Hypertension and Its Associations with Dental Status: Data from the Dental, Oral, Medical Epidemiological (DOME) Nationwide Records-Based Study
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Data Collection
2.3. Study Variables
2.3.1. Definitions of Dental Parameters
- (1)
- (2)
- (3)
- (4)
- (5)
2.3.2. Definitions and Measurement of the Socio-Demographic Predictors
2.3.3. Definitions of Health-Related Habits
2.3.4. Definitions of Medical and Dental Attendance Patterns
2.3.5. Definitions of General Health Status Parameters
- (1)
- The dependent variable—hypertension diagnosis;
- (2)
2.4. Statistical Methods
2.4.1. Descriptive Statistics
2.4.2. Explanatory Statistics—Univariate Analysis
2.4.3. Calculations of Odds Ratios (OR)
2.4.4. Addressing the Large Sample Size and Possible Confounders
- (1)
- A statistically significant association with hypertension diagnosis in the univariate analysis. Due to the large sample size, a p value of <0.01 (2-tailed) in the univariate analysis was considered statistically significant to enter the multivariate analysis;
- (2)
- Multicollinearity tests—before entering a statistically significant variable in the univariate analysis into the multivariate model, the collinearity of the independent variables was examined. If two or more variables were found highly collinear, only one of them was included in the model, and it was decided by the context which of the variables will be included in the analysis. A p value of <0.01 level (2-tailed) was also considered significant for the multicollinearity tests. The multicollinearity tests between the variables comprising the DOME repository have been previously published [24]. A linear regression analysis was performed to assess collinearity between the independent variables. The variance inflation factors (VIFs), which are 1/Tolerance, are presented in the linear regression analysis. The results ruled out collinearity (VIF < 2.5). Although values of VIF below 10 are usually regarded as indicating multicollinearity, in weaker models values above 2.5 may be a cause for concern. Therefore, the cutoff of VIF in the present study was 2.5.
- (3)
- Multivariate analysis—Finally, the multivariate logistic regression analysis was used as a statistical model, by including in the analysis simultaneously all the variables fulfilling the criteria as described above. Due to the large sample size, a p value of <0.01 (2-tailed) was also considered statistically significant in the multivariate analysis.
3. Results
3.1. Description of the Study Population and the Prevalence of Hypertension
- (1)
- Comparison to those without hypertension using the whole study population (N = 132,529 subjects; of those, 3363 with hypertension and 129,166 without hypertension) (presented on the left side of the Tables);
- (2)
- Comparison to age-, sex- and smoking-matched group without hypertension, which is three times larger than the hypertension group (N = 13,452 subjects: of those, 3363 with hypertension and 10,089 without hypertension) (presented on the right side of the Tables).
3.2. The Associations between Socio-Demographic Parameters and Hypertension
3.3. The Associations of Hypertension with Patient Health-Related Habits, and Attendance Patterns
3.4. General Health Status Parameters and Periodontal Disease According to Hypertension Diagnosis
3.5. Dental Status According to Hypertension Diagnosis
3.6. Multivariate Analysis
3.6.1. Multivariate Analysis of the Whole Study Population (N = 132,529)
3.6.2. Multivariate Analysis among the Age-, Sex- and Smoking-Matched Subjects
3.6.3. Dental Inflammation Score
- (1)
- Multivariate analysis among the whole study population: The parameters that retained statistical significance with hypertension were, from the highest to the lowest OR, obesity (OR = 4.5 (4.06–5.0)), cardiovascular disease (OR = 1. 8 (1.6–2.1)), birth country of Western Europe vs. Israeli birth country (OR = 1. 7 (1.5–1.9)), sex (OR = 1.6 (1.5–1.8)), hyperlipidemia (OR = 1. 4 (1.1–1.7)) and age (OR = 1.04 (1.03–1.05)). The DIS lost its statically significant association with hypertension (OR = 1.0 (1.0–1.0));
- (2)
- Multivariate analysis among the age-, sex- and smoking-matched sub population: The parameters that retained statistical significance with hypertension were, from the highest to the lowest OR, diabetes (OR = 4.3 (3.1–6.0)), obesity (OR = 2.7 (2.4–3.0)), fatty liver (OR = 1. 6 (1.3–2.0)), high school vs. academic education (OR = 1. 4 (1.3–1.6)), low SES vs. high (OR = 1. 3(1.1–1.6)), and technician vs. academic education (OR = 1.2(1.08–1.4)). The DIS lost its statically significant association with hypertension (OR = 1.0 (0.99–1.0)).
4. Discussion
4.1. Dental Status and Hypertension
4.2. Patient Profile Positively Associated with a Hypertension Diagnosis
4.3. Socio-Demographicparameters and Hypertension
4.4. Health-Related Habits and Hypertension
4.5. The Association of Hypertension with the Systemic Morbidity of the Subject
4.6. Strengths and Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | Body mass index |
MPR | Medical patient record |
CRP | C-reactive protein |
CVD | Cardiovascular disease |
DMF | Decayed, missed, filled teeth |
DPR | Dental patient record |
HDL | High-density lipoprotein |
IDF | Israeli Defense Force |
MetS | Metabolic syndrome |
OSA | Obstructive sleep apnea |
PD | Periodontal disease |
SES | Socio-economic status |
TIA | Transient ischemic attack |
VLDL | Very low-density lipoprotein |
Appendix
Strata | Hypertension Diagnosis | Total N (%) | |
---|---|---|---|
No N (%) | Yes N (%) | ||
Female younger non-smoker | 699 (75) | 233 (25) | 932 (100) |
Female older non-smoker | 204 (75) | 68 (25) | 272 (100) |
Female younger smoker | 51 (75) | 17 (25) | 68 (100) |
Female older smoker | 111 (75) | 37 (25) | 148(100) |
Male younger non-smoker | 4461 (75) | 1487 (25) | 5948 (100) |
Male older non-smoker | 2520 (75) | 840 (25) | 3360 (100) |
Male younger smoker | 297 (75) | 99 (25) | 396 (100) |
Male older smoker | 1746 (75) | 582 (25) | 2328 (100) |
Total | 10,089 (75) | 3363 (25) | 13,452 (100) |
References
- Arboix, A. Hypertension and the acute phase of intracerebral haemorrhage: More evidence of the ‘silent killer’. Eur. J. Neurol. 2018, 25, 1007–1008. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.C.; Banaag, A.L.; Condie, K.J.; Servies, T.E.; Koehlmoos, T.L.P. New ACC/AHA Blood Pressure Guidelines and the Operational Readiness of Naval Aviators and Aircrew. Aerosp. Med. Hum. Perform. 2019, 90, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Falkner, B.; Cossrow, N.D. Prevalence of Metabolic Syndrome and Obesity-Associated Hypertension in the Racial Ethnic Minorities of the United States. Curr. Hypertens. Rep. 2014, 16, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in blood pressure from 1975 to 2015: A pooled analysis of 1479 population-based measurement studies with 19.1 million participants. Lancet 2017, 389, 37–55. [Google Scholar] [CrossRef] [Green Version]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.; Coca, A.; De Simone, G.; Dominiczak, A.; et al. 2018 Practice Guidelines for the management of arterial hypertension of the European Society of Hypertension and the European Society of Cardiology: ESH/ESC Task Force for the Management of Arterial Hypertension. J. Hypertens. 2018, 36, 2284–2309. [Google Scholar] [CrossRef] [Green Version]
- Drukteinis, J.S.; Roman, M.J.; Fabsitz, R.R.; Lee, E.T.; Best, L.G.; Russell, M.; Devereux, R.B. Cardiac and systemic hemodynamic characteristics of hypertension and prehypertension in adolescents and young adults: The Strong Heart Study. Circulation 2007, 115, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Tran, C.L.; Ehrmann, B.J.; Messer, K.L.; Herreshoff, E.; Kroeker, A.; Wickman, L.; Song, P.; Kasper, N.; Gipson, D.S. Recent Trends in Healthcare Utilization among Children and Adolescents with Hypertension in the United States. Hypertension 2012, 60, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Egan, B.M.; Zhao, Y.; Axon, R.N. US Trends in Prevalence, Awareness, Treatment, and Control of Hypertension, 1988–2008. JAMA 2010, 303, 2043–2050. [Google Scholar] [CrossRef] [Green Version]
- Daugherty, S.L.; Masoudi, F.A.; Ellis, J.L.; Ho, P.M.; Schmittdiel, J.A.; Tavel, H.M.; Selby, J.V.; O’Connor, P.J.; Margolis, K.L.; Magid, D.J. Age-dependent gender differences in hypertension management. J. Hypertens. 2011, 29, 1005–1011. [Google Scholar] [CrossRef] [Green Version]
- Sanz, M.; Marco Del Castillo, A.; Jepsen, S.; Gonzalez-Juanatey, J.R.; D’Aiuto, F.; Bouchard, P.; Chapple, I.; Dietrich, T.; Gotsman, I.; Graziani, F.; et al. Periodontitis and cardiovascular diseases: Consensus report. J. Clin. Periodontol. 2020, 47, 268–288. [Google Scholar] [CrossRef]
- Schenkein, H.A.; Loos, B.G. Inflammatory mechanisms linking periodontal diseases to cardiovascular diseases. J. Clin. Periodontol. 2013, 40 (Suppl. 14), S51–S69. [Google Scholar] [CrossRef] [PubMed]
- Liljestrand, J.M.; Mäntylä, P.; Paju, S.; Buhlin, K.; Kopra, K.A.E.; Persson, G.R.; Hernandez, M.; Nieminen, M.S.; Sinisalo, J.; Tjäderhane, L.; et al. Association of Endodontic Lesions with Coronary Artery Disease. J. Dent. Res. 2016, 95, 1358–1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pussinen, P.J.; Paju, S.; Koponen, J.; Viikari, J.S.A.; Taittonen, L.; Laitinen, T.; Burgner, D.P.; Kähönen, M.; Hutri-Kähönen, N.; Raitakari, O.T.; et al. Association of Childhood Oral Infections With Cardiovascular Risk Factors and Subclinical Atherosclerosis in Adulthood. JAMA Netw. Open 2019, 2, e192523. [Google Scholar] [CrossRef] [PubMed]
- Ostalska-Nowicka, D.; Paszynska, E.; Dmitrzak-Weglarz, M.; Neyman-Bartkowiak, A.; Rabiega, A.; Zachwieja, J.; Nowicki, M. Dental caries related primary hypertension in children and adolescents. Cross-sectional study. Oral Dis. 2020. [Google Scholar] [CrossRef]
- Johnston, L.; Vieira, A.R. Caries experience and overall health status. Oral Health. Prev. Dent. 2014, 12, 163–170. [Google Scholar]
- Odeh, N.D.; Borzangy, S.; Babkair, H.; Farghal, L.; Shahin, G.; Fadhlalmawla, S.; Alhazmi, W.; Taher, S.; A Abu Hammad, O. Association of Dental Caries, Retained Roots, and Missing Teeth with Physical Status, Diabetes Mellitus and Hypertension in Women of the Reproductive Age. Int. J. Environ. Res. Public Health 2019, 16, 2565. [Google Scholar] [CrossRef] [Green Version]
- Almoznino, G.; Baruch, O.K.; Kedem, R.; Protter, N.E.; Shay, B.; Yavnai, N.; Zur, D.; Mijiritsky, E.; Abramovitz, I. SOS Teeth: First Priority Teeth with Advanced Caries and Its Associations with Metabolic Syndrome among a National Representative Sample of Young and Middle-Aged Adults. J. Clin. Med. 2020, 9, 3170. [Google Scholar] [CrossRef]
- Sheiham, A.; Watt, R.G. The Common Risk Factor Approach: A rational basis for promoting oral health. Community Dent. Oral Epidemiol. 2000, 28, 399–406. [Google Scholar] [CrossRef]
- Ezzati, M.; Riboli, E. Can Noncommunicable Diseases Be Prevented? Lessons from Studies of Populations and Individuals. Science 2012, 337, 1482–1487. [Google Scholar] [CrossRef] [Green Version]
- E Bauer, U.; Briss, P.A.; Goodman, R.A.; Bowman, B.A. Prevention of chronic disease in the 21st century: Elimination of the leading preventable causes of premature death and disability in the USA. Lancet 2014, 384, 45–52. [Google Scholar] [CrossRef]
- Kontis, V.; Mathers, C.D.; Rehm, J.; Stevens, G.A.; Shield, K.D.; Bonita, R.; Riley, L.M.; Poznyak, V.; Beaglehole, R.; Ezzati, M. Contribution of six risk factors to achieving the 25 × 25 non-communicable disease mortality reduction target: A modelling study. Lancet 2014, 384, 427–437. [Google Scholar] [CrossRef]
- Genco, R.J.; Genco, F.D. Common Risk Factors in the Management of Periodontal and Associated Systemic Diseases: The Dental Setting and Interprofessional Collaboration. J. Evid. Based Dent. Pract. 2014, 14, 4–16. [Google Scholar] [CrossRef]
- Nagpal, R.; Yamashiro, Y.; Izumi, Y. The Two-Way Association of Periodontal Infection with Systemic Disorders: An Overview. Mediat. Inflamm. 2015, 2015, 793898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almoznino, G.; Kedem, R.; Turgeman, R.; Bader, T.; Yavnai, N.; Zur, D.; Shay, B. The Dental, Oral, Medical Epidemiological (DOME) Study: Protocol and Study Methods. Methods Inf. Med. 2020. [Google Scholar] [CrossRef]
- Almoznino, G. Big data in dentistry and oral medicine. Refuat Hapeh Vehashinayim 2017, 34, 87. [Google Scholar]
- Almoznino, G.; Abramovitz, I.; Baruch, O.K.; Kedem, R.; Protter, N.E.; Levine, J.; Tarif, B.; Yavnai, N.; Zur, D.; Mijiritsky, E.; et al. SOS Teeth: Age and Sex Differences in the Prevalence of First Priority Teeth among a National Representative Sample of Young and Middle-Aged Adults. Int. J. Environ. Res. Public Health 2020, 17, 4847. [Google Scholar] [CrossRef]
- IDF. I.D.F. Personal Data—The Medical Profile. Available online: https://www.mitgaisim.idf.il/%D7%9B%D7%AA%D7%91%D7%95%D7%AA/english/tzav-rishon/the-medical-profile/#/ (accessed on 16 January 2019).
- IDF. Volunteering in the IDF for Military Exemption Recipients. Available online: https://www.kolzchut.org.il/en/Volunteering_in_the_IDF_for_Military_Exemption_Recipients (accessed on 6 July 2020).
- Czerninski, R.; Zadik, Y.; Vered, M.; Becker, T.; Yahalom, R.; Derazne, E.; Aframian, D.J.; Almoznino, G. Demographic and clinical factors associated with referrals and compliance to biopsy of oral and maxillofacial lesions. J. Oral Pathol. Med. 2013, 43, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Nissan, E.E.; Catan, G.; Oz, N.; Arieli, E.; Brief, I.; Ben Moshe, R.; Shmueli, A. Utilization of Health Services by IDF Soldiers and Civilian Population at an Israeli HMO. Health Econ. Outcome Res. Open Access 2017, 3, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Abdalla-Aslan, R.; Findler, M.; Levin, L.; Zini, A.; Shay, B.; Twig, G.; Almoznino, G. Where periodontitis meets metabolic syndrome—The role of common health-related risk factors. J. Oral Rehabil. 2019, 46, 647–656. [Google Scholar] [CrossRef]
- Bar-Dayan, Y.; Saed, H.; Boaz, M.; Misch, Y.; Shahar, T.; Husiascky, I.; Blumenfeld, O. Using electronic health records to save money. J. Am. Med. Inform. Assoc. 2013, 20, e17–e20. [Google Scholar] [CrossRef] [Green Version]
- Peled, A.; Gordon, B.; Twig, G.; Grossman, E.; Matani, D.; Derazne, E.; Afek, A. Hypertension and childhood migration: A nationwide study of 2.7 million adolescents. J. Hypertens. 2019, 37, 702–709. [Google Scholar] [CrossRef] [PubMed]
- ADA. ADA (American Dental Association) Guide to Dental Procedures Reported with Area of the Oral Cavity or Tooth Anatomy (or Both). Version 1. Available online: http://www.ada.org/en/publications/cdt/ada-dental-claim-form (accessed on 1 January 2019).
- Twig, G.; Yaniv, G.; Levine, H.; Leiba, A.; Goldberger, N.; Derazne, E.; Shor, D.B.-A.; Tzur, D.; Afek, A.; Shamiss, A.; et al. Body-Mass Index in 2.3 Million Adolescents and Cardiovascular Death in Adulthood. N. Engl. J. Med. 2016, 374, 2430–2440. [Google Scholar] [CrossRef] [PubMed]
- Peled, A.; Gordon, B.; Twig, G.; Mendlovic, J.; Derazne, E.; Lisnyansky, M.; Raz, I.; Afek, A. Immigration to Israel during childhood is associated with diabetes at adolescence: A study of 2.7 million adolescents. Diabetologia 2017, 60, 2226–2230. [Google Scholar] [CrossRef] [PubMed]
- Janket, S.-J.; Qvarnstrom, M.; Meurman, J.H.; Baird, A.E.; Nuutinen, P.; Jones, J.A. Asymptotic Dental Score and Prevalent Coronary Heart Disease. Circulation 2004, 109, 1095–1100. [Google Scholar] [CrossRef] [Green Version]
- Petersen, P.E.; Jiang, H.; Peng, B.; Tai, B.J.; Bian, Z. Oral and general health behaviours among Chinese urban adolescents. Community Dent. Oral Epidemiol. 2007, 36, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Reichert, S.; Schlitt, A.; Beschow, V.; Lutze, A.; Lischewski, S.; Seifert, T.; Dudakliewa, T.; Gawe, R.; Werdan, K.; Hofmann, B.; et al. Use of floss/interdental brushes is associated with lower risk for new cardiovascular events among patients with coronary heart disease. J. Periodontal. Res. 2015, 50, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Petersen, P.E. Global policy for improvement of oral health in the 21st century—Implications to oral health research of World Health Assembly 2007, World Health Organization. Community Dent. Oral Epidemiol. 2009, 37, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Blakely, T.; Gupta, A.; Peres, M.A.; Watt, R.G.; Tsakos, G.; Mathur, M. Association between tooth loss and hypertension among a primarily rural middle aged and older Indian adult population. J. Public Health Dent. 2015, 76, 198–205. [Google Scholar] [CrossRef]
- Makovac, E.; Porciello, G.; Palomba, D.; Basile, B.; Ottaviani, C. Blood pressure-related hypoalgesia: A systematic review and meta-analysis. J. Hypertens. 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Zamir, N.; Shuber, E. Altered pain perception in hypertensive humans. Brain Res. 1980, 201, 471–474. [Google Scholar] [CrossRef]
- Zamir, N.; Simantov, R.; Segal, M. Pain sensitivity and opioid activity in genetically and experimentally hypertensive rats. Brain Res. 1980, 184, 299–310. [Google Scholar] [CrossRef]
- Ghione, S.; Rosa, C.; Mezzasalma, L.; Panattoni, E. Arterial hypertension is associated with hypalgesia in humans. Hypertension 1988, 12, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Ghione, S.; Rosa, C.; Panattoni, E.; Nuti, M.; Mezzasalma, L.; Giuliano, G. Comparison of sensory and pain threshold in tooth pulp stimulation in normotensive man and essential hypertension. J. Hypertens. Suppl. 1985, 3, S113–S115. [Google Scholar] [PubMed]
- Vignocchi, G.; Murri, L.; Rossi, B.; Rosa, C.; Ghione, S. Correlation between pain thresholds and polysynaptic components of blink reflex in essential arterial hypertension. Funct. Neurol. 1989, 4, 59–61. [Google Scholar]
- Guasti, L.; Cattaneo, R.; Rinaldi, O.; Rossi, M.G.; Bianchi, L.; Gaudio, G.; Grandi, A.M.; Gorini, G.; Venco, A. Twenty-four-hour noninvasive blood pressure monitoring and pain perception. Hypertension 1995, 25, 1301–1305. [Google Scholar] [CrossRef] [PubMed]
- Guasti, L.; Zanotta, D.; Diolisi, A.; Garganico, D.; Simoni, C.; Gaudio, G.; Grandi, A.M.; Venco, A. Changes in pain perception during treatment with angiotensin converting enzyme-inhibitors and angiotensin II type 1 receptor blockade. J. Hypertens. 2002, 20, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Guasti, L.; Zanotta, D.; Mainardi, L.T.; Petrozzino, M.R.; Grimoldi, P.; Garganico, D.; Diolisi, A.; Gaudio, G.; Klersy, C.; Grandi, A.M.; et al. Hypertension-related hypoalgesia, autonomic function and spontaneous baroreflex sensitivity. Auton. Neurosci. 2002, 99, 127–133. [Google Scholar] [CrossRef]
- King, J.W.; Bair, E.; Duggan, D.; Maixner, W.; Khan, A.A. The relationship between resting arterial blood pressure and acute postoperative pain in endodontic patients. J. Orofac. Pain 2012, 26, 321–327. [Google Scholar]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E., Jr.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018, 71, 1269–1324. [Google Scholar]
- Ramirez, L.A.; Sullivan, J.C. Sex Differences in Hypertension: Where We Have Been and Where We Are Going. Am. J. Hypertens. 2018, 31, 1247–1254. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Blaha, M.J.; Chiuve, S.E.; Cushman, M.; Das, S.R.; Deo, R.; de Ferranti, S.D.; Floyd, J.; Fornage, M.; Gillespie, C.; et al. Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. Circulation 2017, 135, e146–e603. [Google Scholar] [CrossRef] [PubMed]
- Leng, B.; Jin, Y.; Li, G.; Chen, L.; Jin, N. Socioeconomic status and hypertension: A meta-analysis. J. Hypertens. 2015, 33, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Shi, L.; Li, S.; Xu, L.; Qin, W.; Wang, H. Urban-rural disparities in hypertension prevalence, detection, and medication use among Chinese Adults from 1993 to 2011. Int. J. Equity Health 2017, 16, 50. [Google Scholar] [CrossRef] [Green Version]
- Commodore-Mensah, Y.; Selvin, E.; Aboagye, J.; Turkson-Ocran, R.-A.; Li, X.; Himmelfarb, C.D.; Ahima, R.S.; Cooper, L.A. Hypertension, overweight/obesity, and diabetes among immigrants in the United States: An analysis of the 2010–2016 National Health Interview Survey. BMC Public Health 2018, 18, 773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z. Dietary Sodium and the Incidence of Hypertension in the Chinese Population: A Review of Nationwide Surveys. Am. J. Hypertens. 2009, 22, 929–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Commodore-Mensah, Y.; Ukonu, N.; Obisesan, O.; Aboagye, J.K.; Agyemang, C.; Reilly, C.M.; Dunbar, S.B.; Okosun, I.S. Length of Residence in the United States is Associated with a Higher Prevalence of Cardiometabolic Risk Factors in Immigrants: A Contemporary Analysis of the National Health Interview Survey. J. Am. Hear. Assoc. 2016, 5, e004059. [Google Scholar] [CrossRef] [Green Version]
- McDonald, J.T.; Kennedy, S. Insights into the ‘healthy immigrant effect’: Health status and health service use of immigrants to Canada. Soc. Sci. Med. 2004, 59, 1613–1627. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef]
- Duncan, M.S.; Freiberg, M.S.; Greevy, R.A.; Kundu, S.; Vasan, R.S.; Tindle, H.A. Association of Smoking Cessation With Subsequent Risk of Cardiovascular Disease. JAMA 2019, 322, 642–650. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.B.; Malik, V.S. Sugar-sweetened beverages and risk of obesity and type 2 diabetes: Epidemiologic evidence. Physiol. Behav. 2010, 100, 47–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gan, S.K.E.; Loh, C.Y.; Seet, B. Hypertension in young adults--an under-estimated problem. Singap. Med. J. 2003, 44, 448–452. [Google Scholar]
- Al-Mrabeh, A.; Zhyzhneuskaya, S.V.; Peters, C.; Barnes, A.C.; Melhem, S.; Jesuthasan, A.; Aribisala, B.; Hollingsworth, K.G.; Lietz, G.; Mathers, J.C.; et al. Hepatic Lipoprotein Export and Remission of Human Type 2 Diabetes after Weight Loss. Cell Metab. 2020, 31, 233–249.e4. [Google Scholar] [CrossRef] [PubMed]
- Bray, G.; Kim, K.; Wilding, J.P.H. Obesity: A chronic relapsing progressive disease process. A position statement of the World Obesity Federation. Obes. Rev. 2017, 18, 715–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyle, T.K.; Dhurandhar, E.J.; Allison, D.B. Regarding Obesity as a Disease: Evolving Policies and Their Implications. Endocrinol. Metab. Clin. N. Am. 2016, 45, 511–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, G.; Ganz, T.; Goodnough, L.T. Anemia of inflammation. Blood 2019, 133, 40–50. [Google Scholar] [CrossRef] [Green Version]
Parameter | Variable | Hypertension (N = 3363) No.(%) | Comparison to Those without Hypertension among the Whole Study Population (N = 129,166) | Comparison to Age-, Sex- and Smoking-Matched Group without Hypertension (N = 10,089) | ||||
---|---|---|---|---|---|---|---|---|
Without Hypertension No. (%) | p Value | OR (95% Confidence Interval) # | Without Hypertension No. (%) | p Value | OR (95% Confidence Interval) # | |||
Sex | Men | 3008 (3.0) | 96,458 (97.0) | <0.001 * | 2.8 (2.5–3.2) | 9024 (75.0) | 1.0 * | 1.0 (0.8–1.1) |
Women | 355 (1.1) | 32,708 (98.9) | 1 | 1065 (75.0) | 1 | |||
Education | High school | 1683 (1.5) | 110,429 (98.5) | <0.001 ^ | 0.2 (0.1–0.3) | 5617 (76.9) | <0.001 ^ | 0.9 (0.82–0.99) |
Technicians | 727 (9.8) | 6699 (90.2) | 1.3 (1.2–1.5) | 1593 (68.7) | 1.3 (1.2–1.5) | |||
Academic | 950 (7.4) | 11,866 (92.6) | 1 | 2866 (75.1) | 1 | |||
Locality of residence | Urban Jewish | 2960 (2.6) | 110,508 (97.4) | <0.001 ^ | 0.3 (0.2–0.4) | 8497 (74.2) | <0.001 ^ | 1.1 (0.8–1. 6) |
Urban non-Jewish | 339 (1.9) | 17,579 (98.1) | 0.2 (0.1–0.3) | 1372 (80.2) | 0.8 (0.6–1.1) | |||
Rural | 48 (8.2) | 535 (91.8) | 1 | 173 (77.3) | 1 | |||
Socioeconomic status (SES) | Low | 143 (2.5) | 5576 (97.5) | <0.001 ^ | 1.0 (0.8–1.2) | 542 (79.1) | 0.012 ^ | 1.2 (1.1–1.6) |
Medium | 1794 (2.6) | 66,825 (97.4) | 1.1 (1.0–1.2) | 5165 (74.2) | 1.06 (0.98–1.15) | |||
High | 1357 (2.4) | 55,350 (97.6) | 1 | 4155 (75.4) | 1 | |||
Rings of a city/town | Central rings | 2945 (2.5) | 115,505 (97.5) | 0.001 * | 1 | 9035 (75.4) | 0.001 * | 1 |
Peripheral rings | 418 (3.0) | 13,661 (97.0) | 1.2 (1.1–1.3) | 1054 (71.6) | 1.21 (1.07–1.37) | |||
Birth country | Western Europe | 486 (4.6) | 10,085 (95.4) | 0.001 ^ | 1.9 (1.8–2.2) | 809 (62.5) | 0.001 ^ | 1.9 (1.7–2.1) |
East Europe and FSU | 48 (2.8) | 1667 (97.2) | 1.1 (0.8–1.2) | 119 (71.3) | 1.3 (0.9–1.8) | |||
Asia | 27 (5.3) | 482 (94.7) | 2.3 (1.6–3.3) | 59 (68.6) | 1.5 (0.9–2.3) | |||
Ethiopia | 29 (1.3) | 2159 (98.7) | 0.5 (0.4–0.8) | 158 (84.5) | 0.6 (0.4–0.8) | |||
Africa | 18 (5.2) | 327 (94.8) | 2.2 (1.4–3.6) | 45 (71.4) | 1.3 (0.7–2.2) | |||
North America | 35 (1.2) | 2824 (98.8) | 0.5 (0.3–0.7) | 149 (81.0) | 0.7 (0.52–1.09) | |||
South America | 25 (2.6) | 932 (97.4) | 1.1 (0.7–1.6) | 68 (73.1) | 1.2 (0.7–1.8) | |||
Israel | 2693 (2.4) | 110,666 (97.6) | 1 | 8680 (76.3) | 1 | |||
Parameter | Hypertension Diagnosis | Comparison to Those without Hypertension Using the Whole Study Population (N = 129,166) | Comparison to Age-, Sex- and Smoking-Matched Group without Hypertension (N = 10,089) | |||||
Mean ± SD | Mean ± SD | p Value ^^ | OR (95% Confidence Interval) ** | Mean ± SD | p Value ^^ | OR (95% Confidence Interval) ** | ||
Age (years) | 29.5 ± 9.8 | 21.7 ± 5.7 | <0.001 | 1.1 (1.1–1.1) | 29.3 ± 9.6 | 1.0 | 1.0 (0.92–1.01) | |
Service duration (years) | 11.1 ± 11.1 | 2.9 ± 5.9 | <0.001 | 1.1 (1.1–1.1) | 10.9 ± 10.7 | 0.93 | 1.0 (1.0–1.0) |
Parameter | Variable | Hypertension (N = 3363) No.(%) | Comparison to Those without Hypertension among the Whole Study Population (N = 129,166) | Comparison to Age-, Sex- and Smoking-Matched Group without Hypertension (N = 10,089) | ||||
---|---|---|---|---|---|---|---|---|
No Hypertension No. (%) | p Value * | OR (95% Confidence Interval) ** | No Hypertension No. (%) | p Value * | OR (95% Confidence Interval) ** | |||
Brushing teeth once a day or more | No | 670 (3.8) | 17,150 (96.2) | <0.001 | 1.5 (1.4–1.7) | 1932 (74.3) | 0.696 | 0.97 (0.87–1.09) |
Yes | 978 (2.5) | 38,698 (97.5) | 1 | 2885 (74.7) | 1 | |||
Consumption of cariogenic diet | No | 1086 (3.1) | 33,435 (96.9) | <0.001 | 1 | 3281 (75.1) | 0.1 | 1 |
Yes | 562 (2.4) | 22,413 (97.6) | 0.7 (0.6–0.8) | 1537 (73.2) | 1.10 (0.98–1.24) | |||
Consumption of sweetened beverages | No | 1039 (3.1) | 31,970 (96.9) | <0.001 | 1 | 3126 (75.1) | 0.176 | 1 |
Yes | 609 (2.5) | 23,878 (97.5) | 0.8 (0.7–0.9) | 1691 (73.5) | 1.08 (0.96–1.21) | |||
Smoking | No | 2628 (2.1) | 123,017 (97.9) | <0.001 | 1 | 7884 (75.0) | 1.0 | 1 |
Yes | 735 (10.7) | 6149 (89.3) | 5.6 (5.1–6.1) | 2205 (75.0) | 1.0 (0.91–1.09) | |||
Alcohol consumption | No | 3350 (2.5) | 129,027 (97.5) | <0.001 | 1 | 10,070 (75.0) | 0.04 | 1 |
Yes | 13 (8.6) | 139 (91.4) | 3.6 (2.0–6.3) | 19 (59.4) | 2.0 (1.0–4.1) | |||
Parameter | Hypertension Diagnosis | Comparison to Those without Hypertension Using the Whole Study Population (N = 129,166) | Comparison to Age-, Sex- and Smoking-Matched Group without Hypertension (N = 10,089) | |||||
Mean ± SD | Mean ± SD | p Value ^ | OR (95% Confidence Interval) ∨ | Mean ± SD | p Value ^ | OR (95% Confidence Interval) ∨ | ||
Total number of appointments with a general physician | 19.3 ± 15.8 | 14.1 ± 11.8 | <0.001 | 1.027 (1.024–1.029) | 12.9 ± 11.6 | <0.001 | 1.035 (1.032–1.038) | |
Total number of dental appointments | 11.0 ± 16.5 | 5.7 ± 10.0 | <0.001 | 1.025 (1.023–1.027) | 9.4 ± 14.9 | <0.001 | 1.006 (1.004–1.008) | |
Total number of non-attendance to scheduled dental appointments | 1.7 ± 4.0 | 0.9 ± 2.6 | <0.001 | 1.060 (1.052–1.068) | 1.5 ± 3.5 | 0.002 | 1.016 (1.006–1.027) |
Parameter | Variable | Hypertension (N = 3363) No. (%) | Comparison to those without Hypertension among the Whole Study Population (N = 129,166) | Comparison to Age-, Sex- and Smoking-Matched Group without Hypertension (N = 10,089) | ||||
---|---|---|---|---|---|---|---|---|
No Hypertension No. (%) | p Value * | OR (95% Confidence Interval) ** | No Hypertension No. (%) | p Value * | OR (95% Confidence Interval) ** | |||
Hyperlipidemia | No | 3235 (2.5) | 128,333 (97.5) | <0.001 | 1 | 9813 (75.2) | 0.002 | 1 |
Yes | 128 (13.3) | 833 (86.7) | 6.1 (5.0–7.3) | 276 (68.3) | 1.4 (1.1–1.7) | |||
Diabetes mellitus | No | 3222 (2.4) | 128,962 (97.6) | <0.001 | 1 | 10,031 (75.7) | <0.001 | 1 |
Yes | 141 (40.9) | 204 (59.1) | 27.6 (22.2 −34.4) | 58 (29.1) | 7.5 (5.5–10.3) | |||
Impaired glucose tolerance (IGT) | No | 3345 (2.5) | 129,056 (97.5) | <0.001 | 1 | 10,052 (75.0) | 0.185 | 1 |
Yes | 18 (14.1) | 110 (85.9) | 6.3 (3.8–10.4) | 37 (67.3) | 1.4 (0.8–2.5) | |||
Obesity | No | 2058 (1.6) | 123,023 (98.4) | <0.001 | 1 | 8271 (80.1) | <0.001 | 1 |
Yes | 1305 (17.5) | 6143 (82.5) | 12.7 (11.8–13.6) | 1818 (58.2) | 2.8 (2.6–3.1) | |||
Cardiovascular disease | No | 2919 (2.3) | 126,012 (97.7) | <0.001 | 1 | 9460 (76.4) | <0.001 | 1 |
Yes | 444 (12.3) | 3154 (87.7) | 6.0 (5.4–6.7) | 629 (58.6) | 2.2 (2.0–2.6) | |||
Fatty liver | No | 3118 (2.4) | 128,473 (97.6) | <0.001 | 1 | 9849 (76.0) | <0.001 | 1 |
Yes | 245 (26.1) | 693 (73.9) | 14.5 (12.5–16.9) | 240 (49.5) | 3.2 (2.6–3.8) | |||
Obstructive sleep apnea (OSA) | No | 3305 (2.5) | 128,906 (97.5) | <0.001 | 1 | 9999 (75.2) | <0.001 | 1 |
Yes | 58 (18.2) | 260 (81.8) | 8.7 (6.5–11.6) | 90 (60.8) | 1.9 (1.4–2.7) | |||
Anemia | No | 3043 (2.4) | 121,726 (97.6) | <0.001 | 1 | 9203 (75.2) | 0.197 | 1 |
Yes | 320 (4.1) | 7440 (95.9) | 1.7 (1.5–1.9) | 886 (73.5) | 1.1 (0.9–1.2) | |||
Periodontal disease | No | 1431 (86.8) | 50,435 (90.3) | <0.001 | 1 | 4221 (74.7) | 0.401 | 1 |
Yes | 217 (13.2) | 5413 (9.7) | 1.4 (1.2–1.6) | 596 (73.3) | 1.07 (0.90–1.26) |
Parameter | Hypertension (N = 3363) No. (%) | Comparison to Those without Hypertension among the Whole Study Population (N = 129,166) | Comparison to Age-, Sex- and Smoking-Matched Group without Hypertension (N = 10,089) | ||||
---|---|---|---|---|---|---|---|
No Hypertension | p Value * | Hypertension vs. No Hypertension | No Hypertension | p Value * | Hypertension vs. No Hypertension | ||
Mean ± SD | Mean ± SD | OR (95% Confidence Interval) ** | Mean ± SD | OR (95% Confidence Interval) ** | |||
The number of teeth that required one surface amalgam filling | 0.5 ± 1.1 | 0.6 ± 1.2 | 0.019 | 0.9 (0.9–0.9) | 0.5 ± 1.0 | 0.018 | 1.043 (1.008–1.079) |
The number of teeth where one surface amalgam filling was performed | 0.28 ± 0.7 | 0.29 ± 0.7 | 0.537 | 0.9 (0.9–1.0) | 0.27 ± 0.7 | 0.350 | 1.025 (0.973–1.079) |
The number of teeth that required two amalgam fillings on two surfaces | 1.8 ± 1.3 | 2.0 ± 1.4 | <0.001 | 0.9 (0.8–0.9) | 1.8 ± 1.3 | 0.692 | 1.011 (0.958–1.067) |
The number of teeth where two surface amalgam fillings were performed | 0.39 ± 0.85 | 0.32 ± 0.8 | <0.001 | 1.085 (1.047–1.125) | 0.37 ± 0.83 | 0.247 | 1.027 (0.981–1.075) |
The number of teeth that required three and more amalgam fillings on surfaces | 0.13 ± 0.5 | 0.11 ± 0.4 | <0.001 | 1.111 (1.040–1.185) | 0.12 ± 0.4 | 0.085 | 1.079 (0.994–1.171) |
The number of teeth where three and more surface amalgam fillings were performed | 0.09 ± 0.3 | 0.07 ± 0.3 | <0.001 | 1.205 (1.106–1.314) | 0.10 ± 0.37 | 0.580 | 0.970 (0.871–1.081) |
The number of teeth that required amalgam crowns | 0.02 ± 0.1 | 0.01 ± 0.1 | 0.001 | 1.588 (1.289–1.957) | 0.02 ± 0.1 | 0.839 | 1.072 (0.932–1.233) |
The number of teeth where amalgam crowns were performed | 0.06 ± 0.3 | 0.03 ± 0.2 | <0.001 | 1.720 (1.528–1.937) | 0.05 ± 0.2 | 0.175 | 0.925 (0.827–1.034) |
The number of teeth that required resin-based composite fillings on one to four surfaces, anterior | 0.27 ± 0.8 | 0.24 ± 0.8 | 0.048 | 1.042 (1.001–1.083) | 0.26 ± 0.8 | 0.446 | 1.019 (0.971–1.069) |
The number of teeth where resin-based composite fillings were performed on one to four surfaces, anterior | 0.34 ± 1.3 | 0.25 ± 0.8 | <0.001 | 1.077 (1.049–1.107) | 0.31 ± 1.07 | 0.270 | 1.018 (0.986–1.051) |
Total number of teeth that required fillings | 1.57 ± 2.3 | 1.55 ± 2.4 | 0.010 | 1.003 (0.989–1.017) | 1.46 ± 2.2 | 0.016 | 1.021 (1.004–1.039) |
Total number of teeth where fillings were performed | 1.2 ± 2.1 | 1.0 ± 1.9 | <0.001 | 1.045 (1.030–1.060) | 1.15 ± 2.04 | 0.222 | 1.011 (0.993–1.030) |
Total number of teeth that required endodontic treatment | 0.12 ± 0.4 | 0.08 ± 0.3 | <0.001 | 1.199 (1.124–1.278) | 0.10 ± 0.4 | 0.025 | 1.113 (1.017–1.219) |
Total number of teeth where endodontic treatment was performed | 0.14 ± 0.4 | 0.07 ± 0.3 | <0.001 | 1.421 (1.329–1.520) | 0.12 ± 0.4 | 0.020 | 1.112 (1.019–1.214) |
The number of teeth that required prefabricated (direct, post and core) | 0.15 ± 0.5 | 0.10 ± 0.4 | <0.001 | 1.211 (1.140–1.285) | 0.13 ± 0.4 | 0.173 | 1.058 (0.980–1.142) |
The number of teeth on which prefabricated (direct, post and core) was performed | 0.19 ± 0.7 | 0.09 ± 0.3 | <0.001 | 1.398 (1.327–1.473) | 0.15 ± 0.5 | 0.004 | 1.117 (1.048–1.191) |
The number of teeth that required crowns | 0.22 ± 0.7 | 0.15 ± 0.5 | <0.001 | 1.165 (1.115–1.217) | 0.19 ± 0.6 | 0.074 | 1.053 (0.997–1.112) |
The number of teeth where a crown was performed | 0.19 ± 0.13 | 0.05 ± 0.52 | <0.001 | 1.180 (1.146–1.215) | 0.17 ± 0.97 | 0.244 | 0.991 (0.585–1.678) |
The number of teeth that required extractions | 0.20 ± 0.6 | 0.14 ± 0.5 | <0.001 | 1.187 (1.129–1.248) | 0.18 ± 0.6 | 0.098 | 1.053 (0.991–1.119) |
Total number of teeth where extractions were performed | 0.18 ± 0.6 | 0.09 ± 0.4 | <0.001 | 1.253 (1.193–1.316) | 0.14 ± 0.6 | 0.004 | 1.084 (1.023–1.150) |
Missing teeth | 1.05 ± 1.72 | 0.57 ± 1.27 | <0.001 | 1.150 (1.124–1.316) | 0.94 ± 1.55 | 0.017 | 1.043 (1.009–1.078) |
Parameter | B | Standard Error | p Value | Exp(B) and 95% Confidence Interval for Exp (B) | Collinearity Statistics * | |
---|---|---|---|---|---|---|
Tolerance | VIF | |||||
(Intercept) | −0.6 | 0.6 | 0.281 | |||
Age (years) | 0.05 | 0.04 | <0.001 | 1.05 (1.04–1.06) | 0.541 | 1.850 |
Sex: men vs. women | 0.6 | 0.08 | <0.001 | 1.9 (1.6–2.2) | 0.924 | 1.082 |
Smoking | 1.8 | 0.07 | 0.016 | 1.2 (1.05–1.4) | 0.755 | 1.325 |
Locality of residence: Urban non-Jewish vs. Urban Jewish | 0.3 | 0.5 | 0.489 | 1.4 (0.5–3.6) | 0.983 | 1.017 |
Urban Jewish—Rural vs. Urban Jewish | 0.0 | 0.5 | 1.000 | 1.0 (0.3–2.6) | 0.989 | 1.011 |
Socio-economic status (SES)—low vs. high | −0.2 | 0.1 | 0.126 | 0.8 (0.6–1.0) | 0.946 | 1.057 |
Socio-economic status (SES)—medium vs. high | −0.1 | 0.05 | 0.068 | 0.9 (0.8–1.0) | 0.949 | 1.054 |
Birth country: Western Europe vs. native Israeli | 0.6 | 0.07 | <0.001 | 1.9 (1.6–2.2) | 0.988 | 1.012 |
Birth country: East Europe and FSU vs. native Israeli | 0.5 | 0.3 | 0.098 | 1.6 (0.9–3.0) | 0.997 | 1.003 |
Birth country: Asia vs. native Israeli | 0.4 | 0.2 | 0.024 | 1.6 (1.1–2.3) | 0.992 | 1.008 |
Birth country: Ethiopia vs. native Israeli | −0.3 | 0.2 | 0.194 | 0.7 (0.4–1.2) | 0.991 | 1.009 |
Birth country: Africa vs. native Israeli | −0.8 | 0.5 | 0.104 | 0.4 (0.1–1.1) | 0.997 | 1.003 |
Birth country: North America vs. native Israeli | 0.1 | 0.2 | 0.612 | 1.1 (0.7–1.7) | 0.992 | 1.008 |
Birth country: South America vs. native Israeli | 0.4 | 0.2 | 0.105 | 1.5 (0.9–2.6) | 0.998 | 1.002 |
Total number of teeth that required fillings | 0.02 | 0.01 | 0.094 | 1.02 (0.9–1.04) | 0.921 | 1.086 |
Total number of teeth that required endodontic treatment | 0.001 | 0.06 | 0.990 | 1.0 (0.8–1.1) | 0.931 | 1.075 |
Missing teeth | 0.02 | 0.01 | 0.236 | 1.0 (0.9–1.0) | 0.927 | 1.079 |
Periodontal disease | 0.04 | 0.08 | 0.600 | 1.0 (0.8–1.2) | 0.985 | 1.015 |
The number of teeth that required crowns | 0.004 | 0.06 | 0.955 | 1.0 (0.8–1.1) | 0.978 | 1.022 |
Hyperlipidemia | 0.2 | 0.1 | 0.178 | 1.2 (0.9–1.6) | 0.957 | 1.045 |
Diabetes mellitus | 1.4 | 0.1 | <0.001 | 4.0 (2.9–5.7) | 0.962 | 1.039 |
Obesity | 1.4 | 0.07 | <0.001 | 4.2 (3.7–4.9) | 0.698 | 1.432 |
Cardiovascular disease | 0.6 | 0.1 | <0.001 | 1.9 (1.6–2.3) | 0.934 | 1.070 |
Fatty liver | 0.6 | 0.1 | <0.001 | 1.8 (1.5–2.3) | 0.909 | 1.100 |
Obstructive sleep apnea | 0.2 | 0.2 | 0.279 | 1.2 (0.8–1.8) | 0.973 | 1.028 |
Anemia | 0.1 | 0.09 | 0.257 | 1.1 (0.9–1.3) | 0.919 | 1.088 |
Parameter | B | Standard Error | p Value | Exp(B) and 95% Wald Confidence Interval for Exp (B) | Collinearity Statistics * | |
---|---|---|---|---|---|---|
Tolerance | VIF | |||||
(Intercept) | 1.6 | 0.6 | 0.01 | |||
Locality of residence—Urban non-Jewish vs. Urban Jewish | 0.5 | 0.5 | 0.265 | 1.7 (0.6–4.7) | 0.977 | 1.024 |
Urban Jewish—Rural vs. Urban Jewish | 0.2 | 0.5 | 0.633 | 1.2 (0.4–3.5) | 0.988 | 1.012 |
Socio-economic status (SES)—low vs. high | 0.3 | 0.1 | 0.026 | 1.4 (1.03–1.8) | 0.947 | 1.056 |
Socio-economic status (SES)—medium vs. high | 0.1 | 0.06 | 0.023 | 1.1 (1.02–1.3) | 0.915 | 1.093 |
Birth country: Western Europe vs. native Israeli | 0.6 | 0.09 | <0.001 | 1.9 (1.6–2.3) | 0.642 | 1.558 |
Birth country: East Europe and FSU vs. native Israeli | 0.4 | 0.2 | 0.063 | 1.5 (0.9–2.5) | 0.832 | 1.202 |
Birth country: Asia vs. native Israeli | 0.5 | 0.3 | 0.103 | 1.7 (0.8–3.4) | 0.936 | 1.068 |
Birth country: Ethiopia vs. native Israeli | −0.3 | 0.3 | 0.225 | 0.7 (0.3–1.2) | 0.925 | 1.081 |
Birth country: Africa vs. native Israeli | −0.4 | 0.4 | 0.352 | 0.6 (0.2–1.6) | 0.925 | 1.081 |
Birth country: North America vs. native Israeli | 0.3 | 0.2 | 0.253 | 1.3 (0.8–2.3) | 0.842 | 1.187 |
Birth country: South America vs. native Israeli | 0.5 | 0.3 | 0.077 | 1.7 (0.9–3.3) | 0. 898 | 1.114 |
Education: high school vs. academic | 0.4 | 0.08 | <0.001 | 1.5 (1.3–1.8) | 0.745 | 1.343 |
Education: technician vs. academic | 0.1 | 0.09 | 0.228 | 1.7 (0.9–3.3) | 0.751 | 1.332 |
Total number of teeth that required fillings | 0.02 | 0.01 | 0.059 | 1.02 (0.9–1.0) | 0.930 | 1.075 |
Total number of teeth that required endodontic treatment | 0.03 | 0.09 | 0.700 | 1.03 (0.8–1.2) | 0.943 | 1.060 |
Missing teeth | 0.005 | 0.02 | 0.800 | 0.9 (0.9–1.0) | 0.932 | 1.073 |
Hyperlipidemia | 0.04 | 0.1 | 0.809 | 1.08 (0.7–1.4) | 0.974 | 1.027 |
Diabetes mellitus | 1.4 | 0.2 | <0.001 | 4.08 (2.6–6.1) | 0.949 | 1.054 |
Obesity | 1.0 | 0.07 | <0.001 | 2.7 (2.4–3.2) | 0.770 | 1.298 |
Cardiovascular disease | 0.6 | 0.09 | <0.001 | 1.8 (1.5–2.2) | 0.939 | 1.065 |
Fatty liver | 0.5 | 0.1 | <0.001 | 1.7 (1.3–2.3) | 0.910 | 1.099 |
Obstructive sleep apnea | 0.2 | 0.2 | 0.265 | 1.3 (0.8–2.02) | 0.974 | 1.026 |
OR 95% CI | p Value | Omnibus Test * | Likelihood Ratio of Each Variable Out of Total × 100 | ||
---|---|---|---|---|---|
Likelihood Ratio Chi Square | p Value | ||||
Periodontal disease | 1.179 (1.044–1.331) | 0.008 | 6.77 | 0.009 | (6.77/48.93) × 100 = 13.84≈14 |
The number of teeth that required crowns | 1.160 (1.028–1.308) | 0.016 | 5.24 | 0.022 | (5.24/48.93) × 100 = 10.71≈11 |
Missing teeth | 1.081 (1.056–1.106) | <0.001 | 36.91 | <0.001 | (36.91/48.93) × 100 = 75.44≈75 |
Total | Total = 48.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almoznino, G.; Zini, A.; Kedem, R.; Protter, N.E.; Zur, D.; Abramovitz, I. Hypertension and Its Associations with Dental Status: Data from the Dental, Oral, Medical Epidemiological (DOME) Nationwide Records-Based Study. J. Clin. Med. 2021, 10, 176. https://doi.org/10.3390/jcm10020176
Almoznino G, Zini A, Kedem R, Protter NE, Zur D, Abramovitz I. Hypertension and Its Associations with Dental Status: Data from the Dental, Oral, Medical Epidemiological (DOME) Nationwide Records-Based Study. Journal of Clinical Medicine. 2021; 10(2):176. https://doi.org/10.3390/jcm10020176
Chicago/Turabian StyleAlmoznino, Galit, Avraham Zini, Ron Kedem, Noam E. Protter, Dorit Zur, and Itzhak Abramovitz. 2021. "Hypertension and Its Associations with Dental Status: Data from the Dental, Oral, Medical Epidemiological (DOME) Nationwide Records-Based Study" Journal of Clinical Medicine 10, no. 2: 176. https://doi.org/10.3390/jcm10020176
APA StyleAlmoznino, G., Zini, A., Kedem, R., Protter, N. E., Zur, D., & Abramovitz, I. (2021). Hypertension and Its Associations with Dental Status: Data from the Dental, Oral, Medical Epidemiological (DOME) Nationwide Records-Based Study. Journal of Clinical Medicine, 10(2), 176. https://doi.org/10.3390/jcm10020176