Cardiometabolic Disorders and the Risk of Critical COVID-19 as Compared to Influenza Pneumonia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection
2.3. Definitions
2.4. Statistical Analysis
3. Results
3.1. Patients with COVID-19
3.1.1. Baseline Characteristics
3.1.2. Risk of ICU Admission
3.1.3. Mortality Rates and Predictors
3.2. Comparison between Patients with COVID-19 and Influenza Respiratory Infection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Goyal, P.; Choi, J.J.; Pinheiro, C.L.; Schenck, J.E.; Chen, R.; Jabri, A.; Satlin, J.M.; Campion, T.R., Jr.; Nahid, M.; Ringel, B.J.; et al. Clinical Characteristics of Covid-19 in New York City. N. Engl. J. Med. 2020, 382, 2372–2374. [Google Scholar] [CrossRef]
- Simonnet, A.; Chetboun, M.; Poissy, J.; Raverdy, V.; Noulette, J.; Duhamel, A.; Labreuche, J.; Mathieu, D.; Pattou, F.; Jourdain, M.; et al. High Prevalence of Obesity in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Requiring Invasive Mechanical Ventilation. Obesity (Silver Spring) 2020, 28, 1195–1199. [Google Scholar] [CrossRef]
- Petrilli, C.M.; Jones, S.A.; Yang, J.; Rajagopalan, H.; O’Donnell, L.; Chernyak, Y.; Tobin, K.A.; Cerfolio, R.J.; Francois, F.; Horwitz, L.I. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: Prospective cohort study. BMJ 2020, 369, m1966. [Google Scholar] [CrossRef]
- Czernichow, S.; Beeker, N.; Rives-Lange, C.; Guerot, E.; Diehl, J.L.; Katsahian, S.; Hulot, J.S.; Poghosyan, T.; Carette, C.; Jannot, A.S.; et al. Obesity Doubles Mortality in Patients Hospitalized for Severe Acute Respiratory Syndrome Coronavirus 2 in Paris Hospitals, France: A Cohort Study on 5795 Patients. Obesity (Silver Spring) 2020, 28, 2282–2289. [Google Scholar] [CrossRef]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Tong, Z.; Guan, X.; Du, B.; Qiu, H. Clinical Characteristics of Patients Who Died of Coronavirus Disease 2019 in China. JAMA Netw. Open 2020, 3, e205619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Ayoub, C.; Murad, M.H. Population-based screening for vascular disease. Lancet 2017, 390, 2218–2220. [Google Scholar] [CrossRef]
- Koivula, I.; Sten, M.; Makela, P.H. Risk factors for pneumonia in the elderly. Am. J. Med. 1994, 96, 313–320. [Google Scholar] [CrossRef]
- Fezeu, L.; Julia, C.; Henegar, A.; Bitu, J.; Hu, F.B.; Grobbee, D.E.; Kengne, A.P.; Hercberg, S.; Czernichow, S. Obesity is associated with higher risk of intensive care unit admission and death in influenza A (H1N1) patients: A systematic review and meta-analysis. Obes Rev. 2011, 12, 653–659. [Google Scholar] [CrossRef]
- Johnstone, J.; Loeb, M.; Teo, K.K.; Gao, P.; Dyal, L.; Liu, L.; Avezum, A.; Cardona-Munoz, E.; Sleight, P.; Fagard, R.; et al. Influenza vaccination and major adverse vascular events in high-risk patients. Circulation 2012, 126, 278–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henry, C.; Zaizafoun, M.; Stock, E.; Ghamande, S.; Arroliga, A.C.; White, H.D. Impact of angiotensin-converting enzyme inhibitors and statins on viral pneumonia. Proc. Bayl Univ Med. Cent. 2018, 31, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Soto, M.; Bang, S.I.; McCombs, J.; Rodgers, K.E. Renin Angiotensin system-modifying therapies are associated with improved pulmonary health. Clin. Diabetes Endocrinol. 2017, 3, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, S.C.; Providencia, R.; Sofat, R. Association between Angiotensin Blockade and Incidence of Influenza in the United Kingdom. N. Engl. J. Med. 2020, 383, 397–400. [Google Scholar] [CrossRef]
- Kreutz, R.; Algharably, E.A.E.; Azizi, M.; Dobrowolski, P.; Guzik, T.; Januszewicz, A.; Persu, A.; Prejbisz, A.; Riemer, T.G.; Wang, J.G.; et al. Hypertension, the renin-angiotensin system, and the risk of lower respiratory tract infections and lung injury: Implications for COVID-19. Cardiovasc. Res. 2020, 116, 1688–1699. [Google Scholar] [CrossRef] [Green Version]
- Piroth, L.; Cottenet, J.; Mariet, A.S.; Bonniaud, P.; Blot, M.; Tubert-Bitter, P.; Quantin, C. Comparison of the characteristics, morbidity, and mortality of COVID-19 and seasonal influenza: A nationwide, population-based retrospective cohort study. Lancet Respir. Med. 2021, 9, 251–259. [Google Scholar] [CrossRef]
- Petersen, E.; Koopmans, M.; Go, U.; Hamer, D.H.; Petrosillo, N.; Castelli, F.; Storgaard, M.; Al Khalili, S.; Simonsen, L. Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet Infect. Dis. 2020, 20, e238–e244. [Google Scholar] [CrossRef]
- Zhao, W.; Zhong, Z.; Xie, X.; Yu, Q.; Liu, J. Relation Between Chest CT Findings and Clinical Conditions of Coronavirus Disease (COVID-19) Pneumonia: A Multicenter Study. AJR Am. J. Roentgenol. 2020, 214, 1072–1077. [Google Scholar] [CrossRef]
- Force, A.D.T.; Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute respiratory distress syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar]
- Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020, 395, 1417–1418. [Google Scholar] [CrossRef]
- Zheng, K.I.; Gao, F.; Wang, X.B.; Sun, Q.F.; Pan, K.H.; Wang, T.Y.; Ma, H.L.; Chen, Y.P.; Liu, W.Y.; George, J.; et al. Letter to the Editor: Obesity as a risk factor for greater severity of COVID-19 in patients with metabolic associated fatty liver disease. Metabolism 2020, 108, 154244. [Google Scholar] [CrossRef] [PubMed]
- Vallee, A.; Gabet, A.; Grave, C.; Sorbets, E.; Blacher, J.; Olie, V. Patterns of hypertension management in France in 2015: The ESTEBAN survey. J. Clin. Hypertens (Greenwich) 2020, 22, 663–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Wang, X.; Chen, J.; Zhang, H.; Deng, A. Association of Renin-Angiotensin System Inhibitors with Severity or Risk of Death in Patients With Hypertension Hospitalized for Coronavirus Disease 2019 (COVID-19) Infection in Wuhan, China. JAMA Cardiol 2020, 5, 825–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lew, T.W.; Kwek, T.K.; Tai, D.; Earnest, A.; Loo, S.; Singh, K.; Kwan, K.M.; Chan, Y.; Yim, C.F.; Bek, S.L.; et al. Acute respiratory distress syndrome in critically ill patients with severe acute respiratory syndrome. JAMA 2003, 290, 374–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halpin, D.M.G.; Faner, R.; Sibila, O.; Badia, J.R.; Agusti, A. Do chronic respiratory diseases or their treatment affect the risk of SARS-CoV-2 infection? Lancet Respir Med. 2020, 8, 436–438. [Google Scholar] [CrossRef]
COVID-19 Group | Influenza Group | |||
---|---|---|---|---|
ICU (n = 82) | Non-ICU (n = 171) | Overall (n = 253) | Overall (n = 153) | |
Demographic and clinical characteristics | ||||
Mean age (years) | 61.2 (11.4) | 66.4 (17.7) | 64.7 (16.1) | 69.8 (19.9) |
Sex Male Female | 65 (79.3%)17 (20.7%) | 109 (63.7%) 62 (36.3%) | 174 (68.8%) 79 (31.2%) | 79 (51.6%) 74 (48.4%) |
Body mass index (kg/m2) | 29.7 (5.8) | 26.0 (4.4) | 27.4 (5.2) | 24.0 (5.3) |
Mean SpO2 (%) | 87.8 (8.8) | 94.4 (4.1) | 92.3 (6.8) | 93.8 (5.2) |
Cardiometabolic diseases and risk factors | ||||
Hypertension On-treatment Number of medications * | 39 (47.6%) | 80 (46.8%) | 119 (47.0%) | 70 (45.8%) |
35/39 (89.7%) | 75/80 (94.9%) | 110/119 (93.2%) | 67/70 (95.7%) | |
2 (1–5) | 2 (1–6) | 2 (1–6) | 1 (1–4) | |
Type 2 diabetes | 23 (28.0%) | 28 (16.4%) | 51 (20.2%) | 28 (18.3%) |
Obesity (BMI ≥ 30 kg/m2) | 34/82 (41.5%) | 30/139 (21.2%) | 64/221 (29.0%) | 18/121 (14.9%) |
Current or previous smoker | 15/77 (19.5%) | 42/151 (26.1%) | 57/228 (23.9%) | 52/123 (42.3%) |
Hypercholesterolemia | 18 (22.2%) | 47 (27.5%) | 65 (25.8%) | 52 (34.0%) |
Ischaemic heart disease | 7 (8.5%) | 19 (11.1%) | 26 (10.3%) | 24 (15.7%) |
Atrial fibrillation | 4 (4.9%) | 21 (12.3%) | 25 (9.9%) | 26 (17.0%) |
Chronic kidney disease | 4 (4.9%) | 19 (11.1%) | 23 (9.1%) | 22 (14.4%) |
History of other comorbidities | ||||
Asthma | 6 (7.3%) | 10 (5.8%) | 16 (6.3%) | 16 (10.5%) |
COPD | 1 (1.2%) | 8 (4.7%) | 9 (3.6%) | 22 (14.4%) |
Hypothyroidism | 5 (6.1%) | 9 (5.3%) | 14 (5.5%) | 17 (11.1%) |
Active or previous cancer | 4 (4.9%) | 34 (19.9%) | 38 (15.0%) | 43 (28.1%) |
Cardiovascular therapies at entry among all patients | ||||
ACEi | 10 (12.2%) | 14 (8.2%) | 24 (9.5%) | 20 (13.1%) |
ARB | 21 (25.6%) | 35 (20.5%) | 56 (22.2%) | 26 (17.0%) |
ACEi or ARB | 31 (37.8%) | 49 (28.8%) | 80 (31.7%) | 45 (29.4%) |
Diuretics | 17 (20.7%) | 29 (16.5%) | 45 (17.9%) | 15 (9.8%) |
Beta-blockers | 7 (8.5%) | 26 (15.3%) | 33 (13.1%) | 13 (8.5%) |
Calcium channel blockers | 16 (19.5%) | 33 (19.4%) | 49 (19.4%) | 27 (17.6%) |
Statins | 16 (19.5%) | 42 (24.7%) | 58 (23.0%) | 47 (30.9%) |
Adjusted * OR (95% CI) | p Value | |
---|---|---|
Demographic and clinical presentation | ||
BMI (per 1 kg/m2 increase) | 1.15 (1.08–1.23) | <0.0001 |
Mean SpO2 (per 1% increase) | 0.83 (0.77–0.88) | <0.0001 |
Cardiometabolic diseases and risk factors | ||
Hypertension | 1.37 (0.75–2.48) | 0.30 |
Type 2 diabetes | 2.11 (1.10–4.05) | 0.024 |
Obesity (BMI ≥ 30 kg/m2) | 2.56 (1.37–4.79) | 0.0031 |
Current or previous smoker | 0.74 (0.37–1.48) | 0.39 |
Hypercholesterolemia | 0.85 (0.44–1.63) | 0.62 |
Ischemic heart disease | 0.86 (0.33–2.25) | 0.76 |
Atrial fibrillation | 0.41 (0.13–1.26) | 0.12 |
Chronic kidney disease | 0.43 (0.14–1.33) | 0.14 |
History of other comorbidities | ||
Asthma | 1.24 (0.42–3.66) | 0.70 |
COPD | 0.31 (0.04–2.57) | 0.28 |
Hypothyroidism | 1.58 (0.49–5.15) | 0.44 |
Active or previous cancer | 0.25 (0.08–0.74) | 0.013 |
Cardiovascular therapies at entry | ||
ACEi | 1.64 (0.68–3.98) | 0.27 |
ARB | 1.57 (0.81–3.06) | 0.18 |
ACEi or ARB | 1.83 (0.99–3.37) | 0.053 |
Diuretics | 1.42 (0.71–2.84) | 0.32 |
Beta-blockers | 0.53 (0.21–1.29) | 0.16 |
Calcium channel blockers | 1.08 (0.54–2.15) | 0.82 |
Statins | 0.84 (0.43–1.64) | 0.60 |
Adjusted * OR (95% CI) | p Value | |
---|---|---|
Demographic and clinical presentation | ||
BMI (per 1 kg/m2 increase) | 1.14 (1.08–1.19) | <0.0001 |
Mean SpO2 (per 1% increase) | 0.96 (0.92–1.00) | 0.037 |
Cardiometabolic diseases and risk factors | ||
Hypertension | 1.24 (0.80–1.93) | 0.33 |
Type 2 diabetes | 1.12 (0.66–1.90) | 0.67 |
Obesity (BMI ≥ 30 kg/m2) | 2.25 (1.24–4.09) | 0.0076 |
Current or previous smoker | 0.40 (0.24–0.64) | 0.0002 |
Hypercholesterolemia | 0.69 (0.44–1.10) | 0.12 |
Ischemic heart disease | 0.59 (0.31–1.12) | 0.11 |
Atrial fibrillation | 0.58 (0.31–1.08) | 0.08 |
Chronic kidney disease | 0.54 (0.28–1.02) | 0.06 |
History of other comorbidities | ||
Asthma | 0.53 (0.25–1.14) | 0.10 |
COPD | 0.25 (0.11–0.56) | 0.0008 |
Hypothyroidism | 0.59 (0.28–1.26) | 0.17 |
Active or previous cancer | 0.54 (0.32–0.91) | 0.020 |
Cardiovascular therapies at entry | ||
ACEi | 0.70 (0.37–1.33) | 0.28 |
ARB | 1.57 (0.92–2.69) | 0.10 |
ACEi or ARB | 1.21 (0.76–1.91) | 0.42 |
Diuretics | 2.13 (1.12–4.03) | 0.021 |
Beta-blockers | 1.70 (0.85–3.41) | 0.13 |
Calcium channel blockers | 1.19 (0.70–2.04) | 0.52 |
Statins | 0.70 (0.44–1.12) | 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fayol, A.; Livrozet, M.; Pereira, H.; Diehl, J.-L.; Lebeaux, D.; Arlet, J.-B.; Cholley, B.; Carette, C.; Carves, J.-B.; Czernichow, S.; et al. Cardiometabolic Disorders and the Risk of Critical COVID-19 as Compared to Influenza Pneumonia. J. Clin. Med. 2021, 10, 4618. https://doi.org/10.3390/jcm10194618
Fayol A, Livrozet M, Pereira H, Diehl J-L, Lebeaux D, Arlet J-B, Cholley B, Carette C, Carves J-B, Czernichow S, et al. Cardiometabolic Disorders and the Risk of Critical COVID-19 as Compared to Influenza Pneumonia. Journal of Clinical Medicine. 2021; 10(19):4618. https://doi.org/10.3390/jcm10194618
Chicago/Turabian StyleFayol, Antoine, Marine Livrozet, Héléna Pereira, Jean-Luc Diehl, David Lebeaux, Jean-Benoit Arlet, Bernard Cholley, Claire Carette, Jean-Baptiste Carves, Sébastien Czernichow, and et al. 2021. "Cardiometabolic Disorders and the Risk of Critical COVID-19 as Compared to Influenza Pneumonia" Journal of Clinical Medicine 10, no. 19: 4618. https://doi.org/10.3390/jcm10194618
APA StyleFayol, A., Livrozet, M., Pereira, H., Diehl, J. -L., Lebeaux, D., Arlet, J. -B., Cholley, B., Carette, C., Carves, J. -B., Czernichow, S., Hauw, C., Hamada, S. -R., Jannot, A. -S., Volle, G., Masurkar, N., Mirault, T., Planquette, B., Sanchez, O., Châtellier, G., ... Hulot, J. -S. (2021). Cardiometabolic Disorders and the Risk of Critical COVID-19 as Compared to Influenza Pneumonia. Journal of Clinical Medicine, 10(19), 4618. https://doi.org/10.3390/jcm10194618