The Multifaceted Interplay between Atrial Fibrillation and Myocardial Infarction: A Review
Abstract
:1. Introduction
2. Eligibility Criteria and Data Extraction
2.1. AF and T1MI
2.2. Silent AF
2.3. AF in Post MI
2.4. AF and T2MI
2.4.1. AF as a Trigger for T2MI
2.4.2. AF-Related Risk Factors and T2MI Prognosis
2.4.3. T2MI and CAD
2.5. AF Patients and Coronary Embolism
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kirchhof, P.; Benussi, S.; Kotecha, D.; Ahlsson, A.; Atar, D.; Casadei, B.; Castella, M.; Christoph-Diener, H.; Heidbuchel, H.; Hendriks, J.; et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur. Heart J. 2016, 37, 2893–2962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; the Executive Group on behalf of the Joint European Society of Cardiology (ESC); American College of Cardiology (ACC); American Heart Association (AHA); World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction; et al. Fourth Universal Definition of Myocardial Infarction (2018). Circulation 2018, 138, e618–e651. [Google Scholar] [PubMed]
- Januzzi, J.L.; Sandoval, Y. The Many Faces of Type 2 Myocardial Infarction. J. Am. Coll. Cardiol. 2017, 70, 1569–1572. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.E.; Naditch-Brûlé, L.; Murin, J.; Goethals, M.; Inoue, H.; O’Neill, J.; Silva-Cardoso, J.; Zharinov, O.; Gamra, H.; Alam, S.; et al. Distribution and risk profile of paroxysmal, persistent, and permanent atrial fi-brillation in routine clinical practice insight from the real-life global survey evaluating patients with atrial fibrillation international registry. Circ. Arrhythmia Electrophysiol. 2012, 5, 632–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruff, C.T.; Giugliano, R.P.; Braunwald, E.; Hoffman, E.B.; Deenadayalu, N.; Ezekowitz, M.D.; Camm, A.J.; Weitz, J.I.; Lewis, B.S.; Parkhomenko, A.; et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: A meta-analysis of randomised trials. Lancet 2014, 383, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Violi, F.; Soliman, E.Z.; Pignatelli, P.; Pastori, D. Atrial Fibrillation and Myocardial Infarction: A Systematic Review and Appraisal of Pathophysiologic Mechanisms. J. Am. Heart Assoc. 2016, 5, e003347. [Google Scholar] [CrossRef] [Green Version]
- Jabre, P.; Roger, V.L.; Murad, M.H.; Chamberlain, A.M.; Prokop, L.; Adnet, F.; Jouven, X. Mortality associated with atrial fibrillation in patients with myocardial infarction: A systematic review and meta-analysis. Circulation 2011, 123, 1587–1593. [Google Scholar]
- He, J.; Yang, Y.; Zhang, G.; Lu, X.-H. Clinical risk factors for new-onset atrial fibrillation in acute myocardial infarction. A systematic review and meta-analysis. Medicine 2019, 98, e15960. [Google Scholar] [CrossRef]
- Luo, J.; Li, H.; Qin, X.; Liu, B.; Zhao, J.; Maihe, G.; Li, Z.; Wei, Y. Increased risk of ischemic stroke associated with new-onset atrial fibrillation complicating acute coronary syndrome: A systematic review and meta-analysis. Int. J. Cardiol. 2018, 265, 125–131. [Google Scholar] [CrossRef]
- Kundu, A.; O’Day, K.; Shaikh, A.Y.; Lessard, D.M.; Saczynski, J.S.; Yarzebski, J.; Darling, C.E.; Thabet, R.; Akhter, M.W.; Floyd, K.C.; et al. Relation of atrial fibrillation in acute myocardial infarction to in-hospital complications and early hospital readmission. Am. J. Cardiol. 2016, 117, 1213–1218. [Google Scholar]
- Guenancia, C.; Toucas, C.; Fauchier, L.; Stamboul, K.; Garnier, F.; Mouhat, B.; Sagnard, A.; Lorgis, L.; Zeller, M.; Cottin, Y. High rate of recurrence at long-term follow-up after new-onset atrial fibrillation during acute myocardial infarction. Europace 2018, 20, e179–e188. [Google Scholar] [CrossRef] [PubMed]
- Lau, D.H.; Huynh, L.T.; Chew, D.P.; Astley, C.M.; Soman, A.; Sanders, P. Prognostic impact of types of atrial fibrillation in acute coronary syndromes. Am. J. Cardiol. 2009, 104, 1317–1323. [Google Scholar] [CrossRef] [PubMed]
- Congo, K.H.; Belo, A.; Carvalho, J.; Neves, D.; Guerreiro, R.; Pais, J.A.; Brás, D.; Carrington, M.; Piçarra, B.; Santos, A.R.; et al. New-Onset Atrial Fibrillation in St-Segment Elevation Myocardial Infarction: Predictors and Impact on Therapy and Mortality. Arq. Bras. Cardiol. 2019, 113, 948–957. [Google Scholar] [CrossRef]
- Jabre, P.; Jouven, X.; Adnet, F.; Thabut, G.; Bielinski, S.J.; Weston, S.A.; Roger, V.L. Atrial fibrillation and death after myocardial infarction: A community study. Circulation 2011, 123, 2094–2100. [Google Scholar] [PubMed] [Green Version]
- Hofer, F.; Kazem, N.; Hammer, A.; El-Hamid, F.; Koller, L.; Niessner, A.; Sulzgruber, P. Long-term prognosis of de novo atrial fibrillation during acute myocardial infarction: The impact of anti-thrombotic treatment strategies. Eur. Heart J. Cardiovasc. Pharmacother. 2020. [Google Scholar] [CrossRef]
- Pokorney, S.D.; Navar, A.M. In patients with MI, new-onset or existing AF increased risk for CV events at 90 days. Ann. Intern. Med. 2016, 164, 66. [Google Scholar] [CrossRef]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.-A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2020, 1125. [Google Scholar] [CrossRef]
- Patil, S.; Gonuguntla, K.; Rojulpote, C.; Kumar, M.; Nadadur, S.; Nardino, R.J.; Pickett, C. Prevalence and Determinants of Atrial Fibrillation-associated In-hospital Ischemic Stroke in patients with Acute Myocardial Infarction undergoing Percutaneous Coronary Intervention. Am. J. Cardiol. 2020, 29. [Google Scholar] [CrossRef]
- Milika, A.R.; Zorana, V.M.; Mihailo, M.D.; Igor, M.B.; Jovan, P.P.; Danica, M.P.; Bosiljka, V.T.; Sanja, S.D.; Dragan, M.M.; Miodrag, O.C. The long-term risk of stroke in patients with acute myocardial infarction complicated with new-onset atrial fibrillation. Clin. Cardiol. 2009, 32, 467–470. [Google Scholar]
- Axelrod, M.; Gilutz, H.; Plakht, Y.; Greenberg, D.; Novack, L. Early Atrial Fibrillation During Acute Myocardial Infarction May Not Be an Indication for Long-Term Anticoagulation. Angiology 2020, 71, 559–566. [Google Scholar] [CrossRef]
- Stamboul, K.; Zeller, M.; Fauchier, L.; Gudjoncik, A.; Buffet, P.; Garnier, F.; Guenancia, C.; Lorgis, L.; Beer, J.C.; Touzery, C.; et al. Incidence and prognostic significance of silent atrial fibrillation in acute myocardial infarction. Int. J. Cardiol. 2014, 174, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Wi, J.; Shin, D.-H.; Kim, J.-S.; Kim, B.-K.; Ko, Y.-G.; Choi, D.; Hong, M.-K.; Jang, Y. Transient New-Onset Atrial Fibrillation Is Associated With Poor Clinical Outcomes in Patients With Acute Myocardial Infarction. Circ. J. 2016, 80, 1615–1623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bang, C.N.; Gislason, G.H.; Greve, A.M.; Bang, C.A.; Lilja, A.; Torp-Pedersen, C.; Andersen, P.K.; Køber, L.; Devereux, R.B.; Wachtell, K. New-Onset Atrial Fibrillation is Associated With Cardiovascular Events Leading to Death in a First Time Myocardial Infarction Population of 89,703 Patients With Long-Term Follow-Up: A Nationwide Study. J. Am. Heart Assoc. 2014, 3, e000382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seet, R.C.; Friedman, P.A.; Rabinstein, A.A. Prolonged Rhythm Monitoring for the Detection of Occult Paroxysmal Atrial Fibrillation in Ischemic Stroke of Unknown Cause. Circulation 2011, 124, 477–486. [Google Scholar] [CrossRef] [Green Version]
- Sarkisian, L.; Saaby, L.; Poulsen, T.S.; Gerke, O.; Hosbond, S.; Jangaard, N.; Diederichsen, A.C.P.; Thygesen, K.; Mickley, H. Prognostic Impact of Myocardial Injury Related to Various Cardiac and Noncardiac Conditions. Am. J. Med. 2016, 129, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Landes, U.; Bental, T.; Orvin, K.; Vaknin-Assa, H.; Rechavia, E.; Iakobishvili, Z.; Lev, E.; Assali, A.; Kornowski, R. Type 2 myocardial infarction: A descriptive analysis and comparison with type 1 myocardial infarction. J. Cardiol. 2016, 67, 51–56. [Google Scholar]
- Smilowitz, N.R.; Subramanyam, P.; Gianos, E.; Reynolds, H.R.; Shah, B.; Sedlis, S.P. Treatment and outcomes of type 2 myocardial infarction and myocardial injury compared with type 1 myocardial infarction. Coron. Artery Dis. 2018, 29, 46–52. [Google Scholar] [CrossRef]
- Sandoval, Y.; Smith, S.W.; Sexter, A.; Thordsen, S.E.; Bruen, C.A.; Carlson, M.D.; Dodd, K.W.; Driver, B.E.; Hu, Y.; Jacoby, K.; et al. Type 1 and 2 Myocardial Infarction and Myocardial Injury: Clinical Transition to High-Sensitivity Cardiac Troponin I. Am. J. Med. 2017, 130, 1431–1439. [Google Scholar] [CrossRef] [Green Version]
- Smilowitz, N.R.; Weiss, M.C.; Mauricio, R.; Mahajan, A.M.; Dugan, K.E.; Devanabanda, A.; Pulgarin, C.; Gianos, E.; Shah, B.; Sedlis, S.P.; et al. Provoking conditions, management and outcomes of type 2 myocardial infarction and myocardial necrosis. Int. J. Cardiol. 2016, 218, 196–201. [Google Scholar] [CrossRef] [Green Version]
- Saaby, L.; Poulsen, T.S.; Hosbond, S.; Larsen, T.B.; Diederichsen, A.C.P.; Hallas, J.; Thygesen, K.; Mickley, H. Classification of Myocardial Infarction: Frequency and Features of Type 2 Myocardial Infarction. Am. J. Med. 2013, 126, 789–797. [Google Scholar] [CrossRef]
- Stein, G.Y.; Herscovici, G.; Korenfeld, R.; Matetzky, S.; Gottlieb, S.; Alon, D.; Gevrielov-Yusim, N.; Iakobishvili, Z.; Fuchs, S. Type-II Myocardial Infarction–Patient Characteristics, Management and Outcomes. PLoS ONE 2014, 9, e84285. [Google Scholar] [CrossRef] [PubMed]
- Baron, T.; Hambraeus, K.; Sundström, J.; Erlinge, D.; Jernberg, T.; Lindahl, B.; TOTAL-AMI study group. Type 2 myocardial infarction in clinical practice. Heart 2015, 101, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Lambrecht, S.; Sarkisian, L.; Saaby, L.; Poulsen, T.S.; Gerke, O.; Hosbond, S.; Diederichsen, A.C.; Thygesen, K.; Mickley, H. Different Causes of Death in Patients with Myocardial Infarction Type 1, Type 2, and Myocardial Injury. Am. J. Med. 2018, 131, 548–554. [Google Scholar] [CrossRef] [PubMed]
- Cediel, G.; Gonzalez-Del-Hoyo, M.; Carrasquer, A.; Sanchez, R.; Boqué, C.; Bardají, A. Outcomes with type 2 myocardial infarction compared with non-ischaemic myocardial injury. Heart 2017, 103, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.S.; McAllister, D.A.; Mills, R.; Lee, K.K.; Churchhouse, A.M.; Fleming, K.M.; Layden, E.; Anand, A.; Fersia, O.; Joshi, N.V.; et al. Sensitive Troponin Assay and the Classification of Myocardial Infarction. Am. J. Med. 2015, 128, 493–501. [Google Scholar] [CrossRef] [Green Version]
- Chapman, A.R.; Shah, A.S.V.; Lee, K.K.; Anand, A.; Francis, O.; Adamson, P.; McAllister, D.A.; Strachan, F.E.; Newby, D.E.; Mills, N.L. Long-Term Outcomes in Patients With Type 2 Myocardial Infarction and Myocardial Injury. Circulation 2018, 137, 1236–1245. [Google Scholar] [CrossRef]
- Putot, A.; Derrida, S.B.; Zeller, M.; Avondo, A.; Ray, P.; Manckoundia, P.; Cottin, Y. Short-Term Prognosis of Myocardial Injury, Type 1, and Type 2 Myocardial Infarction in the Emergency Unit. Am. J. Med. 2018, 131, 1209–1219. [Google Scholar] [CrossRef]
- Putot, A.; Jeanmichel, M.; Chagué, F.; Avondo, A.; Ray, P.; Manckoundia, P.; Zeller, M.; Cottin, Y. Type 1 or Type 2 Myocardial Infarction in Patients with a History of Coronary Artery Disease: Data from the Emergency Department. J. Clin. Med. 2019, 8, 2100. [Google Scholar] [CrossRef] [Green Version]
- Arora, S.; Strassle, P.D.; Qamar, A.; Wheeler, E.N.; Levine, A.L.; Misenheimer, J.A.; Cavender, M.A.; Stouffer, G.A.; Kaul, P. Impact of Type 2 Myocardial Infarction (MI) on Hospital-Level MI Outcomes: Implications for Quality and Public Reporting. J. Am. Heart Assoc. 2018, 7, e008661. [Google Scholar] [CrossRef]
- Guimarães, P.O.; Leonardi, S.; Huang, Z.; Wallentin, L.; Van de Werf, F.; Aylward, P.E.; Held, C.; Harrington, R.A.; Moliterno, D.J.; Armstrong, P.W.; et al. Clinical features and outcomes of patients with type 2 myocardial infarction: Insights from the Thrombin Receptor Antagonist for Clinical Event Reduction in Acute Coronary Syndrome (TRACER) trial. Am. Heart. J. 2018, 196, 28–35. [Google Scholar] [CrossRef] [Green Version]
- López-Cuenca, Á.; Gómez-Molina, M.; Flores-Blanco, P.J.; Sánchez-Martínez, M.; García-Narbon, A.; Heras-Gómez, I.D.L.; Sánchez-Galian, M.J.; Guerrero-Pérez, E.; Valdés, M.; Manzano-Fernández, S. Comparison between type-2 and type-1 myocardial infarction: Clinical features, treatment strategies and outcomes. J. Geriatr. Cardiol. 2016, 13, 15–22. [Google Scholar] [PubMed]
- Javed, U.; Aftab, W.; Ambrose, J.A.; Wessel, R.J.; Mouanoutoua, M.; Huang, G.; Barua, R.S.; Weilert, M.; Sy, F.; Thatai, D. Frequency of Elevated Troponin I and Diagnosis of Acute Myocardial Infarction. Am. J. Cardiol. 2009, 104, 9–13. [Google Scholar] [CrossRef] [PubMed]
- El-Haddad, H.; Robinson, E.; Swett, K.; Wells, G.L. Prognostic implications of type 2 myocardial infarctions. World J. Cardiovasc. Dis. 2012, 2, 237–241. [Google Scholar] [CrossRef] [Green Version]
- Putot, A.; Jeanmichel, M.; Chague, F.; Manckoundia, P.; Cottin, Y.; Zeller, M. Type 2 Myocardial Infarction: A Geriatric Population-based Model of Pathogenesis. Aging Dis. 2020, 11, 108–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.; Vaidya, S.R.; Arora, S.; Bahekar, A.; Devarapally, S.R. Type 2 versus type 1 myocardial infarction: A comparison of clinical characteristics and outcomes with a meta-analysis of observational studies. Cardiovasc. Diagn. Ther. 2017, 7, 348–358. [Google Scholar] [CrossRef] [Green Version]
- Reid, C.; Alturki, A.; Yan, A.; So, D.; Ko, D.; Tanguay, J.-F.; Bessissow, A.; Mehta, S.; Goodman, S.; Huynh, T. Meta-analysis Comparing Outcomes of Type 2 Myocardial Infarction and Type 1 Myocardial Infarction With a Focus on Dual Antiplatelet Therapy. CJC Open 2020, 2, 118–128. [Google Scholar] [CrossRef]
- Blin, P.; Fauchier, L.; Dureau-Pournin, C.; Sacher, F.; Dallongeville, J.; Bernard, M.A.; Lassalle, R.; Droz-Perroteau, C.; Moore, N. Effectiveness and safety of rivaroxaban 15 or 20 mg versus vitamin K antagonists in nonvalvular atrial fibrillation. Stroke 2019, 50, 2469–2476. [Google Scholar] [CrossRef]
- Raphael, C.E.; Roger, V.L.; Sandoval, Y.; Singh, M.; Bell, M.; Lerman, A.; Rihal, C.S.; Gersh, B.J.; Lewis, B.; Lennon, R.J.; et al. Incidence, Trends, and Outcomes of Type 2 Myocardial Infarction in a Community Cohort. Circulation 2020, 141, 454–463. [Google Scholar] [CrossRef]
- Cediel, G.; Sandoval, Y.; Sexter, A.; Carrasquer, A.; González-Del-Hoyo, M.; Bonet, G.; Boqué, C.; Schulz, K.; Smith, S.W.; Bayes-Genis, A.; et al. Tarraco Risk Score. A risk estimation in type 2 myocardial infarction and myocardial injury: The Tarraco Risk Score. Am. J. Med. 2019, 132, 217–226. [Google Scholar] [CrossRef] [Green Version]
- Shibata, T.; Kawakami, S.; Noguchi, T.; Tanaka, T.; Asaumi, Y.; Kanaya, T.; Nagai, T.; Nakao, K.; Fujino, M.; Nagatsuka, K.; et al. Prevalence, clinical features, and prognosis of acute myocardial infarction attributable to coronary artery embolism. Circulation 2015, 132, 241–250. [Google Scholar] [CrossRef] [Green Version]
Authors | Nb | Atrial Fibrillation (AF) Incidence | Follow-Up | Event | ||
---|---|---|---|---|---|---|
Any AF | Prior AF | NOAF | ||||
Jabre et al.; Meta-analysis [7] - AF vs. sinus rhythm - AF before MI vs. sinus rhythm - New Onset AF vs. sinus rhythm | 43 studies 278,854 patients | 4–25% | 2–13% | 6–17% | Hospitalization to 8 years | Mortality 1.46 (1.35–1.58) 1.27 (1.16–1.40) 1.37 (1.26–1.49) |
He et al.; Meta-analysis [8] | 11 studies 9570 patients | 4.8–20.7% | ||||
Luo et al.; Meta-analysis [9] - AF vs. sinus rhythm | 14 studies 292,774 patients | 4.5–13.7% | Hospitalization to 3 years | Ischemic stroke 2.84 (1.91–4.23) | ||
Kundu et al.; Registry [10] - New onset AF vs. sinus rhythm | Registry 6384 patients | 7.7% | 10.8% | In-hospital death 19.6% vs. 7.9% 2.3 (1.9–2.9) In hospital stroke 3.6% vs. 1.4% 2.5 (1.6–4.1) 30 day post-discharge death 8.3% vs. 5.1% 1.5 (1.2–1.8) | ||
Guenancia et al. [11] | Registry 1621 patients | 25% | 11% | 17% - Silent AF: 13% - Symptomatic AF: 4% | 1 year mortality 21% vs. 7% 1 year stroke 0.9% vs. 1% | |
Lau et al. [12] | 3393 SCA NSTEMI | 15.8% | 4.4% | 11.4% | 1 year mortality New onset vs. None AF: 1.36 (0.84–2.20) Previous AF vs. no AF: 1.42 (1.01–1.99) 1 year MI New onset vs. None AF: 1.80 (1.13–2.86) Previous AF vs. no AF: 0.82 (0.54–1.24) 1 year stroke Previous AF vs. no AF: 1.01 (0.21–4.78) 1 year MCE New onset vs. None AF: 1.66 (1.18–2.33) Previous AF vs. no AF: 1.13 (0.86–1.49) | |
Congo et al. [13] - New Onset AF vs. sinus rhythm | 6957 patients | 14% | 8% | 5% | STEMI | In hospital mortality 13.4% vs. 3.8% 1.19 (0.62–2.27) |
Jabre et al. [14] | 3220 patients | 32.1% | 8.5% | Early AF ≤ 2 days: 6.8% Intermediate AF 2 < AF ≤ 30 days: 3.7% Late AF > 30 days: 12.1% | ||
Hofer et al. [15] | 1372 patients | 17.5% | 6.6% | 10.9% | Long term cardiovascular mortality Do novo AF vs. no AF 1.45 (1.19–2.57) Preexisting AF vs. no AF 0.70 (0.35–0.98) | |
Pokorney et al. [16] | 155,071 patients | 15.5% | 7.9% - History of Paroxysmal AF (sinus rhythm on arrival and discharge ECG): 4.9% -Persistent/Permanent AF (AF on both arrival and discharge ECG): 3.0% | 7.6% - New Onset (AF on arrival ECG but sinus rhythm on discharge ECG): 3.7% - New Onset (AF on discharge ECG): 3.9% | CV at 90 days (all-cause mortality, MI or ischemic stroke): - New Onset (AF on arrival ECG but sinus rhythm on discharge ECG): 1.23 (1.1–1.4) - New Onset (AF on discharge ECG): 1.36 (1.2–1.6) - History of Paroxysmal AF (sinus rhythm on arrival and discharge ECG): 1.36 (1.1–1.4) - Persistentt/Permanent AF (AF on both arrival and discharge ECG): 1.31 (1.1–1.5) All AF: 1.28 (1.2–1.4) |
Authors | N (%) | Age (Years) T2 | Known CCS before MI (%) | Known AF before MI | Anticoagulant at Admission | Triggers for Type 2 MI | Outcomes | |
---|---|---|---|---|---|---|---|---|
Landes et al. [26] | T1MI | 107 pts | 72 ± 12.5 | 46.7% | ND | ND | All-cause mortality T2MI vs. matched T1MI (HRadj-95% CI) 30 days 7.17(131–38.9) p = 0.023 1 year 3.42 (1.51–7.75) p = 0.003 5 years 2.08 (1.14–3.81) p = 0.17 MACE T2MI vs. matched T1MI (HRadj-95% CI) 30 days 1.07(0.49–2.31) p = 0.871 1 year 1.05 (0.51–2.17) p = 0.895 5 years 1.02 (0.59–1.76) p = 0.950 | |
T2MI | 107 pts matched * | 74 ± 10.4 | 63.6% | ND | ND | 1. Sepsis 36% 2. Tachyarrhythmia AF: 30% 3. Post-surgically: 25% Bradyarrhythmia: ND Multiple provoking conditions: ND | ||
Smilowitz et al. [27] | T1MI | 137 pts | 70.9 ± 12.7 | 19.0% (MI)% | ND | ND | In-hospital mortality T1MI vs. T2MI Cardiovascular death: 5.8% vs. 2.1% p = 0.18 Non-cardiovascular death: 7.3% vs. 9.6% p = ND In-hospital or 30-day mortality T1MI vs. T2MI Cardiovascular death: 6.6% vs. 4.1% p = 0.45 Non-cardiovascular death: 8.0% vs. 10.3% p = ND | |
T2MI | 146 pts | 74.3 ± 12.2 | 19.2% (MI) | ND | ND | 1. Tachyarrhythmia: 29.5% 2. Severe Hypertension: 19.9% 3. Severe Anaemia 19.9% Bradyarrhythmia: 6.8% Multiple provoking conditions: 42.5% | ||
Sandoval et al. [28] | T1MI | 77 pts | 61 ± 14 | 31% | 9% | ND | 180 day all-cause mortality T1MI vs. T2MI 8% vs. 13% p = NS 180 day post-discharge MACE T1MI vs. T2MI 10% vs. 16% p = NS | |
T2MI | 140 pts | 60 ± 15 | 17% | 11% | ND | 1. Tachyarrhythmia: 47.1% 2. Severe Hypertension: 42.1% 3. Respiratory Failure: 40.7% Bradyarrhythmia: 3.6% Multiple provoking conditions: ND | ||
Smilowitz et al. [29] | T1MI | ND | In hospital death: 6% | |||||
T2MI | 255 | 76 ± 13 | 50% | 38% | ND | 1. Surgery: 35% 2. Anemia: 32% 3. Sepsis: 31% Bradyarrhythmia: 2% Multiple provoking conditions: 8% | ||
Sabby et al. [30] | T1MI | 397 pts | 71 ± 14 | 24% (MI) | 12.6% | ND | ND | |
T2MI | 144 pts | 75 ± 15 | 27.1% (MI) | 23.6% | ND | 1. Anemia: 21% 2. Respiratory Failure: 21% 3. Tachyarrhythmia: 19% Bradyarrhythmia: 3% Multiple provoking conditions: 10% | ||
Stein et al. [31] | T1MI | 2691 pts | 64 ± 13 | 28.1% (MI) | ND | ND | 1-year mortality T1MI vs. T2MI 8.6% vs. 23.9% p < 0.0001 | |
T2MI | 127 pts | 75 ± 12 | 44.4% (MI) | ND | ND | 1. Anaemia: 31% 2. Sepsis: 24% 3. Tachyarrhythmia: 17% Bradyarrhythmia: ND Multiple provoking conditions: 24% |
Authors | N (%) | Age (Years) T2 | Known CCS before MI (%) | Known AF before MI | Anticoagulant at Admission | Triggers for Type 2 MI | Outcomes | |
---|---|---|---|---|---|---|---|---|
Baron et al. [32] | T1MI | 17,488 pts | 71 ± 12 | 30.4% (MI) | ND | 5.3% | 1-year mortality T1MI vs. T2MI 13.5% vs. 23.7% p < 0.001 | |
T2MI | 1403 pts | 76 ± 11 | 40.1% (MI) | ND | 10.2% | 1. Tachyarrhythmia: 24% 2. Respiratory Failure: 19% 3. Sepsis: 18% 4. Anemia: 13% Bradyarrhythmia: ND Multiple provoking conditions: ND | ||
Lambrecht et al. [33] | T1MI | 360 pts | 70 ± 13 | ND | 8.9% | ND | All-cause mortality at 3 years T1MI vs. T2MI 31.7% vs. 62.2% p < 0.0001 | |
T2MI | 119 pts | 75 ± 11 | ND | 21.0% | ND | ND | ||
Cediel et al. [34] | T1MI | 376 pts | 66 | ND | 31.9% | ND | 2-year mortality T1MI vs. T2MI 19.7% vs. 39.7% p < 0.001 | |
T2MI | 194 pts | 79 | ND | 21.1% | ND | 1. Heart failure: 28% 2. Tachyarrhythmia: 19% 3. Respiratory Failure: 19% Anaemia: 0% Bradyarrhythmia: 0% Multiple provoking conditions: ND | ||
Shah et al. [35] | T1MI | 1171 pts | 68 ± 14 | 45% | ND | 4% | 1-year mortality T1MI vs. T2MI 16% vs. 37% p < 0.001 | |
T2MI | 429 pts | 75 ± 13 | 45% | ND | 10% | ND | ||
Sarkisian et al. [25] | T1MI | 2673 pts | ND | ND | ND | ND | ND | |
T2MI | 1089 pts | 71 ± 14 | 17% (MI) | 29% | ND | 1. Sepsis: 30% 2. Heart Failure: 16% 3. AF: 10% Anaemia: ND Bradyarrhythmia: 7% Multiple provoking conditions: 33% | ||
Chapman et al. [36] | T1MI | 1171 pts | 68 ± 14 | 45% | ND | 4.5% | 5-year mortality T1MI vs. T2MI 31.0% vs. 56.1% p < 0.001 | |
T2MI | 429 pts | 75 ± 14 | 45% | ND | 9.7% | 1. Arrhythmia: 19% 2. Pneumonia: 13% 3. Heart Failure: 12% Anaemia: ND Bradyarrhythmia: ND Multiple provoking conditions: ND | ||
Putot et al. [37] | T1MI | 2036 pts | 67 ± ND | 20% | 7.9% | 7.9% | In-hospital mortality T1MI vs. T2MI 6.1% vs. 14%, p < 0.001 | |
T2MI | 947 pts | 81 ± ND | 31% | 23.7% | 23.7% | 1. Acute infection: 36% 2. Heart Failure: 34% 3. Anemia: 7.8% Bradyarrhythmia: ND Multiple provoking conditions: ND | ||
Putot et al. [38] | T1MI | 365 pts | 72 ± ND | 30% | ND | 15% | In-hospital mortality T1MI vs. T2MI 7% vs. 15%, p < 0.001 | |
T2MI | 254 pts | 82 ± ND | 15% | ND | 27% | ND |
Authors | N (%) | Age (Years) T2 | Known CCS before MI (%) | Known AF before MI | Anticoagulant at Admission | Triggers for Type 2 MI | Outcomes | |
---|---|---|---|---|---|---|---|---|
Arora et al. [39] | T1 MI | 775 pts | 65 ± ND | ND | ND | ND | In-hospital mortality T1MI vs. T2MI 4.7% vs. 17.4%, p < 0.001 30 days mortality after hospital discharge T1MI vs. T2MI 2.2% vs. 11.9%, p < 0.001 1 year mortality after hospital discharge T1MI vs. T2MI 12.4% vs. 34.8%, p < 0.001 | |
T2 MI | 264 pts | 73 ± ND | ND | ND | ND | 1. Acute infection: 46% 2. Heart Failure: 11% 3. Anemia: 7% Bradyarrhythmia: ND Multiple provoking conditions: ND | ||
Guimaraes et al. [40] | T1 MI | 11,647 pts | 64 ± ND | ND | ND | ND | 2-year mortality T1MI vs. T2MI HR (95% IC): 11.82 (5.71–24.46) p < 0.0001 | |
T2 MI | 847 pts | 66 ± ND | ND | ND | ND | 1. AF: 22.4% 2. Anemia: 21.1% 3. Hypotension: 14.5% Bradyarrhythmia: ND Multiple provoking conditions: ND | ||
Lopez-Cuenca et al. [41] | T1 MI | 707 pts | 68 ± 13 | 36% (MI) | 15% | ND | 1 year mortality T1MI vs. T2MI Adjusted HR (95% IC): 0.88 (0.50–1.53) p = 0.692 | |
T2 MI | 117 pts | 72 ± 12 | 50% (MI) | 44% | ND | ND | ||
Javed et al. [42] | T1 MI | 143 pts | 65.9 ± 1.6 | ND | ND | ND | ND | |
T2 MI | 64 pts | 64.2 ± 2.5 | ND | ND | ND | 1. Sepsis: 20% 2. Heart Failure: 14.5% 3. Tachyarrthythmia: 13.2% Anaemia: 4% Bradyarrhythmia: ND Multiple provoking conditions: ND | ||
El-Haddad et al. [43] | T1 MI | 512 pts | 62 (30–97) | ND | ND | ND | In-hospital mortality T1MI vs. T2MI 5.5% vs. 12.5%, p < 0.001 | |
T2 MI | 295 pts | 64 (22–90) | ND | ND | ND | 1. Sepsis: 26% 2. Hypentensive emergency: 15% 3. Gastrointestinal bleeding: 14.5% 4. Tachyarrthythmia: 14.5% Bradyarrhythmia: ND Multiple provoking conditions: ND | ||
Putot et al. [44] | T1 MI | 3710 pts | 67 (56–79) | ND | 9% | ND | In-hospital mortality T1MI vs. T2MI 5% vs. 11%, p < 0.001 In-hospital cardiovascular mortality T1MI vs. T2MI 5% vs. 9%, p < 0.001 | |
T2 MI | 862 pts | 77 (65–84) | ND | 19% | ND | 1. Sepsis: 36.5% 2. Tachyarrthythmia: 13% 3. Acute Heart failure: 10% Anaemia: 3% Bradyarrhythmia: 2.5% Multiple provoking conditions: ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belkouche, A.; Yao, H.; Putot, A.; Chagué, F.; Rochette, L.; Danchin, N.; Fauchier, L.; Zeller, M.; Cottin, Y. The Multifaceted Interplay between Atrial Fibrillation and Myocardial Infarction: A Review. J. Clin. Med. 2021, 10, 198. https://doi.org/10.3390/jcm10020198
Belkouche A, Yao H, Putot A, Chagué F, Rochette L, Danchin N, Fauchier L, Zeller M, Cottin Y. The Multifaceted Interplay between Atrial Fibrillation and Myocardial Infarction: A Review. Journal of Clinical Medicine. 2021; 10(2):198. https://doi.org/10.3390/jcm10020198
Chicago/Turabian StyleBelkouche, Alban, Hermann Yao, Alain Putot, Frédéric Chagué, Luc Rochette, Nicolas Danchin, Laurent Fauchier, Marianne Zeller, and Yves Cottin. 2021. "The Multifaceted Interplay between Atrial Fibrillation and Myocardial Infarction: A Review" Journal of Clinical Medicine 10, no. 2: 198. https://doi.org/10.3390/jcm10020198
APA StyleBelkouche, A., Yao, H., Putot, A., Chagué, F., Rochette, L., Danchin, N., Fauchier, L., Zeller, M., & Cottin, Y. (2021). The Multifaceted Interplay between Atrial Fibrillation and Myocardial Infarction: A Review. Journal of Clinical Medicine, 10(2), 198. https://doi.org/10.3390/jcm10020198