Attenuated Resting-State Functional Anticorrelation between Attention and Executive Control Networks in Schizotypal Personality Disorder
Abstract
:1. Introduction
2. Methods and Materials
2.1. Participants
2.2. Measures
2.2.1. Clinical Symptoms
2.2.2. Social Functions
2.3. Image Acquisition and Preprocessing
2.4. Intra- and Inter-Network Functional Connectivity
2.5. Statistical Analyses
3. Results
3.1. Participant Characteristics
3.2. Overall Characteristics of Intra- and Inter-Network Connectivity
3.2.1. Intra-Network Connectivity
3.2.2. Inter-Network Connectivity
3.3. Correlation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, S.; Hu, N.; Zhang, W.; Tao, B.; Dai, J.; Gong, Y.; Tan, Y.; Cai, D.; Lui, S. Dysconnectivity of multiple brain networks in schizophrenia: A meta-analysis of resting-state functional connectivity. Front. Psychiatry 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Northoff, G.; Duncan, N.W. How do abnormalities in the brain’s spontaneous activity translate into symptoms in schizophrenia? From an overview of resting state activity findings to a proposed spatiotemporal psychopathology. Prog. Neurobiol. 2016, 145–146, 26–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, A.; Macdonald, A.; Walker, E. The treatment of adolescents with schizotypal personality disorder and related conditions: A practice-oriented review of the literature. Clin. Psychol. 2013, 20, 408–424. [Google Scholar] [CrossRef]
- Chemerinski, E.; Triebwasser, J.; Roussos, P.; Siever, L.J. Schizotypal personality disorder. J. Personal. Disord. 2013, 27, 652–679. [Google Scholar] [CrossRef] [PubMed]
- APA. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®); American Psychiatric Pub: Arlington, VA, USA, 2013. [Google Scholar]
- Di Carlo, P.; Pergola, G.; Antonucci, L.A.; Bonvino, A.; Mancini, M.; Quarto, T.; Rampino, A.; Popolizio, T.; Bertolino, A.; Blasi, G. Multivariate patterns of gray matter volume in thalamic nuclei are associated with positive schizotypy in healthy individuals. Psychol. Med. 2020, 50, 1501–1509. [Google Scholar] [CrossRef] [PubMed]
- Ettinger, U.; Mohr, C.; Gooding, D.C.; Cohen, A.S.; Rapp, A.; Haenschel, C.; Park, S. Cognition and brain function in schizotypy: A selective review. Schizophr. Bull. 2015, 41, S417–S426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asami, T.; Whitford, T.J.; Bouix, S.; Dickey, C.C.; Niznikiewicz, M.; Shenton, M.E.; Voglmaier, M.M.; McCarley, R.W. Globally and locally reduced MRI gray matter volumes in neuroleptic-naive men with schizotypal personality disorder: Association with negative symptoms. JAMA Psychiatry 2013, 70, 361–372. [Google Scholar] [CrossRef] [Green Version]
- Woodward, N.D.; Cowan, R.L.; Park, S.; Ansari, M.S.; Baldwin, R.M.; Li, R.; Doop, M.; Kessler, R.M.; Zald, D.H. Correlation of individual differences in schizotypal personality traits with amphetamine-induced dopamine release in striatal and extrastriatal brain regions. Am. J. Psychiatry 2011, 168, 418–426. [Google Scholar] [CrossRef] [Green Version]
- Zoghbi, A.W.; Bernanke, J.A.; Gleichman, J.; Masucci, M.D.; Corcoran, C.M.; Califano, A.; Segovia, J.; Colibazzi, T.; First, M.B.; Brucato, G.; et al. Schizotypal personality disorder in individuals with the Attenuated Psychosis Syndrome: Frequent co-occurrence without an increased risk for conversion to threshold psychosis. J. Psychiatr. Res. 2019, 114, 88–92. [Google Scholar] [CrossRef]
- Finn, E.S.; Shen, X.; Scheinost, D.; Rosenberg, M.D.; Huang, J.; Chun, M.M.; Papademetris, X.; Constable, R.T. Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity. Nat. Neurosci. 2015, 18, 1664–1671. [Google Scholar] [CrossRef]
- Viviano, J.D.; Buchanan, R.W.; Calarco, N.; Gold, J.M.; Foussias, G.; Bhagwat, N.; Stefanik, L.; Hawco, C.; DeRosse, P.; Argyelan, M.; et al. Resting-state connectivity biomarkers of cognitive performance and social function in individuals with schizophrenia spectrum disorder and healthy control subjects. Biol. Psychiatry 2018, 84, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wang, Q.; Zhang, J.; Rolls, E.T.; Yang, W.; Palaniyappan, L.; Zhang, L.; Cheng, W.; Yao, Y.; Liu, Z.; et al. Brain-wide analysis of functional connectivity in first-episode and chronic stages of schizophrenia. Schizophr. Bull. 2017, 43, 436–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smallwood, J.; Brown, K.; Baird, B.; Schooler, J.W. Cooperation between the default mode network and the frontal–parietal network in the production of an internal train of thought. Brain Res. 2012, 1428, 60–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pu, W.; Luo, Q.; Palaniyappan, L.; Xue, Z.; Yao, S.; Feng, J.; Liu, Z. Failed cooperative, but not competitive, interaction between large-scale brain networks impairs working memory in schizophrenia. Psychol. Med. 2016, 46, 1211–1224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menon, V. Large-scale brain networks and psychopathology: A unifying triple network model. Trends Cogn. Sci. 2011, 15, 483–506. [Google Scholar] [CrossRef]
- Mishara, A.; Bonoldi, I.; Allen, P.; Rutigliano, G.; Perez, J.; Fusar-Poli, P.; McGuire, P. Neurobiological models of self-disorders in early schizophrenia. Schizophr. Bull. 2016, 42, 874–880. [Google Scholar] [CrossRef] [Green Version]
- Woodward, N.D.; Rogers, B.; Heckers, S. Functional resting-state networks are differentially affected in schizophrenia. Schizophr. Res. 2011, 130, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Carhart-Harris, R.L.; Friston, K.J. The default-mode, ego-functions and free-energy: A neurobiological account of Freudian ideas. Brain 2010, 133, 1265–1283. [Google Scholar] [CrossRef]
- Spadone, S.; Della Penna, S.; Sestieri, C.; Betti, V.; Tosoni, A.; Perrucci, M.G.; Romani, G.L.; Corbetta, M. Dynamic reorganization of human resting-state networks during visuospatial attention. Proc. Natl. Acad. Sci. USA 2015, 112, 8112–8117. [Google Scholar] [CrossRef] [Green Version]
- Dixon, M.L.; Andrews-Hanna, J.R.; Spreng, R.N.; Irving, Z.C.; Mills, C.; Girn, M.; Christoff, K. Interactions between the default network and dorsal attention network vary across default subsystems, time, and cognitive states. NeuroImage 2017, 147, 632–649. [Google Scholar] [CrossRef]
- Gong, J.; Wang, J.; Luo, X.; Chen, G.; Huang, H.; Huang, R.; Huang, L.; Wang, Y. Abnormalities of intrinsic regional brain activity in first-episode and chronic schizophrenia: A meta-analysis of resting-state functional MRI. J. Psychiatry Neurosci. 2020, 45, 55–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, T.-W.; Hsu, T.-W.; Lin, Y.-C.; Lin, C.-P. Schizophrenia symptoms and brain network efficiency: A resting-state fMRI study. Psychiatry Res. Neuroimaging 2015, 234, 208–218. [Google Scholar] [CrossRef]
- Lagioia, A.; van de Ville, D.; Debbane, M.; Lazeyras, F.; Eliez, S. Adolescent resting state networks and their associations with schizotypal trait expression. Front. Syst. Neurosci. 2010, 4. [Google Scholar] [CrossRef] [Green Version]
- Waltmann, M.; O’Daly, O.; Egerton, A.; McMullen, K.; Kumari, V.; Barker, G.J.; Williams, S.C.R.; Modinos, G. Multi-echo fMRI, resting-state connectivity, and high psychometric schizotypy. Neuroimage Clin. 2019, 21, 101603. [Google Scholar] [CrossRef]
- Zhang, Q.; Shen, J.; Wu, J.; Yu, X.; Lou, W.; Fan, H.; Shi, L.; Wang, D. Altered default mode network functional connectivity in schizotypal personality disorder. Schizophr. Res. 2014, 160, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Tang, Y.; Zhang, T.; Li, H.; Tang, Y.; Li, C.; Luo, X.; He, Y.; Lu, Z.; Wang, J. Reduced functional connectivity between bilateral precuneus and contralateral parahippocampus in schizotypal personality disorder. BMC Psychiatry 2017, 17, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schultze-Lutter, F.; Nenadic, I.; Grant, P. Psychosis and schizophrenia-spectrum personality disorders require early detection on different symptom dimensions. Front. Psychiatry 2019, 10, 476. [Google Scholar] [CrossRef] [Green Version]
- Hur, J.-W.; Blake, R.; Cho, K.I.K.; Kim, J.; Kim, S.-Y.; Choi, S.-H.; Kang, D.-H.; Kwon, J.S. Biological motion perception, brain responses, and schizotypal personality disorder. JAMA Psychiatry 2016, 73, 260–267. [Google Scholar] [CrossRef] [Green Version]
- Choe, A.; Hwang, S.; Kim, J.; Park, K.; Chey, J.; Hong, S. Validity of the K-WAIS-IV short forms. Korean J. Clin. Psychol. 2014, 33, 413–428. [Google Scholar]
- Raine, A. The SPQ: A scale for the assessment of schizotypal personality based on DSM-III-R criteria. Schizophr. Bull. 1991, 17, 555–564. [Google Scholar] [CrossRef] [Green Version]
- Moon, H.O.; Yang, I.H.; Lee, H.P.; Kim, M.E.; Ham, W. The preliminary study on the validation of schizotypal personality questionnaire-Korean version. J. Korean Neuropsychiatr. Assoc. 1997, 36, 329–343. [Google Scholar]
- Reynolds, C.A.; Raine, A.; Mellingen, K.; Venables, P.H.; Mednick, S.A. Three-factor model of schizotypal personality: Invariance across culture, gender, religious affiliation, family adversity, and psychopathology. Schizophr. Bull. 2000, 26, 603–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, S.H.; Thornicroft, G.; Coffey, M.; Dunn, G. A brief mental health outcome scale: Reliability and validity of the Global Assessment of Functioning (GAF). Br. J. Psychiatry 1995, 166, 654–659. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-R.; Nam, G.; Hur, J.-W. Development and validation of the Korean version of the reading the mind in the eyes test. PLoS ONE 2020, 15, e0238309. [Google Scholar] [CrossRef]
- Baron-Cohen, S.; Wheelwright, S.; Hill, J.; Raste, Y.; Plumb, I. The “Reading the Mind in the Eyes” Test revised version: A study with normal adults, and adults with Asperger syndrome or high-functioning autism. J. Child Psychol. Psychiatry Allied Discip. 2001, 42, 241–251. [Google Scholar] [CrossRef]
- Birchwood, M.; Smith, J.; Cochrane, R.; Wetton, S.; Copestake, S. The social functioning scale. The development and validation of a new scale of social adjustment for use in family intervention programmes with schizophrenic patients. Br. J. Psychiatry 1990, 157, 853–859. [Google Scholar] [CrossRef] [Green Version]
- Ashburner, J.; Friston, K.J. Nonlinear spatial normalization using basis functions. Hum. Brain Mapp. 1999, 7, 254–266. [Google Scholar] [CrossRef]
- Hallquist, M.N.; Hwang, K.; Luna, B. The nuisance of nuisance regression: Spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. NeuroImage 2013, 82, 208–225. [Google Scholar] [CrossRef] [Green Version]
- Whitfield-Gabrieli, S.; Nieto-Castanon, A. Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012, 2, 125–141. [Google Scholar] [CrossRef] [Green Version]
- Shen, W.; Tu, Y.; Gollub, R.L.; Ortiz, A.; Napadow, V.; Yu, S.; Wilson, G.; Park, J.; Lang, C.; Jung, M.; et al. Visual network alterations in brain functional connectivity in chronic low back pain: A resting state functional connectivity and machine learning study. Neuroimage Clin. 2019, 22, 101775. [Google Scholar] [CrossRef]
- Wolak, T.; Cieśla, K.; Pluta, A.; Włodarczyk, E.; Biswal, B.; Skarżyński, H. Altered functional connectivity in patients with sloping sensorineural hearing loss. Front. Hum. Neurosci. 2019, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, M.W.; Reynolds, J.R.; Power, J.D.; Repovs, G.; Anticevic, A.; Braver, T.S. Multi-task connectivity reveals flexible hubs for adaptive task control. Nat. Neurosci. 2013, 16, 1348–1355. [Google Scholar] [CrossRef] [PubMed]
- Vossel, S.; Geng, J.J.; Fink, G.R. Dorsal and ventral attention systems: Distinct neural circuits but collaborative roles. Neuroscientist 2014, 20, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Posner, M.I.; Fan, J. Attention as an organ system. In Topics in Integrative Neuroscience; Cambridge University Press: Cambridge, UK, 2008; pp. 31–61. [Google Scholar]
- Ozaki, T.J. Frontal-to-parietal top-down causal streams along the dorsal attention network exclusively mediate voluntary orienting of attention. PLoS ONE 2011, 6, e20079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allan, P.G.; Briggs, R.G.; Conner, A.K.; O’Neal, C.M.; Bonney, P.A.; Maxwell, B.D.; Baker, C.M.; Burks, J.D.; Sali, G.; Glenn, C.A.; et al. Parcellation-based tractographic modeling of the dorsal attention network. Brain Behav. 2019, 9, e01365. [Google Scholar] [CrossRef] [PubMed]
- Dosenbach, N.U.F.; Visscher, K.M.; Palmer, E.D.; Miezin, F.M.; Wenger, K.K.; Kang, H.C.; Burgund, E.D.; Grimes, A.L.; Schlaggar, B.L.; Petersen, S.E. A core system for the implementation of task sets. Neuron 2006, 50, 799–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qureshi, A.; Nielsen, J.; Sepulcre, J. Topographic shifts in functional connectivity and reduced lateralization in 16p11.2 deletion carriers: A genetics-first approach to understanding autism. Res. Sq. 2020. [Google Scholar] [CrossRef]
- Dixon, M.L.; de la Vega, A.; Mills, C.; Andrews-Hanna, J.; Spreng, R.N.; Cole, M.W.; Christoff, K. Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks. Proc. Natl. Acad. Sci. USA 2018, 115, E1598–E1607. [Google Scholar] [CrossRef] [Green Version]
- Chai, X.J.; Ofen, N.; Gabrieli, J.D.E.; Whitfield-Gabrieli, S. Selective development of anticorrelated networks in the intrinsic functional organization of the human brain. J. Cogn. Neurosci. 2014, 26, 501–513. [Google Scholar] [CrossRef]
- Karcher, N.R.; Michelini, G.; Kotov, R.; Barch, D.M. Associations between resting state functional connectivity and a hierarchical dimensional structure of psychopathology in middle childhood. bioRxiv 2020. [Google Scholar] [CrossRef]
- Manoliu, A.; Riedl, V.; Zherdin, A.; Mühlau, M.; Schwerthöffer, D.; Scherr, M.; Peters, H.; Zimmer, C.; Förstl, H.; Bäuml, J.; et al. Aberrant dependence of default mode/central executive network interactions on anterior insular salience network activity in schizophrenia. Schizophr. Bull. 2013, 40, 428–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hare, S.M.; Ford, J.M.; Mathalon, D.H.; Damaraju, E.; Bustillo, J.; Belger, A.; Lee, H.J.; Mueller, B.A.; Lim, K.O.; Brown, G.G.; et al. Salience-default mode functional network connectivity linked to positive and negative symptoms of schizophrenia. Schizophr. Bull. 2019, 45, 892–901. [Google Scholar] [CrossRef] [PubMed]
- Mallikarjun, P.K.; Lalousis, P.A.; Dunne, T.F.; Heinze, K.; Reniers, R.L.E.P.; Broome, M.R.; Farmah, B.; Oyebode, F.; Wood, S.J.; Upthegrove, R. Aberrant salience network functional connectivity in auditory verbal hallucinations: A first episode psychosis sample. Transl. Psychiatry 2018, 8, 69. [Google Scholar] [CrossRef] [PubMed]
- Laws, K.R.; Patel, D.D.; Tyson, P.J. Awareness of everyday executive difficulties precede overt executive dysfunction in schizotypal subjects. Psychiatry Res. 2008, 160, 8–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Compton, M.T.; Chien, V.H.; Bollini, A.M. Psychometric properties of the Brief Version of the Schizotypal Personality Questionnaire in relatives of patients with schizophrenia-spectrum disorders and non-psychiatric controls. Schizophr. Res. 2007, 91, 122–131. [Google Scholar] [CrossRef]
- Wilson, S.; Stroud, C.B.; Durbin, C.E. Interpersonal dysfunction in personality disorders: A meta-analytic review. Psychol. Bull. 2017, 143, 677–734. [Google Scholar] [CrossRef]
- Buschman, T.J.; Miller, E.K. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 2007, 315, 1860–1862. [Google Scholar] [CrossRef] [Green Version]
- Hur, J.-W.; Byun, M.S.; Shin, N.Y.; Shin, Y.S.; Kim, S.N.; Jang, J.H.; Kwon, J.S. General intellectual functioning as a buffer against theory-of-mind deficits in individuals at ultra-high risk for psychosis. Schizophr. Res. 2013, 149, 83–87. [Google Scholar] [CrossRef]
Variables | SPD | Controls | Statistics | |
---|---|---|---|---|
(N = 22) | (N = 30) | t (χ2) | p-Value | |
Age, mean (SD), years | 22.68 (3.71) | 22.53 (2.60) | 0.16 | 0.87 |
Sex, male/female | 15/7 | 23/7 | (0.46) | 0.50 |
Handedness, left/right/ambidextrous | 18/4/0 | 28/1/1 | (3.83) | 0.15 |
Estimated IQ, mean (SD) | 119.32 (7.40) | 120.10 (7.14) | −0.38 | 0.70 |
Education, mean (SD), years | 14.86 (1.55) | 14.90 (1.06) | −0.10 | 0.92 |
SES self, mean (SD) | 3.05 (1.17) | 2.67 (0.80) | (3.61) | 0.46 |
SES parental, mean (SD) | 2.86 (0.99) | 2.77 (0.77) | (3.01) | 0.56 |
SPQ total, mean (SD) | 35.05 (13.61) | 5.37 (5.44) | 9.68 | <0.001 |
Subscale 1: Ideas of reference | 5.24 (2.51) | 1.10 (1.06) | 7.13 | <0.001 |
Subscale 2: Social anxiety | 3.95 (2.29) | 1.50 (1.78) | 4.31 | <0.001 |
Subscale 3: Odd beliefs/magical thinking | 3.86 (1.68) | 0.10 (0.31) | 10.12 | <0.001 |
Subscale 4: Unusual perceptual experiences | 4.00 (2.24) | 0.10 (0.31) | 7.94 | <0.001 |
Subscale 5: Eccentric/odd behavior and appearance | 4.05 (2.06) | 0.20 (0.48) | 8.40 | <0.001 |
Subscale 6: No close friends | 3.48 (2.48) | 0.50 (0.90) | 5.26 | <0.001 |
Subscale 7: Odd speech | 4.86 (2.37) | 0.63 (1.03) | 7.67 | <0.001 |
Subscale 8: Constricted affect | 3.24 (1.48) | 0.77 (1.25) | 6.44 | <0.001 |
Subscale 9: Suspiciousness/paranoid ideation | 3.62 (1.86) | 0.53 (1.07) | 6.86 | <0.001 |
SPQ factor 1: Cognitive–perceptual deficits | 16.71 (6.37) | 1.83 (2.05) | 10.33 | <0.001 |
SPQ factor 2: Interpersonal deficits | 14.29 (6.45) | 3.30 (3.69) | 7.04 | <0.001 |
SPQ factor 3: Disorganization | 8.90 (3.90) | 0.83 (1.34) | 9.12 | <0.001 |
GAF, mean (SD) | 66.00 (13.58) | 90.70 (3.20) | −8.36 | <0.001 |
RMET (correct), mean (SD) | 25.55 (2.81) | 26.50 (2.32) | −1.34 | 0.19 |
SFS total, mean (SD) | 102.67 (10.78) | 116.39 (4.84) | −6.19 | <0.001 |
Withdrawal | 98.98 (11.32) | 112.62 (9.34) | −4.75 | <0.001 |
Interpersonal | 108.14 (16.57) | 120.40 (12.27) | −3.07 | 0.003 |
Prosocial | 103.57 (15.48) | 120.58 (8.82) | −4.64 | <0.001 |
Recreation | 98.55 (12.97) | 110.43 (14.33) | −3.08 | 0.003 |
Independence–competence | 93.66 (24.21) | 113.72 (9.36) | −4.15 | <0.001 |
Independence–performance | 100.30 (12.82) | 115.20 (8.33) | −5.08 | <0.001 |
Employment/occupation | 115.52 (11.92) | 121.78 (2.21) | −2.43 | 0.024 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hur, J.-W.; Kim, T.; Cho, K.I.K.; Kwon, J.S. Attenuated Resting-State Functional Anticorrelation between Attention and Executive Control Networks in Schizotypal Personality Disorder. J. Clin. Med. 2021, 10, 312. https://doi.org/10.3390/jcm10020312
Hur J-W, Kim T, Cho KIK, Kwon JS. Attenuated Resting-State Functional Anticorrelation between Attention and Executive Control Networks in Schizotypal Personality Disorder. Journal of Clinical Medicine. 2021; 10(2):312. https://doi.org/10.3390/jcm10020312
Chicago/Turabian StyleHur, Ji-Won, Taekwan Kim, Kang Ik K. Cho, and Jun Soo Kwon. 2021. "Attenuated Resting-State Functional Anticorrelation between Attention and Executive Control Networks in Schizotypal Personality Disorder" Journal of Clinical Medicine 10, no. 2: 312. https://doi.org/10.3390/jcm10020312
APA StyleHur, J. -W., Kim, T., Cho, K. I. K., & Kwon, J. S. (2021). Attenuated Resting-State Functional Anticorrelation between Attention and Executive Control Networks in Schizotypal Personality Disorder. Journal of Clinical Medicine, 10(2), 312. https://doi.org/10.3390/jcm10020312