The Effects of Income Level on Susceptibility to COVID-19 and COVID-19 Morbidity/Mortality: A Nationwide Cohort Study in South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Study Population and Participant Selection
2.3. Exposure (Income Level)
2.4. Outcome (COVID-19 Infection)
2.5. Secondary Outcome (Morbidity and Mortality)
2.6. Covariates
2.7. Statistical Analyses
3. Results
4. Discussion
4.1. Principal Results
4.2. Comparison with Prior Work
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Tang, K. Combating COVID-19: Health equity matters. Nat. Med. 2020, 26, 458. [Google Scholar] [CrossRef]
- Okonkwo, N.E.; Aguwa, U.T.; Jang, M.; Barré, I.A.; Page, K.R.; Sullivan, P.S.; Beyrer, C.; Baral, S. COVID-19 and the US response: Accelerating health inequities. BMJ Evid. Based Med. 2020, 26, 176–179. [Google Scholar] [CrossRef]
- Dorn, A.V.; Cooney, R.E.; Sabin, M.L. COVID-19 exacerbating inequalities in the US. Lancet 2020, 395, 1243–1244. [Google Scholar] [CrossRef]
- Wildman, J. COVID-19 and income inequality in OECD countries. Eur. J. Health Econ. 2021, 22, 455–462. [Google Scholar] [CrossRef]
- Patel, J.A.; Nielsen, F.B.H.; Badiani, A.A.; Assi, S.; Unadkat, V.A.; Patel, B.; Ravindrane, R.; Wardle, H. Poverty, inequality and COVID-19: The forgotten vulnerable. Public Health 2020, 183, 110–111. [Google Scholar] [CrossRef]
- Demenech, L.M.; Dumith, S.C.; Vieira, M.; Neiva-Silva, L. Income inequality and risk of infection and death by COVID-19 in Brazil. Rev. Bras. Epidemiol. 2020, 23, e200095. [Google Scholar] [CrossRef]
- Hawkins, D. Social Determinants of COVID-19 in Massachusetts, United States: An Ecological Study. J. Prev. Med. Public Health 2020, 53, 220–227. [Google Scholar] [CrossRef]
- Pereira, M.; Oliveira, A.M. Poverty and food insecurity may increase as the threat of COVID-19 spreads. Public Health Nutr. 2020, 23, 3236–3240. [Google Scholar] [CrossRef]
- Breitling, L.P. Global epidemiology and socio-economic development correlates of the reproductive ratio of COVID-19. Int. Health 2021, ihab006. [Google Scholar] [CrossRef]
- Szczepura, A. Access to health care for ethnic minority populations. Postgrad. Med. J. 2005, 81, 141–147. [Google Scholar] [CrossRef]
- National Health Insurance Statistical Yearbook. 2019. Available online: http://www.hira.or.kr/bbsDummy.do?pgmid=HIRAA020045020000 (accessed on 2 June 2021).
- Deug-Soo Kim, J.A. Characteristics in Atmospheric Chemistry between NO, NO2 and O3 at an Urban Site during MAPS (Megacity Air Pollution Study)-Seoul, Korea. J. Korean Soc. Atmos. Environ. 2016, 32, 422–434. [Google Scholar] [CrossRef] [Green Version]
- Quan, H.; Li, B.; Couris, C.M.; Fushimi, K.; Graham, P.; Hider, P.; Januel, J.M.; Sundararajan, V. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am. J. Epidemiol. 2011, 173, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Mari-Dell’Olmo, M.; Gotsens, M.; Pasarin, M.I.; Rodriguez-Sanz, M.; Artazcoz, L.; Garcia de Olalla, P.; Rius, C.; Borrell, C. Socioeconomic Inequalities in COVID-19 in a European Urban Area: Two Waves, Two Patterns. Int. J. Environ. Res. Public Health 2021, 18, 1256. [Google Scholar] [CrossRef]
- Abrams, E.M.; Szefler, S.J. COVID-19 and the impact of social determinants of health. Lancet Respir. Med. 2020, 8, 659–661. [Google Scholar] [CrossRef]
- Tsai, J.; Wilson, M. COVID-19: A potential public health problem for homeless populations. Lancet Public Health 2020, 5, e186–e187. [Google Scholar] [CrossRef]
- Weill, J.A.; Stigler, M.; Deschenes, O.; Springborn, M.R. Social distancing responses to COVID-19 emergency declarations strongly differentiated by income. Proc. Natl. Acad. Sci. USA 2020, 117, 19658–19660. [Google Scholar] [CrossRef]
- Baggett, T.P.; Keyes, H.; Sporn, N.; Gaeta, J.M. Prevalence of SARS-CoV-2 Infection in Residents of a Large Homeless Shelter in Boston. JAMA 2020, 323, 2191–2192. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.E.; Brown, J.; Shahab, L.; Steptoe, A.; Fancourt, D. COVID-19, smoking and inequalities: A study of 53,002 adults in the UK. Tob. Control 2020. [Google Scholar] [CrossRef]
- GDP by Country. Available online: https://www.worldometers.info/gdp/gdp-by-country/ (accessed on 2 June 2021).
- Assessment of COVID-19 Response in the Republic of Korea; Asian Development Bank: Manila, Philippines, 2021.
- Upshaw, T.L.; Brown, C.; Smith, R.; Perri, M.; Ziegler, C.; Pinto, A.D. Social determinants of COVID-19 incidence and outcomes: A rapid review. PLoS ONE 2021, 16, e0248336. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, B.; da Silva, A.R.; Kouzoukas, D.E.; Bose, T.; Kim, G.J.; Correa, P.A.; Pondugula, S.; Lee, Y.; Kim, J.; Carpenter, D.O. Precision Mapping of COVID-19 Vulnerable Locales by Epidemiological and Socioeconomic Risk Factors, Developed Using South Korean Data. Int. J. Environ. Res. Public Health 2021, 18, 604. [Google Scholar] [CrossRef] [PubMed]
- Gray, D.M., II; Anyane-Yeboa, A.; Balzora, S.; Issaka, R.B.; May, F.P. COVID-19 and the other pandemic: Populations made vulnerable by systemic inequity. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 520–522. [Google Scholar] [CrossRef] [PubMed]
- Gu, T.; Mack, J.A.; Salvatore, M.; Prabhu Sankar, S.; Valley, T.S.; Singh, K.; Nallamothu, B.K.; Kheterpal, S.; Lisabeth, L.; Fritsche, L.G.; et al. Characteristics Associated with Racial/Ethnic Disparities in COVID-19 Outcomes in an Academic Health Care System. JAMA Netw. Open 2020, 3, e2025197. [Google Scholar] [CrossRef]
- Park, J.H.; Jang, W.; Kim, S.W.; Lee, J.; Lim, Y.S.; Cho, C.G.; Park, S.W.; Kim, B.H. The Clinical Manifestations and Chest Computed Tomography Findings of Coronavirus Disease 2019 (COVID-19) Patients in China: A Proportion Meta-Analysis. Clin. Exp. Otorhinolaryngol. 2020, 13, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Algren, M.H.; Ekholm, O.; Nielsen, L.; Ersboll, A.K.; Bak, C.K.; Andersen, P.T. Associations between perceived stress, socioeconomic status, and health-risk behaviour in deprived neighbourhoods in Denmark: A cross-sectional study. BMC Public Health 2018, 18, 250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kikuchi, H.; Machida, M.; Nakamura, I.; Saito, R.; Odagiri, Y.; Kojima, T.; Watanabe, H.; Inoue, S. Development of severe psychological distress among low-income individuals during the COVID-19 pandemic: Longitudinal study. BJPsych Open 2021, 7, e50. [Google Scholar] [CrossRef]
- Segerstrom, S.C.; Miller, G.E. Psychological stress and the human immune system: A meta-analytic study of 30 years of inquiry. Psychol. Bull. 2004, 130, 601–630. [Google Scholar] [CrossRef] [Green Version]
- Raifman, M.A.; Raifman, J.R. Disparities in the Population at Risk of Severe Illness From COVID-19 by Race/Ethnicity and Income. Am. J. Prev. Med. 2020, 59, 137–139. [Google Scholar] [CrossRef]
- Sese, L.; Nguyen, Y.; Giroux Leprieur, E.; Annesi-Maesano, I.; Cavalin, C.; Goupil de Bouille, J.; Demestier, L.; Dhote, R.; Tandjaoui-Lambiotte, Y.; Bauvois, A.; et al. Impact of socioeconomic status in patients hospitalised for COVID-19 in the Greater Paris area. Eur. Respir. J. 2020, 56, 2002364. [Google Scholar] [CrossRef]
- Uninsurance noMUCotCo. Care without Coverage: Too Little, too Late. 2002. Available online: https://www.ncbi.nlm.nih.gov/books/NBK220636/ (accessed on 2 June 2021).
- Mc Williams, J.M.; Zaslavsky, A.M.; Meara, E.; Ayanian, J.Z. Health insurance coverage and mortality among the near-elderly. Health Aff. 2004, 23, 223–233. [Google Scholar] [CrossRef]
- Webb Hooper, M.; Napoles, A.M.; Perez-Stable, E.J. COVID-19 and Racial/Ethnic Disparities. JAMA 2020, 323, 2466–2467. [Google Scholar] [CrossRef]
Characteristics | Total Participants | |||
---|---|---|---|---|
Low-Income Group (n, %) | Middle-Income Group (n, %) | High-Income Group (n, %) | p-Value | |
Total number | 38,571 (100.0) | 43,189 (100.0) | 45,097 (100.0) | |
Age (years old) | <0.001 * | |||
0–9 | 238 (0.6) | 471 (1.1) | 533 (1.2) | |
10–19 | 996 (2.6) | 1207 (2.8) | 2107 (4.7) | |
20–29 | 10,810 (28.0) | 11,946 (27.7) | 9560 (21.2) | |
30–39 | 3431 (8.9) | 5907 (13.7) | 3580 (7.9) | |
40–49 | 4792 (12.4) | 5338 (12.4) | 6164 (13.7) | |
50–59 | 7958 (20.6) | 8366 (19.4) | 8476 (18.8) | |
60–69 | 5977 (15.5) | 6167 (14.3) | 6732 (14.9) | |
70–79 | 2469 (6.4) | 2375 (5.5) | 4865 (10.8) | |
80+ | 1900 (4.9) | 1412 (3.3) | 3080 (6.8) | |
Sex | <0.001 * | |||
Male | 13,716 (35.6) | 17,847 (41.3) | 19,216 (42.6) | |
Female | 24,855 (64.4) | 25,342 (58.7) | 25,881 (57.4) | |
CCI score | <0.001 * | |||
0 | 34,603 (89.7) | 39,946 (92.5) | 40,654 (90.2) | |
1 | 2028 (5.3) | 1743 (4.0) | 2314 (5.1) | |
≥2 | 1940 (5.0) | 1500 (3.5) | 2129 (4.7) | |
Hypertension | 7888 (20.5) | 7552 (17.5) | 10,257 (22.7) | <0.001 * |
COVID-19 | 2836 (7.4) | 2489 (5.8) | 2618 (5.8) | <0.001 * |
Prognosis of COVID-19 | ||||
Morbidity | 185 (6.5) | 161 (6.5) | 212 (8.1) | 0.032 * |
Mortality | 86 (0.23) | 62 (0.14) | 85 (0.19) | 0.029 * |
Characteristics | COVID-19 | Control | ORs (95% Confidence Interval) for COVID-19 | |||
---|---|---|---|---|---|---|
(Exposure/Total, %) | (Exposure/Total, %) | Crude | p-Value | Adjusted † | p-Value | |
Income group | ||||||
Low | 2836/7943 (35.7%) | 35,735/118,914 (30.1%) | 1 | 1 | ||
Middle | 2489/7943 (31.3%) | 40,700/118,914 (34.2%) | 0.77 (0.73–0.82) | <0.001 * | 0.78 (0.74–0.83) | <0.001 * |
High | 2618/7943 (33.0%) | 42,479/118,914 (35.7%) | 0.78 (0.74–0.82) | <0.001 * | 0.79 (0.75–0.83) | <0.001 * |
Income level (mean, SD) | 10.00 (6.76) | 10.75 (6.39) | 0.98 (0.98–0.99) | <0.001 * | 0.98 (0.98–0.99) | <0.001 * |
Characteristics | Severe Participants | Mild Participants | ORs (95% Confidence Interval) for Morbidity | |||
---|---|---|---|---|---|---|
(Exposure/Total, %) | (Exposure/Total, %) | Crude | p-Value | Adjusted † | p-Value | |
Income group | ||||||
Low | 185/558 (33.2%) | 2651/7385 (35.9%) | 1 | 1 | ||
Middle | 161/558 (28.9%) | 2328/7385 (31.5%) | 0.99 (0.80–1.23) | 0.936 | 1.21 (0.96–1.53) | 0.108 |
High | 212/558 (38.0%) | 2406/7385 (32.6%) | 1.26 (1.03–1.55) | 0.026 * | 1.17 (0.94–1.46) | 0.172 |
Income level (mean, SD) | 10.64 (7.21) | 9.95 (6.73) | 1.02 (1.00–1.03) | 0.020 * | 1.01 (1.00–1.03) | 0.056 |
Characteristics | Dead Participants | Survived Participants | ORs (95% Confidence Interval) for Mortality | |||
---|---|---|---|---|---|---|
(Exposure/Total, %) | (Exposure/Total, %) | Crude | p-Value | Adjusted † | p-Value | |
Income group | ||||||
Low | 86/233 (36.9%) | 2750/7710 (35.7%) | 1 | 1 | ||
Middle | 62/233 (26.6%) | 2427/7710 (31.5%) | 0.82 (0.59–1.14) | 0.231 | 1.09 (0.75–1.58) | 0.654 |
High | 85/233 (36.5%) | 2533/7710 (32.9%) | 1.07 (0.79–1.46) | 0.650 | 0.76 (0.54–1.08) | 0.123 |
Income level (mean, SD) | 10.07 (7.57) | 10.00 (6.74) | 1.00 (0.98–1.02) | 0.876 | 0.99 (0.97–1.01) | 0.148 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.Y.; Yoo, D.M.; Min, C.; Choi, H.G. The Effects of Income Level on Susceptibility to COVID-19 and COVID-19 Morbidity/Mortality: A Nationwide Cohort Study in South Korea. J. Clin. Med. 2021, 10, 4733. https://doi.org/10.3390/jcm10204733
Kim SY, Yoo DM, Min C, Choi HG. The Effects of Income Level on Susceptibility to COVID-19 and COVID-19 Morbidity/Mortality: A Nationwide Cohort Study in South Korea. Journal of Clinical Medicine. 2021; 10(20):4733. https://doi.org/10.3390/jcm10204733
Chicago/Turabian StyleKim, So Young, Dae Myoung Yoo, Chanyang Min, and Hyo Geun Choi. 2021. "The Effects of Income Level on Susceptibility to COVID-19 and COVID-19 Morbidity/Mortality: A Nationwide Cohort Study in South Korea" Journal of Clinical Medicine 10, no. 20: 4733. https://doi.org/10.3390/jcm10204733
APA StyleKim, S. Y., Yoo, D. M., Min, C., & Choi, H. G. (2021). The Effects of Income Level on Susceptibility to COVID-19 and COVID-19 Morbidity/Mortality: A Nationwide Cohort Study in South Korea. Journal of Clinical Medicine, 10(20), 4733. https://doi.org/10.3390/jcm10204733