The Mutational Concordance of Fixed Formalin Paraffin Embedded and Fresh Frozen Gastro-Oesophageal Tumours Using Whole Exome Sequencing
Abstract
:1. Introduction
2. Experimental Section
2.1. Sample Description and Preparation
2.2. Genomic DNA Extraction and Whole-Exome
2.3. Read Mapping and Detection of Mutations from Exome Sequencing
3. Results
3.1. Clinicopathological Features of Patients
3.2. Assessment of DNA Integrity
3.3. Mutational Concordance between Frozen and FFPE Oesophageal Tumour Samples
3.4. Detection of Mutations within Cancer-Related Genes
3.5. Intratumoural Genetic Heterogeneity
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA A Cancer J. Clin. 2017, 67, 7–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rustgi, A.K.; El-Serag, H.B. Esophageal Carcinoma. N. Engl. J. Med. 2014, 371, 2499–2509. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bang, Y.-J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef]
- Dutton, S.J.; Ferry, D.R.; Blazeby, J.M.; Abbas, H.; Dahle-Smith, A.; Mansoor, W.; Thompson, J.; Harrison, M.; Chatterjee, A.; Falk, S.; et al. Gefitinib for oesophageal cancer progressing after chemotherapy (COG): A phase 3, multicentre, double-blind, placebo-controlled randomised trial. Lancet Oncol. 2014, 15, 894–904. [Google Scholar] [CrossRef]
- Waddell, T.; Chau, I.; Cunningham, D.; Gonzalez, D.; Okines, A.F.C.; Wotherspoon, A.; Saffery, C.; Middleton, G.; Wadsley, J.; Ferry, D.; et al. Epirubicin, oxaliplatin, and capecitabine with or without panitumumab for patients with previously untreated advanced oesophagogastric cancer (REAL3): A randomised, open-label phase 3 trial. Lancet Oncol. 2013, 14, 481–489. [Google Scholar] [CrossRef] [Green Version]
- Ohtsu, A.; Shah, M.A.; Van Cutsem, E.; Rha, S.Y.; Sawaki, A.; Park, S.R.; Lim, H.Y.; Yamada, Y.; Wu, J.; Langer, B.; et al. Bevacizumab in Combination with Chemotherapy as First-Line Therapy in Advanced Gastric Cancer: A Randomized, Double-Blind, Placebo-Controlled Phase III Study. J. Clin. Oncol. 2011, 29, 3968–3976. [Google Scholar] [CrossRef]
- Fuchs, C.S.; Tomasek, J.; Yong, C.J.; Dumitru, F.; Passalacqua, R.; Goswami, C.; Safran, H.; Dos Santos, L.V.; Aprile, G.; Ferry, D.R.; et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): An international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 2014, 383, 31–39. [Google Scholar] [CrossRef]
- Wilke, H.; Muro, K.; Van Cutsem, E.; Oh, S.-C.; Bodoky, G.; Shimada, Y.; Hironaka, S.; Sugimoto, N.; Lipatov, O.; Kim, T.-Y.; et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): A double-blind, randomised phase 3 trial. Lancet Oncol. 2014, 15, 1224–1235. [Google Scholar] [CrossRef]
- Bang, Y.-J.; Xu, R.-H.; Chin, K.; Lee, K.-W.; Park, S.H.; Rha, S.Y.; Shen, L.; Qin, S.; Xu, N.; Im, S.-A.; et al. Olaparib in combination with paclitaxel in patients with advanced gastric cancer who have progressed following first-line therapy (GOLD): A double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2017, 18, 1637–1651. [Google Scholar] [CrossRef]
- Ross-Innes, C.S.; Wheatley, T.; Weaver, J.M.; Lynch, A.G.; Kingsbury, Z.; Ross, M.T.; Humphray, S.; Bentley, D.; Fitzgerald, R.C.; Becq, J.; et al. Whole-genome sequencing provides new insights into the clonal architecture of Barrett’s esophagus and esophageal adenocarcinoma. Nat. Genet. 2015, 47, 1038–1046. [Google Scholar] [CrossRef] [PubMed]
- Stachler, M.D.; Taylor-Weiner, A.; Peng, S.; McKenna, A.; Agoston, A.T.; Odze, R.D.; Davison, J.M.; Nason, K.S.; Loda, M.; Leshchiner, I.; et al. Paired exome analysis of Barrett’s esophagus and adenocarcinoma. Nat. Genet. 2015, 47, 1047–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dulak, A.M.; Stojanov, P.; Peng, S.; Lawrence, M.S.; Fox, C.; Stewart, C.; Bandla, S.; Imamura, Y.; Schumacher, S.E.; Shefler, E.; et al. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat. Genet. 2013, 45, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Chong, I.Y.; Cunningham, D.; Barber, L.J.; Campbell, J.; Chen, L.; Kozarewa, I.; Fenwick, K.; Assiotis, I.; Guettler, S.; Garcia-Murillas, I.; et al. The genomic landscape of oesophagogastric junctional adenocarcinoma. J. Pathol. 2013, 231, 301–310. [Google Scholar] [CrossRef] [PubMed]
- The Cancer Genome Atlas Research Network Integrated genomic characterization of oesophageal carcinoma. Nat. Cell Biol. 2017, 541, 169–175. [CrossRef] [Green Version]
- Yakovleva, A.; Plieskatt, J.L.; Jensen, S.; Humeida, R.; Lang, J.; Li, G.; Bracci, P.; Silver, S.; Bethony, J.M. Fit for genomic and proteomic purposes: Sampling the fitness of nucleic acid and protein derivatives from formalin fixed paraffin embedded tissue. PLoS ONE 2017, 12, e0181756. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.B.; Daly, M.J.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [Green Version]
- Greytak, S.R.; Engel, K.B.; Bass, B.P.; Moore, H.M. Accuracy of Molecular Data Generated with FFPE Biospecimens: Lessons from the Literature. Cancer Res. 2015, 75, 1541–1547. [Google Scholar] [CrossRef] [Green Version]
- Futreal, P.A.; Coin, L.; Marshall, M.; Down, T.A.; Hubbard, T.; Wooster, R.; Rahman, N.; Stratton, M.R. A census of human cancer genes. Nat. Rev. Cancer 2004, 4, 177–183. [Google Scholar] [CrossRef]
- Marusyk, A.; Almendro, V.; Polyak, K. Intra-tumour heterogeneity: A looking glass for cancer? Nat. Rev. Cancer 2012, 12, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Stahl, P.; Seeschaaf, C.; Lebok, P.; Kutup, A.; Bockhorn, M.; Izbicki, J.R.; Bokemeyer, C.; Simon, R.; Sauter, G.; Marx, A.H. Heterogeneity of amplification of HER2, EGFR, CCND1 and MYC in gastric cancer. BMC Gastroenterol. 2015, 15, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakatsuki, T.; Yamamoto, N.; Sano, T.; Chin, K.; Kawachi, H.; Takahari, D.; Ogura, M.; Ichimura, T.; Nakayama, I.; Osumi, H.; et al. Clinical impact of intratumoral HER2 heterogeneity on trastuzumab efficacy in patients with HER2-positive gastric cancer. J. Gastroenterol. 2018, 53, 1186–1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mroz, E.A.; Rocco, J.W. MATH, a novel measure of intratumor genetic heterogeneity, is high in poor-outcome classes of head and neck squamous cell carcinoma. Oral Oncol. 2013, 49, 211–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Normanno, N.; Rachiglio, A.M.; Roma, C.; Fenizia, F.; Esposito, C.; Pasquale, R.; La Porta, M.L.; Iannaccone, A.; Micheli, F.; Santangelo, M.; et al. Molecular diagnostics and personalized medicine in oncology: Challenges and opportunities. J. Cell. Biochem. 2013, 114, 514–524. [Google Scholar] [CrossRef] [Green Version]
- Esteve-Codina, A.; Arpí, O.; Martinez-García, M.; Pineda, E.; Mallo, M.; Gut, M.; Carrato, C.; Rovira, A.; López, R.; Tortosa, A.; et al. A Comparison of RNA-Seq Results from Paired Formalin-Fixed Paraffin-Embedded and Fresh-Frozen Glioblastoma Tissue Samples. PLoS ONE 2017, 12, e0170632. [Google Scholar] [CrossRef] [Green Version]
- Suciu, B.A.; Pap, Z.; Dénes, L.; Brînzaniuc, K.; Copotoiu, C.; Pávai, Z. Allele-specific PCR method for identification of EGFR mutations in non-small cell lung cancer: Formalin-fixed paraffin-embedded tissue versus fresh tissue. Romanian J. Morphol. Embryol. Rev. Roum. Morphol. Embryol. 2016, 57, 495–500. [Google Scholar]
- Lehmann, U.; Kreipe, H. Real-Time PCR Analysis of DNA and RNA Extracted from Formalin-Fixed and Paraffin-Embedded Biopsies. Methods 2001, 25, 409–418. [Google Scholar] [CrossRef]
- Grünberg, J.; Verocay, M.C.; Rébori, A.; Pouso, J. Comparison of chronic peritoneal dialysis outcomes in children with and without spina bifida. Pediatr. Nephrol. 2007, 22, 573–577. [Google Scholar] [CrossRef]
- De Paoli-Iseppi, R.; Johansson, P.A.; Menzies, A.M.; Dias, K.-R.; Pupo, G.M.; Kakavand, H.; Wilmott, J.S.; Mann, G.J.; Hayward, N.K.; Dinger, M.E.; et al. Comparison of whole-exome sequencing of matched fresh and formalin fixed paraffin embedded melanoma tumours: Implications for clinical decision making. Pathology 2016, 48, 261–266. [Google Scholar] [CrossRef]
- Spencer, D.H.; Sehn, J.K.; Abel, H.J.; Watson, M.A.; Pfeifer, J.D.; Duncavage, E.J. Comparison of Clinical Targeted Next-Generation Sequence Data from Formalin-Fixed and Fresh-Frozen Tissue Specimens. J. Mol. Diagn. 2013, 15, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Solassol, J.; Ramos, J.; Lopez-Crapez, E.; Saifi, M.; Mangé, A.; Vianès, E.; Lamy, A.; Costes, V.; Maudelonde, T. KRAS Mutation Detection in Paired Frozen and Formalin-Fixed Paraffin-Embedded (FFPE) Colorectal Cancer Tissues. Int. J. Mol. Sci. 2011, 12, 3191–3204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Betge, J.; Kerr, G.; Miersch, T.; Leible, S.; Erdmann, G.; Galata, C.L.; Zhan, T.; Gaiser, T.; Post, S.; Ebert, M.P.; et al. Amplicon Sequencing of Colorectal Cancer: Variant Calling in Frozen and Formalin-Fixed Samples. PLoS ONE 2015, 10, e0127146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, X.H.; Li, J.; Gong, H.F.; Yu, G.Y.; Liu, P.; Hao, L.Q.; Liu, L.J.; Bai, C.G.; Zhang, W. Comparison of Fresh Frozen Tissue with Formalin-Fixed Paraffin-Embedded Tissue for Mutation Analysis Using a Multi-Gene Panel in Patients With Colorectal Cancer. Front. Oncol. 2020, 10, 310. [Google Scholar] [CrossRef] [Green Version]
- Do, H.; Dobrovic, A. Sequence Artifacts in DNA from Formalin-Fixed Tissues: Causes and Strategies for Minimization. Clin. Chem. 2015, 61, 64–71. [Google Scholar] [CrossRef] [Green Version]
Characteristic | (N = 16) |
---|---|
Age at diagnosis | |
Median—y | 64 |
Range—y | 22–82 |
Sex—No. (%) | |
Male | 13 (81.2) |
Female | 3 (18.8) |
Site of tumour—No. (%) | |
Distal oesophagus | 1 (6.3) |
GOJ type I | 3 (18.7) |
GOJ type II | 4 (25) |
GOJ type III | 4 (25) |
Stomach | 4 (25) |
Histology—No. (%) | |
Adenocarcinoma | 15 (93.8) |
Neuroendocrine | 1 (6.2) |
Grade—No. (%) | |
1 | 1 (6.2) |
2 | 5 (31.3) |
3 | 10 (62.5) |
TNM Stage—No. (%) | |
T1/2 N0 M0 | 4 (25) |
T3 N0/1 M0 | 10 (62.5) |
T3 N1 M1 | 2 (12.5) |
Time from biopsy to sequencing | |
Median—y | 8.5 |
Range—y | 4–10 |
VAF (%) | Tumour Depth (X) | Combined Sensitivity | Combined Precision PPV | Combined F Score |
---|---|---|---|---|
2 | 5 | 0.775700935 | 0.83 | 0.801932367 |
5 | 5 | 0.775700935 | 0.83 | 0.801932367 |
10 | 5 | 0.76076555 | 0.81122449 | 0.785185185 |
15 | 5 | 0.712643678 | 0.765432099 | 0.738095238 |
20 | 5 | 0.732283465 | 0.801724138 | 0.765432099 |
2 | 10 | 0.778301887 | 0.829145729 | 0.802919708 |
5 | 10 | 0.778301887 | 0.829145729 | 0.802919708 |
10 | 10 | 0.763285024 | 0.81025641 | 0.786069652 |
15 | 10 | 0.715116279 | 0.763975155 | 0.738738739 |
20 | 10 | 0.744 | 0.801724138 | 0.771784232 |
2 | 15 | 0.773584906 | 0.83248731 | 0.80195599 |
5 | 15 | 0.773584906 | 0.83248731 | 0.80195599 |
10 | 15 | 0.758454106 | 0.813471503 | 0.785 |
15 | 15 | 0.709302326 | 0.767295597 | 0.737160121 |
20 | 15 | 0.736 | 0.807017544 | 0.769874477 |
2 | 20 | 0.763033175 | 0.829896907 | 0.795061728 |
5 | 20 | 0.763033175 | 0.829896907 | 0.795061728 |
10 | 20 | 0.747572815533981 | 0.810526316 | 0.777777778 |
15 | 20 | 0.695906433 | 0.762820513 | 0.727828746 |
20 | 20 | 0.717741935 | 0.801801802 | 0.757446809 |
2 | 25 | 0.759615385 | 0.822916667 | 0.79 |
5 | 25 | 0.759615385 | 0.822916667 | 0.79 |
10 | 25 | 0.748768473 | 0.808510638 | 0.777493606 |
15 | 25 | 0.704142012 | 0.767741935 | 0.734567901 |
20 | 25 | 0.729508197 | 0.809090909 | 0.767241379 |
2 | 30 | 0.747572816 | 0.814814815 | 0.779746835 |
5 | 30 | 0.747572816 | 0.814814815 | 0.779746835 |
10 | 30 | 0.736318408 | 0.8 | 0.766839378 |
15 | 30 | 0.694610778 | 0.753246753 | 0.722741433 |
20 | 30 | 0.716666667 | 0.788990826 | 0.751091703 |
Patient | Sample | Mutations Unique to Sample | % Unique to Sample |
---|---|---|---|
169 | Frozen | 1955 | 6.72 |
FFPE | 1129 | 3.88 | |
Shared | 25,997 | 89.40 | |
170 | Frozen | 456 | 1.65 |
FFPE | 250 | 0.90 | |
Shared | 26,958 | 97.45 | |
172 | Frozen | 471 | 1.73 |
FFPE | 361 | 1.32 | |
Shared | 26,424 | 96.95 | |
176 | Frozen | 853 | 2.72 |
FFPE | 1017 | 3.24 | |
Shared | 29,508 | 94.04 | |
177 | Frozen | 476 | 1.42 |
FFPE | 6205 | 18.48 | |
Shared | 26,896 | 80.10 | |
187 | Frozen | 3056 | 9.91 |
FFPE | 146 | 0.47 | |
Shared | 27,630 | 89.61 | |
195 | Frozen | 204 | 0.72 |
FFPE | 168 | 0.60 | |
Shared | 27,790 | 98.68 | |
203 | Frozen | 428 | 1.56 |
FFPE | 233 | 0.85 | |
Shared | 26,811 | 97.59 | |
218 | Frozen | 311 | 1.14 |
FFPE | 154 | 0.57 | |
Shared | 26,738 | 98.29 | |
220 | Frozen | 317 | 1.18 |
FFPE | 493 | 1.84 | |
Shared | 25,978 | 96.98 | |
249 | Frozen | 257 | 0.92 |
FFPE | 408 | 1.47 | |
Shared | 27,119 | 97.61 | |
254 | Frozen | 327 | 1.23 |
FFPE | 159 | 0.60 | |
Shared | 26,076 | 98.17 | |
259 | Frozen | 325 | 1.20 |
FFPE | 441 | 1.63 | |
Shared | 26,234 | 97.16 | |
267 | Frozen | 468 | 1.61 |
FFPE | 413 | 1.42 | |
Shared | 28,209 | 96.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chong, I.Y.; Starling, N.; Rust, A.; Alexander, J.; Aronson, L.; Llorca-Cardenosa, M.; Chauhan, R.; Chaudry, A.; Kumar, S.; Fenwick, K.; et al. The Mutational Concordance of Fixed Formalin Paraffin Embedded and Fresh Frozen Gastro-Oesophageal Tumours Using Whole Exome Sequencing. J. Clin. Med. 2021, 10, 215. https://doi.org/10.3390/jcm10020215
Chong IY, Starling N, Rust A, Alexander J, Aronson L, Llorca-Cardenosa M, Chauhan R, Chaudry A, Kumar S, Fenwick K, et al. The Mutational Concordance of Fixed Formalin Paraffin Embedded and Fresh Frozen Gastro-Oesophageal Tumours Using Whole Exome Sequencing. Journal of Clinical Medicine. 2021; 10(2):215. https://doi.org/10.3390/jcm10020215
Chicago/Turabian StyleChong, Irene Y., Naureen Starling, Alistair Rust, John Alexander, Lauren Aronson, Marta Llorca-Cardenosa, Ritika Chauhan, Asif Chaudry, Sacheen Kumar, Kerry Fenwick, and et al. 2021. "The Mutational Concordance of Fixed Formalin Paraffin Embedded and Fresh Frozen Gastro-Oesophageal Tumours Using Whole Exome Sequencing" Journal of Clinical Medicine 10, no. 2: 215. https://doi.org/10.3390/jcm10020215
APA StyleChong, I. Y., Starling, N., Rust, A., Alexander, J., Aronson, L., Llorca-Cardenosa, M., Chauhan, R., Chaudry, A., Kumar, S., Fenwick, K., Assiotis, I., Matthews, N., Begum, R., Wotherspoon, A., Terlizzo, M., Watkins, D., Chau, I., Lord, C. J., Haider, S., ... Cunningham, D. (2021). The Mutational Concordance of Fixed Formalin Paraffin Embedded and Fresh Frozen Gastro-Oesophageal Tumours Using Whole Exome Sequencing. Journal of Clinical Medicine, 10(2), 215. https://doi.org/10.3390/jcm10020215