotto, A.; Odunsi, K. Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer. Oncoimmunology 2017, 6, e1249561. [Google Scholar] [CrossRef] [Green Version]
- Qin, S.; Xu, L.; Yi, M.; Yu, S.; Wu, K.; Luo, S. Novel immune checkpoint targets: Moving beyond PD-1 and CTLA-4. Mol. Cancer 2019, 18, 155. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, R.; Fan, P.; Yao, X.; Qin, L.; Peng, Y.; Ma, M.; Asley, N.; Chang, X.; Feng, Y.; et al. A Comprehensive Analysis of Key Immune Checkpoint Receptors on Tumor-Infiltrating T Cells From Multiple Types of Cancer. Front. Oncol. 2019, 9, 1066. [Google Scholar] [CrossRef] [Green Version]
- Huh, W.K.; Dizon, D.S.; Powell, M.A.; Leath, C.A.; Landrum, L.M.; Tanner, E.; Higgins, R.; Ueda, S.M.; McHale, M.T.; Monk, B.J.; et al. ADXS11-001 immunotherapy in squamous or non-squamous persistent/recurrent metastatic cervical cancer: Results from stage I of the phase II GOG/NRG0265 study. J. Clin. Oncol. 2016, 34, 5516. [Google Scholar] [CrossRef]
- Basu, P.; Mehta, A.; Jain, M.; Gupta, S.; Nagarkar, R.V.; John, S.; Petit, R. A Randomized Phase 2 Study of ADXS11-001 Listeria monocytogenes-Listeriolysin O Immunotherapy With or Without Cisplatin in Treatment of Advanced Cervical Cancer. Int. J. Gynecol. Cancer 2018, 28, 764–772. [Google Scholar] [CrossRef] [Green Version]
- Massarelli, E.; William, W.; Johnson, F.; Kies, M.; Ferrarotto, R.; Guo, M.; Feng, L.; Lee, J.J.; Tran, H.; Kim, Y.U.; et al. Combining Immune Checkpoint Blockade and Tumor-Specific Vaccine for Patients With Incurable Human Papillomavirus 16-Related Cancer: A Phase 2 Clinical Trial. JAMA Oncol. 2019, 5, 67–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akram, F.; Ul Haq, I.; Ahmed, Z.; Khan, H.; Ali, M.S. CRISPR-Cas9, A Promising Therapeutic Tool for Cancer Therapy: A Review. Protein Pept. Lett. 2020, 27, 931–944. [Google Scholar] [CrossRef] [PubMed]
- Shankar, S.; Prasad, D.; Sanawar, R.; Das, A.V.; Pillai, M.R. TALEN based HPV-E7 editing triggers necrotic cell death in cervical cancer cells. Sci. Rep. 2017, 7, 5500. [Google Scholar] [CrossRef]
- Jazaeri, A.A.; Zsiros, E.; Amaria, R.N.; Artz, A.S.; Edwards, R.P.; Wenham, R.M.; Slomovitz, B.M.; Walther, A.; Thomas, S.S.; Chesney, J.A.; et al. Safety and efficacy of adoptive cell transfer using autologous tumor infiltrating lymphocytes (LN-145) for treatment of recurrent, metastatic, or persistent cervical carcinoma. J. Clin. Oncol. 2019, 37, 2538. [Google Scholar] [CrossRef]
Trial | No. of Subjects | Included Subjects | Intervention | ORR (%) | mDOR (Months) | Survival (Months) |
---|---|---|---|---|---|---|
EMPOWER-CERVICAL 1/GOG-3016/ENGOT-CX9 [15] | 608 | PDL1 unselected ≥1 prior line of therapy | Cemiplimab 350 mg 3 weekly vs. Investigator choice chemotherapy | 16.4 vs. 6.3 | 16.4 vs. 6.9 | mPFS: 2.8 vs. 2.9 (HR = 0.75 [0.63–0.89]) mOS: 12.0 vs. 8.5 (HR = 0.69 [0.56–0.84]) |
KEYNOTE-028 [16] | 24 | PD-L1 ≥ 1% (modified proportion score) PD on prior therapy | Pembrolizumab 10 mg/kg, 2 weekly | 17 | 5.4 m | mPFS 2 mOS 11 |
KEYNOTE-158 [17] | 98 | PDL1 unselected PD on prior therapy | Pembrolizumab 200 mg 3 weekly | 12.2 (PDL1 unselected) 14.6 (PDL1 CPS ≥ 1) | NR | mPFS 2.1 mOS 9.4 (ITT) |
CHECKMATE-358 [18] cervical cohort | 19 | ≤2 prior lines of therapy Excluded HPV negative | Nivolumab 240 mg 2 weekly | 26.3 | NR | mPFS 5.1 mOS 21.9 |
NRG-GY002 [19] | 25 | PDL1 unselected PD on prior therapy | Nivolumab 3 mg/kg 2 weekly | 4 | 3.8 | mPFS 3.5 mOS 14.5 |
Lheureux et al. [20] | 42 | PDL1 unselected | Ipilimumab 10 mg/kg 3 weekly (4 cycles) → 12 weekly maintenance (to 1 year) | 3 | - | mPFS 2.5 mOS8.5 |
Trial Identifier | Study Phase | Study Population | Intervention |
---|---|---|---|
NCT04221945 | III | FIGO 2014 IB2-IIB (node positive), FIGO 2014 II-IVA | CRT vs. CRT + concurrent and adjuvant pembrolizumab |
NCT03830866 | III | FIGO (2009) Stages IB2 to IIB node positive or FIGO (2009) IIIA-IVA any nodal status | CRT vs. CRT + durvalumab then durvalumab maintenance (2 years) |
NCT02635360 | II | - | CRT + concurrent Pembrolizumab vs. CRT adjuvant pembrolizumab |
NCT03527264 | II | FIGO 1B-IVA | 1A: CRT + concurrent Nivolumab (whole pelvic RT) 1B: CRT + concurrent Nivolumab (extended field RT) 2: CRT + Nivolumab maintenance (total 2 years) 3: CRT + concurrent Nivolumab then maintenance Nivolumab (total 2 years) |
NCT03612791 | II | FIGO IB2-IVB (limited to PA nodes) | CRT vs. CRT + concurrent atezolizumab (atezolizumab total 20 cycles) |
NCT03833479 | II | FIGO IB2/IIA2/IIB (positive pelvic LN) FIGO IIIA/IIIB/IVA | CRT + consolidation TSR-042 (2 years) |
NCT04238988 | II | FIGO IB2-IIB | Neoadjuvant carboplatin + paclitaxel + pembrolizumab → surgery → Adjuvant carboplatin-paclitaxel-pembrolizumab (high-risk patients) |
NCT01711515 | I | FIGO (2014) IB2/IIA (+para-aortic LN), IIB/IIIB/IVA | CRT + adjuvant Ipilimumab |
NCT04256213 | Pilot | FIGO IB3-IVA | Ipilimumab + Nivolumab + CRT |
Trial Identifier | Study Phase | Treatment Status | Study Population | Intervention |
---|---|---|---|---|
ICI + Chemotherapy | ||||
NCT03635567 | III | Naive | Recurrence/metastatic cervical cancer | Cisplatin/Carboplatin + Paclitaxel + Bevacizumab + Pembrolizumab/placebo |
NCT03556839 | III | Naive | Stage IVB, persistent/recurrent cervical cancer | Cisplatin/Carboplatin + Paclitaxel + Bevacizumab +/− Atezolizumab |
NCT03340376 | II | Pre-treated | Recurrent/metastatic cervical cancer | Atezolizumab vs. Doxorubicin vs. Atezolizumab + Doxorubicin |
NCT03518606 | I/II | Pre-treated | Recurrent/metastatic Cervical, H+N, Breast, Prostate cancer | Durvalumab + Tremelimumab + Vinorelbine |
NCT04188860 | II | Pre-treated | Recurrent/persistent advanced cervical cancer | Camrelizumab + Nab-paclitaxel |
ICI + Targeted Therapy | ||||
NCT03826589 | Pre-treated | Recurrent/metastatic cervical cancer | Avelumab + Axitinib | |
NCT04357873 | II | Naive/pre-treated | Recurrent/Metastatic SCC (Vulvar, Penile, Cervix, H + N, Anal) | Pembrolizumab + Vorinostat |
NCT04230954 | II | Naïve (PD-L1 CPS ≥ 1) | Recurrent/Metastatic Cervical cancer | Pembrolizumab + Cabozantinib |
NCT04483544 | II | ≤2 prior lines | Pembrolizumab + Olaparib | |
ICI + Radiotherapy | ||||
NCT03614949 | II | Naive/pre-treated | Recurrent/metastatic Cervical cancer or HPV positive SCC of vagina/vulva. | Atezolizumab + SBRT (24Gy, 3 fractions) |
NCT03277482 | I | Pre-treated | Recurrent/metastatic gynaecological cancer | Durvalumab, Tremelimumab + Radiation therapy |
Vaccine Therapy +/− ICI | ||||
NCT03946358 | II | Pre-treated | Pre-treated locally advanced/metastatic HPV associated cancers | Atezolizumab + UCPVax |
NCT04405349 | IIa | Pre-treated | HPV16 + ’ve cervical Ca | VB10.16 + Atezolizumab |
NCT03073525 | II | - | Advanced gynaecological malignancy | Part 2:Vigil x2 → Vigil + Atezolizumab Part 2 comparator: Atezolizumab x2 → Atezolizumab + vigil |
NCT04432597 | I/II | Naive/pre-treated | Recurrent/metastatic HPV associated cancer | PRGN-2009 +/− M7824 |
NCT02866006 | I/II | Pre-treated | Recurrent/metastatic HPV 16/18 positive Cervical cancer | BVAC-C |
NCT02128126 | I/II | Naive | Recurrent/metastatic cervical cancer | ISA101/ISA101b + Carboplatin + paclitaxel +/− Bevacizumab |
NCT04287868 | I/II | Pre-treated | Advanced HPV associated malignancies | PDS0101 + M7824 + NHS-L12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walsh, R.J.; Tan, D.S.P. The Role of Immunotherapy in the Treatment of Advanced Cervical Cancer: Current Status and Future Perspectives. J. Clin. Med. 2021, 10, 4523. https://doi.org/10.3390/jcm10194523
Walsh RJ, Tan DSP. The Role of Immunotherapy in the Treatment of Advanced Cervical Cancer: Current Status and Future Perspectives. Journal of Clinical Medicine. 2021; 10(19):4523. https://doi.org/10.3390/jcm10194523
Chicago/Turabian StyleWalsh, Robert J., and David S. P. Tan. 2021. "The Role of Immunotherapy in the Treatment of Advanced Cervical Cancer: Current Status and Future Perspectives" Journal of Clinical Medicine 10, no. 19: 4523. https://doi.org/10.3390/jcm10194523
APA StyleWalsh, R. J., & Tan, D. S. P. (2021). The Role of Immunotherapy in the Treatment of Advanced Cervical Cancer: Current Status and Future Perspectives. Journal of Clinical Medicine, 10(19), 4523. https://doi.org/10.3390/jcm10194523