Efficacy of Anti-Vascular Endothelial Growth Factor Treatment in Neovascular Age-Related Macular Degeneration and Systemic Cardiovascular Risk Factors
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
- Changes in BCVA and CRT at 3 and 12 months of treatment in the whole study group.
- Mean changes in BCVA and CRT in the subgroups of patients with and without specific CRF.
- Proportions of responders and non-responders (functional and morphological) according to the presence of each specific CRF.
- Correlation between the changes in BCVA and CRT at 12 months and the number of coexisting CRFs.
3. Results
4. Discussion
4.1. Systemic Hypertension
4.2. Plasma Lipids
4.3. CHKD
4.4. Other CRFs
4.5. Number of Risk Factors
4.6. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klein, R.; Klein, B.E.; Linton, K.L. Prevalence of age-related maculopathy: The beaver dam eye study. Ophthalmology 1992, 99, 933–943. [Google Scholar] [CrossRef]
- GBD 2019 Blindness and Vision Impairment Collaborators; Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: The Right to Sight: An analysis for the global burden of disease study. Lancet Glob. Health 2021, 9, e144–e160. [Google Scholar] [CrossRef]
- Wong, W.L.; Su, X.; Li, B.X.; Cheung, C.M.G.; Klein, B.E.; Cheng, C.-Y.; Wong, T.Y. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob. Health 2014, 2, e106–e116. [Google Scholar] [CrossRef] [Green Version]
- Finger, R.P.; Daien, V.; Eldem, B.M.; Talks, J.S.; Korobelnik, J.-F.; Mitchell, P.; Sakamoto, T.; Wong, T.Y.; Pantiri, K.; Carrasco, J. Anti-vascular endothelial growth factor in neovascular age-related macular degeneration–A systematic review of the impact of anti-VEGF on patient outcomes and healthcare systems. BMC Ophthalmol. 2020, 20, 294. [Google Scholar] [CrossRef]
- Rofagha, S.; Bhisitkul, R.B.; Boyer, D.S.; Sadda, S.R.; Zhang, K.; SEVEN-UP Study Group. Seven-year outcomes in Ranibizumab-treated patients in Anchor, Marina, and Horizon: A multicenter cohort study (SEVEN-UP). Ophthalmology 2013, 120, 2292–2299. [Google Scholar] [CrossRef] [PubMed]
- Arevalo, J.F.; Lasave, A.F.; Wu, L.; Acón, D.; Berrocal, M.H.; Diaz-Llopis, M.; Gallego-Pinazo, R.; Serrano, M.A.; Alezzandrini, A.A.; Rojas, S.; et al. Intravitreal bevacizumab for choroidal neovascularization in age-related macular degeneration: 5-Year results of the Pan-American collaborative retina study group. Retina 2016, 36, 859–867. [Google Scholar] [CrossRef]
- Sun, X.; Yang, S.; Zhao, J. Resistance to anti-VEGF therapy in neovascular age-related macular degeneration: A comprehensive review. Drug Des. Dev. Ther. 2016, 10, 1857–1867. [Google Scholar] [CrossRef] [Green Version]
- Mehta, H.; Tufail, A.; Daien, V.; Lee, A.Y.; Nguyen, V.; Ozturk, M.; Barthelmes, D.; Gillies, M.C. Real-world outcomes in patients with neovascular age-related macular degeneration treated with intravitreal vascular endothelial growth factor inhibitors. Prog. Retin. Eye Res. 2018, 65, 127–146. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Erfurth, U.; Waldstein, S. A paradigm shift in imaging biomarkers in neovascular age-related macular degeneration. Prog. Retin. Eye Res. 2016, 50, 1–24. [Google Scholar] [CrossRef]
- Brown, D.M.; Tuomi, L.; Shapiro, H.; Pier Study Group. Anatomical measures as predictors of visual outcomes in ranibizumab-treated eyes with neovascular age-related macular degeneration. Retina 2013, 33, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Piermarocchi, S.; Miotto, S.; Colavito, D.; Leon, A.; Segato, T. Combined effects of genetic and non-genetic risk factors affect response to ranibizumab in exudative age-related macular degeneration. Acta Ophthalmol. 2015, 93, e451–e457. [Google Scholar] [CrossRef]
- Zhao, L.; Grob, S.; Avery, R.; Kimura, A.; Pieramici, D.; Lee, J.; Rabena, M.; Ortiz, S.; Quach, J.; Cao, G.; et al. Common variant in VEGFA and response to Anti-VEGF therapy for neovascular age-related macular degeneration. Curr. Mol. Med. 2013, 13, 929–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bek, T.; Klug, S.E. Age, sex, and type of medication predict the effect of anti-VEGF treatment on central retinal thickness in wet age-related macular degeneration. Clin. Ophthalmol. 2018, 12, 473–479. [Google Scholar] [CrossRef] [Green Version]
- Shah, A.R.; Williams, S.; Baumal, C.R.; Rosner, B.; Duker, J.S.; Seddon, J.M. Predictors of response to intravitreal anti-vascular endothelial growth factor treatment of age-related macular degeneration. Am. J. Ophthalmol. 2016, 163, 54–166. [Google Scholar] [CrossRef] [PubMed]
- Guber, J.; Josifova, T.; Henrich, P.B.; Guber, I. Clinical risk factors for poor anatomic response to ranibizumab in neovascular age-related macular degeneration. Open Ophthalmol. J. 2014, 8, 3–6. [Google Scholar] [CrossRef] [Green Version]
- Van Asten, F.; Rovers, M.M.; Lechanteur, Y.T.; Smailhodzic, D.; Muether, P.S.; Chen, J.; den Hollander, A.I.; Fauser, S.; Hoyng, C.B.; van der Wilt, G.J.; et al. Predicting non-response to ranibizumab in patients with neovascular age-related macular degeneration. Ophthalmic Epidemiol. 2014, 21, 347–355. [Google Scholar] [CrossRef]
- Krebs, I.; Glittenberg, C.; Ansari-Shahrezaei, S.; Hagen, S.; Steiner, I.; Binder, S. Non-responders to treatment with antagonists of vascular endothelial growth factor in age-related macular degeneration. Br. J. Ophthalmol. 2013, 97, 1443–1446. [Google Scholar] [CrossRef]
- Lee, S.; Song, S.J.; Yu, H.G. Current smoking is associated with a poor visual acuity improvement after intravitreal ranibizumab therapy in patients with exudative age-related macular degeneration. J. Korean Med Sci. 2013, 28, 769–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menger, J.F.; Haubitz, I.; Keilhauer-Strachwitz, C.N. Influence of AMD-risk factors on the effectiveness of anti-vegf therapy in neovascular age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2012, 53, 1–55. [Google Scholar]
- Inglehearn, C.F.; Ali, M.; Gale, R.; Cassidy, F.; Varma, D.; Downey, L.M.; Baxter, P.D.; McKibbin, M. Improved response to ranibizumab in ex and current smokers with Age-related Macular Degeneration (AMD), but no evidence that CFH, ARMS2/HTRA1 or VEGF genotypes predict treatment outcome. Investig. Ophthalmol. Vis. Sci. 2012, 53, 3325. [Google Scholar]
- Machalińska, A.; Kawa, M.P.; Marlicz, W.; Machaliński, B. Complement system activation and endothelial dysfunction in patients with age-related macular degeneration (AMD): Possible relationship between AMD and atherosclerosis. Acta Ophthalmol. 2012, 90, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Lipecz, A.; Miller, L.; Kovacs, I.; Czakó, C.; Csipo, T.; Baffi, J.; Csiszar, A.; Tarantini, S.; Ungvari, Z.; Yabluchanskiy, A.; et al. Microvascular contributions to age-related macular degeneration (AMD): From mechanisms of choriocapillaris aging to novel interventions. GeroScience 2019, 41, 813–845. [Google Scholar] [CrossRef] [PubMed]
- Keles, S.; Kartal, B.; Alp, H.H.; Ekinci, M.; Ceylan, E.; Ondas, O.; Arpali, E.; Dogan, S.; Yildirim, K.; Keles, M.S.; et al. Evaluation of cardiovascular biomarkers in patients with age-related wet macular degeneration. Clin. Ophthalmol. 2014, 8, 1573–1578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vingerling, J.R.; Dielemans, I.; Bots, M.L.; Hofman, A.; Grobbee, D.E.; de Jong, P.T. Age-related macular degeneration is associated with atherosclerosis. The Rotterdam Study. Am. J. Epidemiol. 1995, 142, 404–409. [Google Scholar] [CrossRef]
- Xin, X.; Sun, Y.; Li, S.; Xu, H.; Zhang, D. Age-related macular degeneration and the risk of all-cause and cardiovascular mortality: A meta-analysis of cohort studies. Retina 2018, 38, 497–507. [Google Scholar] [CrossRef]
- Hu, C.C.; Ho, J.D.; Lin, H.C. Neovascular age-related macular degeneration and the risk of stroke: A 5-year population-based follow-up study. Stroke 2010, 41, 613–617. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Klein, R.; Wong, T.Y. Age-related macular degeneration and risk of coronary heart disease and stroke: The cardiovascular health study. Ophthalmology 2009, 116, 1913–1919. [Google Scholar] [CrossRef] [Green Version]
- Wong, T.Y.; Klein, R.; Sun, C.; Mitchell, P.; Couper, D.J.; Lai, H.; Hubbard, L.D.; Sharrett, A.R. Age-related macular degeneration and risk for stroke. Ann. Intern. Med. 2006, 145, 98–106. [Google Scholar] [CrossRef]
- Pennington, K.L.; DeAngelis, M.M. Epidemiology of age-related macular degeneration (AMD): Associations with cardiovascular disease phenotypes and lipid factors. Eye Vis. 2016, 3, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Fraser-Bell, S.; Wu, J.; Klein, R.; Azen, S.P.; Hooper, C.; Foong, A.W.; Varma, R. Cardiovascular risk factors and age-related macular degeneration: The Los Angeles Latino Eye Study. Am. J. Ophthalmol. 2008, 145, 308–316. [Google Scholar] [CrossRef] [Green Version]
- Seddon, J.M. Macular degeneration epidemiology: Nature-nurture, lifestyle factors, genetic risk, and gene-environment interactions–The Weisenfeld Award lecture. Investig. Opthalmol. Vis. Sci. 2017, 58, 6513–6528. [Google Scholar] [CrossRef]
- Zdrojewski, Ł.; Rutkowski, B. MDRD czy CKD-EPI—Rewolucja czy ewolucja? Forum Nefrol. 2014, 7, 38–44. [Google Scholar]
- WHO CVD Risk Chart Working Group. World Health Organization cardiovascular disease risk charts: Revised models to estimate risk in 21 global regions. Lancet Glob. Health 2019, 7, e1332–e1345. [Google Scholar] [CrossRef] [Green Version]
- Bhuachalla, B.N.; McGarrigle, C.A.; O’Leary, N.; Akuffo, K.O.; Peto, T.; Beatty, S.; Kenny, R.A. Orthostatic hypertension as a risk factor for age-related macular degeneration: Evidence from the Irish longitudinal study on ageing. Exp. Gerontol. 2018, 106, 80–87. [Google Scholar] [CrossRef]
- Cougnard-Grégoire, A.; Delyfer, M.-N.; Korobelnik, J.-F.; Rougier, M.-B.; Malet, F.; Le Goff, M.; Dartigues, J.-F.; Colin, J.; Barberger-Gateau, P.; Delcourt, C. Long-term blood pressure and age-related macular degeneration: The ALIENOR Study. Investig. Opthalmol. Vis. Sci. 2013, 54, 1905–1912. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.; Deng, Y.; Klein, B.E.; Hyman, L.; Seddon, J.; Frank, R.N.; Wallace, R.B.; Hendrix, S.L.; Kuppermann, B.D.; Langer, R.D.; et al. Cardiovascular disease, its risk factors and treatment, and age-related macular degeneration: Women’s health initiative sight exam ancillary study. Am. J. Ophthalmol. 2007, 143, 473–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, R.; Myers, C.E.; Klein, B.E. Vasodilators, blood pressure-lowering medications, and age-related macular degeneration: The Beaver Dam Eye Study. Ophthalmology 2014, 121, 1604–1611. [Google Scholar] [CrossRef] [Green Version]
- Metelitsina, T.I.; Grunwald, J.E.; DuPont, J.C.; Ying, G.S. Effect of systemic hypertension on foveolar choroidal blood flow in age related macular degeneration. Br. J. Ophthalmol. 2006, 90, 342–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, W.; Grunwald, J.E.; Metelitsina, T.I.; DuPont, J.C.; Ying, G.-S.; Martin, E.R.; Dunaief, J.L.; Brucker, A.J. Association of risk factors for choroidal neovascularization in age-related macular degeneration with decreased foveolar choroidal circulation. Am. J. Ophthalmol. 2010, 150, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Klein, R.; Klein, B.E.; Marino, E.K.; Kuller, L.H.; Furberg, C.; Burke, G.L.; Hubbard, L.D. Early age-related maculopathy in the cardio-vascular health study. Ophthalmology 2003, 110, 25–33. [Google Scholar] [CrossRef]
- Jonasson, F.; Fisher, D.E.; Eiriksdottir, G.; Sigurdsson, S.; Klein, R.; Launer, L.J.; Harris, T.; Gudnason, V.; Cotch, M.F. Five-year incidence, progression, and risk factors for age-related macular degeneration: The age, gene/environment susceptibility study. Ophthalmology 2014, 121, 1766–1772. [Google Scholar] [CrossRef] [Green Version]
- Butt, A.L.; Lee, E.T.; Klein, R.; Russell, D.; Ogola, G.; Warn, A.; Kingsley, R.M.; Yeh, J. Prevalence and risks factors of age-related macular degeneration in oklahoma indians: The Vision Keepers Study. Ophthalmology 2011, 118, 1380–1385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudnicka, A.R.; Maccallum, P.K.; Whitelocke, R.; Meade, T.W. Circulating markers of arterial thrombosis and late-stage age-related macular degeneration: A Case–Control Study. Eye 2010, 24, 1199–1206. [Google Scholar] [CrossRef] [PubMed]
- Semba, R.D.; Moaddel, R.; Cotch, M.F.; Jonasson, F.; Eiriksdottir, G.; Harris, T.B.; Launer, L.J.; Sun, K.; Klein, R.; Schaumberg, D.A.; et al. Serum lipids in adults with late age-related macular degeneration: A Case-Control Study. Lipids Health Dis. 2019, 18, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Wang, M.; Zhang, X.; Zhang, Q.; Nie, J.; Zhang, M.; Liu, X.; Ma, L. The association between the lipids levels in blood and risk of age-related macular degeneration. Nutrients 2016, 8, 663. [Google Scholar] [CrossRef] [Green Version]
- Burgess, S.; Davey Smith, G. Mendelian randomization implicates high-density lipoprotein cholesterol-associated mecha-nisms in etiology of age-related macular degeneration. Ophthalmology 2017, 124, 1165–1174. [Google Scholar] [CrossRef] [Green Version]
- Delcourt, C.; Michel, F.; Colvez, A.; Hofman, A.; van Duijn, C.M.; Stricker, B.H.; de Jong, P.T. Associations of cardiovascular disease and its risk factors with age-related macular degeneration: The POLA Study. Ophthalmic Epidemiol. 2001, 8, 237–249. [Google Scholar] [CrossRef]
- Van Leeuwen, R.; Klaver, C.C.; Vingerling, J.R.; Hofman, A.; van Duijn, C.M.; Stricker, B.H.; de Jong, P.T. Cholesterol and age-related macular degeneration: Is there a link? Am. J. Ophthalmol. 2004, 137, 750–752. [Google Scholar] [CrossRef] [PubMed]
- Cougnard-Grégoire, A.; Delyfer, M.-N.; Korobelnik, J.-F.; Rougier, M.-B.; Le Goff, M.; Dartigues, J.-F.; Barberger-Gateau, P.; Delcourt, C. Elevated high-density lipoprotein cholesterol and age-related macular degeneration: The Alienor Study. PLoS ONE 2014, 9, e90973. [Google Scholar] [CrossRef] [Green Version]
- Izumi-Nagai, K.; Nagai, N.; Ohgami, K.; Satofuka, S.; Ozawa, Y.; Tsubota, K.; Umezawa, K.; Ohno, S.; Oike, Y.; Ishida, S. Macular pigment lutein is antiinflammatory in preventing choroidal neovascularization. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 2555–2562. [Google Scholar] [CrossRef]
- Margrain, T.H.; Boulton, M.; Marshall, J.; Sliney, D.H. Do blue light filters confer protection against age-related macular degen-eration? Prog. Retin. Eye Res. 2004, 23, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Eren, E.; Yilmaz, N.; Aydin, O. High density lipoprotein and it’s dysfunction. Open Biochem. J. 2012, 6, 78–93. [Google Scholar] [CrossRef] [Green Version]
- Pikuleva, I.A.; Curcio, C.A. Cholesterol in the retina: The best is yet to come. Prog. Retin. Eye Res. 2014, 41, 64–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, U.L.; Grigsby, D.; Cady, M.A.; Landowski, M.; Skiba, N.P.; Liu, J.; Remaley, A.T.; Klingeborn, M.; Rickman, C.B. High-density lipoproteins are a potential therapeutic target for age-related macular degeneration. J. Biol. Chem. 2020, 295, 13601–13616. [Google Scholar] [CrossRef]
- Vavvas, D.G.; Daniels, A.B.; Kapsala, Z.G.; Goldfarb, J.W.; Ganotakis, E.; Loewenstein, J.I.; Young, L.; Gragoudas, E.S.; Eliott, D.; Kim, I.; et al. Regression of Some High-risk Features of Age-related Macular Degeneration (AMD) in Patients receiving intensive statin treatment. EBioMedicine 2016, 5, 198–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Risk Factor | No. | % |
---|---|---|
Age ≥ 70 years | 77 | 78.57 |
Male sex | 31 | 31.63 |
Smoking | 32 | 32.65 |
Systemic arterial hypertension | 69 | 70.41 |
Diabetes | 28 | 28.57 |
BMI > 30 kg/m2 | 36 | 36.73 |
WHR > 1 for M and > 0.85 for F | 61 | 62.24 |
Total hypercholesterolemia | 50 | 51.02 |
Hypertriglyceridemia (triglyceride level ≥ 150 mg/dL) | 21 | 21.43 |
LDL hypercholesterolemia | 77 | 78.57 |
HDL ≤ 45 mg/dL | 12 | 12.24 |
Dyslipidemia | 9 | 9.18 |
CHKD | 28 | 28.57 |
Family history | 17 | 17.35 |
Variable | Before Treatment | At 3 Months | At 12 Months | p-Value |
---|---|---|---|---|
BCVA (ETDRS letters), mean | 77.5 ± 14.09 | 81.08 ± 12.18 | 82.07 ± 13.9 | 0.000 |
CRT (μm) | 434.6 ± 214.33 | 340.23 ± 185.67 | 303.85 ± 129.92 | 0.000 |
Parameter | Improved or Stable | % | Worsened | % |
---|---|---|---|---|
BCVA change | 74 | 75.51 | 24 | 24.49 |
CRT change | 81 | 82.65 | 17 | 17.35 |
Risk Factor | RF Present | RF Absent | p Value | RF Present | RF Absent | p Value | ||||
---|---|---|---|---|---|---|---|---|---|---|
BCVA Baseline Mean | BCVA Mean Change (+) | BCVA Baseline Mean | BCVA Mean Change (+) | CRT Baseline Mean | CRT Mean Change (−) | CRT Baseline Mean | CRT Mean Change (−) | |||
Age ≥ 70 | 62.94 ± 14.30 | 4.39 ± 13.37 | 60.86 ± 13.57 | 5.24 ± 17.76 | 0.307 | 435.95 ± 219.44 | 128.49 ± 174.69 | 429.67 ± 199.46 | 139.05 ± 173.49 | 0.778 |
Male gender (males vs. females) | 59.70 ± 12.50 | M 6.52 ± 10.98 | 63.78 ± 14.70 | F 3.67 ± 15.63 | 0.328 | 587.0 ± 168.29 | M 156.26 ± 178.51 | 452.50 ± 188.26 | F 118.96 ± 151.73 | 0.541 |
Smoking | 64.97 ± 11.98 | 2.25 ± 16.02 | 61.28 ± 14.97 | 5.70 ± 13.42 | 0.515 | 433.97 ± 209.64 | 116.94 ± 162.17 | 434.91 ± 218.16 | 137.46 ± 179.68 | 0.625 |
Systemic hypertension | 63.00 ± 13.55 | 2.26 ± 14.7 | 61.28 ± 15.54 | 10.07 ± 11.91 | 0.012 | 332.5 ± 181.75 | 120.91 ± 157.59 | 429.55 ± 275.58 | 154.17 ± 208.01 | 0.770 |
Diabetes | 63.93 ± 13.05 | 3.39 ± 10.00 | 61.91 ± 14.56 | 5.04 ± 15.77 | 0.227 | 411.21 ± 178.45 | 113.82 ± 165.96 | 443.96 ± 227.61 | 137.53 ± 177.26 | 0.514 |
Obesity BMI > 30 | 63.78 ± 12.83 | 5.42 ± 13.67 | 61.74 ± 14.85 | 3.11 ± 15.48 | 0.526 | 414.83 ± 181.80 | 129.50 ± 178.56 | 446.08 ± 231.77 | 131.48 ± 172.11 | 0.979 |
Obesity WHR > 1 for M and >0.85 for F | 62.92 ± 13.99 | 4.77 ± 13.98 | 61.78 ± 14.47 | 4.24 ± 15.07 | 0.905 | 394.08 ± 185.22 | 106.26 ± 155.20 | 501.40 ± 243.37 | 171.14 ± 195.84 | 0.051 |
Total hypercholesterolemia TCH ≥190 mg/dL | 60.44 ± 14.68 | 7.78 ± 14.56 | 64.62 ± 13.30 | 1.23 ± 13.43 | 0.004 | 446.36 ± 232.18 | 140.52 ± 149.58 | 422.35 ± 195.72 | 121.69 ± 145.31 | 0.722 |
TG ≥ 150 mg/dL | 62.48 ± 15.35 | 4.38 ± 10.97 | 62.49 ± 13.86 | 4.62 ± 15.18 | 0.553 | 468.38 ± 189.39 | 176.38 ± 169.26 | 425.39 ± 220.88 | 118.31 ± 173.75 | 0.060 |
Hypercholesterolemia LDL ≥115 mg/dL | 63.82 ± 13.06 | 3.65 ± 13.93 | 57.62 ± 16.91 | 7.95 ± 15.57 | 0.553 | 419.45 ± 206.37 | 113.88 ± 169.48 | 490.14 ± 238.39 | 192.62 ± 178.58 | 0.048 |
HDL ≤ 45 mg/dL | 63.00 ± 14.27 | −0.92 ± 19.39 | 62.42 ± 14.17 | 5.34 ± 13.44 | 0.383 | 353.92 ± 110.40 | 95.67 ± 103.91 | 445.86 ± 223.15 | 135.65 ± 181.09 | 0.766 |
Dyslipidemia | 61.33 ± 15.18 | 5.22 ± 8.77 | 62.60 ± 14.08 | 4.51 ± 14.81 | 0.922 | 413.00 ± 135.08 | 135.11 ± 111.10 | 436.79 ± 221.19 | 131.60 ± 178.39 | 0.777 |
Chronic kidney disease | 63.54 ± 13.70 | 2.04 ± 7.73 | 62.07 ± 14.34 | 5.59 ± 16.17 | 0.051 | 425.50 ± 179.38 | 129/14 ± 126.60 | 438.24 ± 227.90 | 131.40 ± 189.97 | 0.524 |
Family history | 65.65 ± 14.29 | −0.53 ± 18.71 | 61.83 ± 14.07 | 5.64 ± 13.12 | 0.120 | 356.82 ± 147.59 | 117.00 ± 139.12 | 450.92 ± 223.13 | 133.64 ± 180.60 | 0.778 |
Risk Factor | Responders BCVA (%) | p Value | Responders CRT (%) | p Value | ||
---|---|---|---|---|---|---|
RF Present | RF Absent | RF Present | RF Absent | |||
Age ≥ 70 | 83.87 | 80.95 | 0.513 | 84.42 | 90.48 | 0.725 |
Male gender (males vs. females) | M 83.87 | F 71.64 | 0.19 | M 90.32 | F 79.10 | 0.173 |
Smoking | 68.75 | 78.79 | 0.278 | 78.13 | 84.85 | 0.410 |
Systemic hypertension | 69.57 | 89.66 | 0.035 | 81.16 | 86.21 | 0.547 |
Diabetes | 67.86 | 78.57 | 0.265 | 82.14 | 82.86 | 0.833 |
Obesity BMI > 30 | 69.44 | 79.03 | 0.287 | 83.33 | 82.26 | 0.892 |
Obesity WHR > 1 for M and >0.85 for F | 73.77 | 78.38 | 0.607 | 77.05 | 91.89 | 0.060 |
Total hypercholesterolemia TCH ≥190 mg/dL | 82.00 | 68.75 | 0.127 | 84.00 | 81.25 | 0.719 |
TG ≥ 150 mg/dL | 71.43 | 76.62 | 0.624 | 90.48 | 80.52 | 0.457 |
Hypercholesterolemia LDL ≥115 mg/dL | 75.32 | 76.19 | 0.935 | 81.82 | 85.71 | 0.926 |
HDL ≤ 45 mg/dL | 66.67 | 76.74 | 0.688 | 83.33 | 82.56 | 0.733 |
Dyslipidemia | 77.78 | 75.28 | 0.810 | 77.78 | 83.15 | 0.955 |
Chronic kidney disease | 75.00 | 75.71 | 0.941 | 89.29 | 80.0 | 0.423 |
Family history | 58.82 | 79.01 | 0.147 | 76.47 | 83.95 | 0.698 |
Pair of Variables | R | t(N-2) | p-Value |
---|---|---|---|
No. of risk factors and change in BCVA | −0.20 | −1.97 | 0.052 |
No. of risk factors and change in CRT | 0.01 | 0.05 | 0.959 |
Study | Age | Sex | DM | HA | Smoking | BMI/ Obesity | Plasma Lipids | CHKD |
---|---|---|---|---|---|---|---|---|
Present study | No | No | No | Yes (worse VA gains) | No | No | No | No |
Bek et al., 2018 [13] | Yes (larger CRT reduction in older age) | Yes (smaller CRT reduction in males) | NA | NA | No | NA | NA | NA |
Shah et al., 2016 [14] | Yes (better VA gains in younger patients) | Yes (better VA gains in males) | NA | NA | Yes (better final VA) | NA | NA | NA |
Piermarocchi et al., 2014 [11] | NA | NA | NA | Yes (worse VA gains) | Yes (worse VA gains) | No | NA | NA |
Guber et al., 2014 [15] | No | Yes (better CRT reduction in males) | NA | NA | NA | NA | NA | NA |
Van Asten et al., 2014 [16] | Yes (increasing risk for Non-responders in older age) | No | Yes (risk for Non-responders) | No | No | No | NA | NA |
Zhao et al., 2013 [12] | No | No | No | No | No | Yes (BMI higher in responders) | NA | NA |
Krebs et al., 2013 [18] | No | No | NA | NA | NA | NA | NA | NA |
Lee et al., 2013 [19] | No | No | No | No | Yes (lower VA gains in current smokers) | No | No | NA |
Menger et al., 2012 [20] | No | NA | NA | Yes (worse fiNAl VA) | Yes (worse final VA) | NA | NA | NA |
Inglehearn et al., 2012 [21] | No | No | NA | NA | Yes (better VA gains in smokers and ex-smokers) | NA | NA | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łądkowska, J.; Gawęcki, M.; Szołkiewicz, M. Efficacy of Anti-Vascular Endothelial Growth Factor Treatment in Neovascular Age-Related Macular Degeneration and Systemic Cardiovascular Risk Factors. J. Clin. Med. 2021, 10, 4595. https://doi.org/10.3390/jcm10194595
Łądkowska J, Gawęcki M, Szołkiewicz M. Efficacy of Anti-Vascular Endothelial Growth Factor Treatment in Neovascular Age-Related Macular Degeneration and Systemic Cardiovascular Risk Factors. Journal of Clinical Medicine. 2021; 10(19):4595. https://doi.org/10.3390/jcm10194595
Chicago/Turabian StyleŁądkowska, Joanna, Maciej Gawęcki, and Marek Szołkiewicz. 2021. "Efficacy of Anti-Vascular Endothelial Growth Factor Treatment in Neovascular Age-Related Macular Degeneration and Systemic Cardiovascular Risk Factors" Journal of Clinical Medicine 10, no. 19: 4595. https://doi.org/10.3390/jcm10194595
APA StyleŁądkowska, J., Gawęcki, M., & Szołkiewicz, M. (2021). Efficacy of Anti-Vascular Endothelial Growth Factor Treatment in Neovascular Age-Related Macular Degeneration and Systemic Cardiovascular Risk Factors. Journal of Clinical Medicine, 10(19), 4595. https://doi.org/10.3390/jcm10194595