The Person’s Care Requires a Sex and Gender Approach
Abstract
:1. Introduction
1.1. Definition of Sex and Gender
1.2. Sex–Gender-Based Medicine: Historical Backgrounds
2. Factors That Can Affect the Pharmacological Response
2.1. Influence of Gut Microbiome and Microbiota on the Pharmacological Response
2.2. Adverse Drug Reactions: “First Do No Harm” (168)
2.3. Ethnicity and Geographical Localization
2.4. Stress Effects
2.5. Social Events, Socioeconomic Position, Unemployment, and Low Education Levels
2.6. A Peculiar Case of Stress Effect: The Caregiver Response to Vaccines
2.7. Stigma
2.8. Sex-Gender Differences at the Origin of Life
2.9. The Professional–Patient Relationship Influences the Therapeutic Response
3. Intersectionality
4. Future Perspectives
4.1. Preparation of Questionnaires
4.2. Enrollment
4.3. Research Team
4.4. Research and Health Professional Training
4.5. Building an Alliance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- European Institute for Gender Equality, Concepts and Definitions. 2018. Available online: https://eige.europa.eu/gender-mainstreaming/concepts-and-definitions (accessed on 15 May 2020).
- World Health Organization. Gender, Equity and Human Rights; WHO: Geneva, Switzerland, 2018; Available online: https://www.who.int/gender-equity-rights/understanding/gender-definition/en (accessed on 15 May 2020).
- National Institute of Health, Sex & Gender. 2018. Available online: https://orwh.od.nih.gov/sex-gender (accessed on 7 November 2018).
- Government of Canada. What Is Gender? What Is Sex? Canadian Institutes of Health Research: Ottawa, ON Canada, 2018. Available online: http://www.cihr-irsc.gc.ca/e/48642.html (accessed on 15 May 2020).
- Australian Government. Australian Government Guidelines on the Recognition of Sex and Gender; Attorney General’s Department, Australian Government: Canberra, Australia, 2018. Available online: https://www.ag.gov.au/Pages/default.aspx (accessed on 15 May 2020).
- Franconi, F.; Campesi, I.; Colombo, D.; Antonini, P. Sex-Gender Variable: Methodological Recommendations for Increasing Scientific Value of Clinical Studies. Cells 2019, 8, 476. [Google Scholar] [CrossRef] [Green Version]
- Marino, M.; Masella, R.; Bulzomi, P.; Campesi, I.; Malorni, W.; Franconi, F. Nutrition and human health from a sex–gender perspective. Mol. Asp. Med. 2011, 32, 1–70. [Google Scholar] [CrossRef]
- Yang, X.; Schadt, E.E.; Wang, S.; Wang, H.; Arnold, A.P.; Ingram-Drake, L.; Drake, T.A.; Lusis, A.J. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res. 2006, 16, 995–1004. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Wang, F.; Liu, Y.; Yu, Y.; Gelernter, J.; Zhang, H. Sex-biased methylome and transcriptome in human prefrontal cortex. Hum. Mol. Genet. 2014, 23, 1260–1270. [Google Scholar] [CrossRef] [Green Version]
- Cortes, L.; Cisternas, C.; Forger, N.G. Does Gender Leave an Epigenetic Imprint on the Brain? Front. Neurosci. 2019, 13, 173. [Google Scholar] [CrossRef]
- Migeon, B.R. Why females are mosaics, x-chromosome inactivation, and sex differences in disease. Gend. Med. 2007, 4, 97–105. [Google Scholar] [CrossRef]
- Schurz, H.; Salie, M.; Tromp, G.; Hoal, E.G.; Kinnear, C.J.; Möller, M. The X chromosome and sex-specific effects in infectious disease susceptibility. Hum. Genom. 2019, 13, 2. [Google Scholar] [CrossRef] [Green Version]
- Marmot, M.; Allen, J.; Bell, R.; Bloomer, E.; Goldblatt, P. WHO European review of social determinants of health and the health divide. Lancet 2012, 380, 1011–1029. [Google Scholar] [CrossRef]
- Campesi, I.; Montella, A.; Sotgiu, G.; Dore, S.; Carru, C.; Zinellu, A.; Palermo, M.; Franconi, F. Combined oral contraceptives modify the effect of smoking on inflammatory cellular indexes and endothelial function in healthy subjects. Eur. J. Pharmacol. 2021, 891, 173762. [Google Scholar] [CrossRef]
- Campesi, I.; Milella, L.; Palermo, M.; Sotgiu, G.; Reggiardo, G.; Franconi, F. Cigarette smoking affects the differences between male and female phenotypes. Am. J. Transl. Res. 2020, 12, 2998–3010. [Google Scholar]
- Madsen, T.E.; Bourjeily, G.; Hasnain, M.; Jenkins, M.; Morrison, M.F.; Sandberg, K.; Tong, I.L.; Trott, J.; Werbinski, J.L.; McGregor, A.J. Article Commentary: Sex- and Gender-Based Medicine: The Need for Precise Terminology. Gend. Genome 2017, 1, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Mark, S. Sex- and gender-based medicine: Venus, mars, and beyond. Gend. Med. 2005, 2, 131–1366. [Google Scholar] [CrossRef]
- Corella, D.; Coltell, O.; Portolés, O.; Sotos-Prieto, M.; Fernández-Carrión, R.; Ramirez-Sabio, J.B.; Zanón-Moreno, V.; Mattei, J.; Sorlí, J.V.; Ordovas, J.M. A Guide to Applying the Sex-Gender Perspective to Nutritional Genomics. Nutrients 2018, 11, 4. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, N.K. One step back toward the future of health promotion: Complexity-informed health promotion. Health Promot. Int. 2019, 34, 635–639. [Google Scholar] [CrossRef] [Green Version]
- Ramaswami, R.; Bayer, R.; Galea, S. Precision Medicine from a Public Health Perspective. Annu. Rev. Pub. Health 2018, 39, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Topol, E.J. Individualized Medicine from Prewomb to Tomb. Cell 2014, 157, 241–253. [Google Scholar] [CrossRef] [Green Version]
- Feldman, S.; Ammar, W.; Lo, K.; Trepman, E.; Van Zuylen, M.; Etzioni, O. Quantifying Sex Bias in Clinical Studies at Scale With Automated Data Extraction. JAMA Netw. Open 2019, 2, e196700. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.K. Sex as an important biological variable in biomedical research. BMB Rep. 2018, 51, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Yakerson, A. Women in clinical trials: A review of policy development and health equity in the Canadian context. Int. J. Equity Health 2019, 18, 56. [Google Scholar] [CrossRef] [Green Version]
- Cislak, A.; Formanowicz, M.; Saguy, T. Bias against research on gender bias. Science 2018, 115, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Geller, S.E.; Koch, A.R.; Roesch, P.; Filut, A.; Hallgren, E.; Carnes, M. The more things change, the more they stay the same: A study to evaluate compliance with inclusion and assessment of women and minorities in randomized controlled trials. Acad. Med. 2018, 93, 630–635. [Google Scholar] [CrossRef]
- Clayton, J.A.; Collins, F.S. Policy: NIH to balance sex in cell and animal studies. Nature 2014, 509, 282. [Google Scholar] [CrossRef]
- Mazure, C.M.; Jones, D.P. Twenty years and still counting: Including women as participants and studying sex and gender in biomedical research. BMC Women’s Health 2015, 15, 94. [Google Scholar] [CrossRef] [Green Version]
- National Institute of Health. Consideration of Sex as a Biological Variable in NIH-Funded Research; National Institute of Health: Rockville Pike, MD, USA, 2015. Available online: https://grants.nih.gov/grants/guide/notice-files/not-od-15-102.html (accessed on 27 June 2020).
- Government of Canada. Health Portfolio Sex and Gender—Based Analysis Policy; Government of Canada: Ottawa, ON, Canada, 2017. Available online: https://www.canada.ca/en/health-canada/corporate/transparency/corporate-management-reporting/heath-portfolio-sex-gender-based-analysis-policy.html (accessed on 27 June 2020).
- Rechlin, R.K.; Splinter, T.F.L.; Hodges, T.E.; Albert, A.Y.; Galea, L.A.M. Harnessing the power of sex differences: What a difference ten years did not make. bioRxiv 2021. [Google Scholar] [CrossRef]
- Crown, J.M. Targets for Health for All; World Health Organization Regional Office for Europe: Geneva, Switzerland, 1985. [Google Scholar]
- World Health Organization. Ottawa Charter for Health Promotion. In Proceedings of the First International Conference on Health Promotion, Ottawa, ON, Canada, 21 November 1986. [Google Scholar]
- World Health Organization. Health 2020: A European Policy Framework Supporting Action across Government and Society for Health and Well-Being; WHO: Geneva, Switzerland, 2013; Available online: https://www.euro.who.int/en/publications/abstracts/health-2020-a-european-policy-framework-supporting-action-across-government-and-society-for-health-and-well-being (accessed on 27 June 2020).
- Ventura-Clapier, R.; Dworatzek, E.; Seeland, U.; Kararigas, G.; Arnal, J.F.; Brunelleschi, S.; Carpenter, T.C.; Erdmann, J.; Franconi, F.; Giannetta, E.; et al. Sex in basic research: Concepts in the cardiovascular field. Cardiovasc. Res. 2017, 113, 711–724. [Google Scholar] [CrossRef] [Green Version]
- Schiebinger, L.; Stefanick, M.L. Gender Matters in Biological Research and Medical Practice. J. Am. Coll. Cardiol. 2016, 67, 136–138. [Google Scholar] [CrossRef] [Green Version]
- Legato, M.J. Principles of gender-specific medicine. In Gender in the Genomic Era, 3rd ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2017; p. 792. [Google Scholar]
- Mauvais-Jarvis, F.; Berthold, H.K.; Campesi, I.; Carrero, J.-J.; Dhakal, S.; Franconi, F.; Gouni-Berthold, I.; Heiman, M.L.; Kautzky-Willer, A.; Klein, S.L.; et al. Sex- and Gender-Based Pharmacological Response to Drugs. Pharmacol. Rev. 2021, 73, 730–762. [Google Scholar] [CrossRef]
- Carcel, C.; Woodward, M.; Balicki, G.; Koroneos, G.L.; de Sousa, D.A.; Cordonnier, C.; Lukaszyk, C.; Thompson, K.; Wang, X.; Davies, L.; et al. Trends in recruitment of women and reporting of sex differences in large-scale published randomized controlled trials in stroke. Int. J. Stroke 2019, 14, 931–938. [Google Scholar] [CrossRef]
- Poon, R.; Khanijow, K.; Umarjee, S.; Fadiran, E.; Yu, M.; Zhang, L.; Parekh, A. Participation of Women and Sex Analyses in Late-Phase Clinical Trials of New Molecular Entity Drugs and Biologics Approved by the FDA in 2007–2009. J. Women’s Health 2013, 22, 604–616. [Google Scholar] [CrossRef] [Green Version]
- Pilote, L.; Raparelli, V. Participation of women in clinical trials: Not yet time to rest on our laurels. J. Am. Coll. Cardiol. 2018, 71, 1970–1972. [Google Scholar] [CrossRef]
- Isoherranen, N.; Zhong, G. Biochemical and physiological importance of the CYP26 retinoic acid hydroxylases. Pharmacol. Ther. 2019, 204, 107400. [Google Scholar] [CrossRef]
- Sacco, A.K.; Milner, J.D. Gene-environment interactions in primary atopic disorders. Curr. Opin. Immunol. 2019, 60, 148–155. [Google Scholar] [CrossRef]
- Sharma, N.; Pasala, M.S.; Prakash, A. Mitochondrial DNA: Epigenetics and environment. Environ. Mol. Mutagen. 2019, 60, 668–682. [Google Scholar] [CrossRef] [Green Version]
- Trumpff, C.; Marsland, A.L.; Basualto-Alarcón, C.; Martin, J.L.; Carroll, J.E.; Sturm, G.; Vincent, A.E.; Mosharov, E.V.; Gu, Z.; Kaufman, B.A.; et al. Acute psychological stress increases serum circulating cell-free mitochondrial DNA. Psychoneuroendocrinology 2019, 106, 268–276. [Google Scholar] [CrossRef]
- Picard, M.; McEwen, B.S. Psychological Stress and Mitochondria: A Systematic Review. Psychosom. Med. 2018, 80, 141–153. [Google Scholar] [CrossRef] [Green Version]
- Campesi, I.; Marino, M.; Cipolletti, M.; Romani, A.; Franconi, F. Put “gender glasses” on the effects of phenolic compounds on cardiovascular function and diseases. Eur. J. Nutr. 2018, 57, 2677–2691. [Google Scholar] [CrossRef]
- Franconi, F.; Campesi, I. Sex Impact on Biomarkers, Pharmacokinetics and Pharmacodynamics. Curr. Med. Chem. 2017, 24, 2561–2575. [Google Scholar] [CrossRef]
- Pathirana, T.I.; Jackson, C. Socioeconomic status and multimorbidity: A systematic review and meta-analysis. Aust. N. Z. J. Pub. Health 2018, 42, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Muiesan, M.L.; Salvetti, M.; Rosei, C.A.; Paini, A. Gender differences in antihypertensive teatment: Myths or legends? High Blood Press Cardiovasc. Prev. 2016, 23, 105–113. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, W.; Sharma, M.; Wu, Y.; Li, J.; You, N.; Ding, Z.; Zhao, X.; Chen, H.; Tang, H.; et al. Sex differences in antihypertensive drug use and blood pressure control. Postgrad. Med. J. 2019, 95, 295–299. [Google Scholar] [CrossRef]
- Ballo, P.; Balzi, D.; Barchielli, A.; Turco, L.; Franconi, F.; Zuppiroli, A. Gender differences in statin prescription rates, adequacy of dosing, and association of statin therapy with outcome after heart failure hospitalization: A retrospective analysis in a community setting. Eur. J. Clin. Pharmacol. 2016, 72, 311–319. [Google Scholar] [CrossRef]
- Ussher, J. Are We Medicalizing Women’s Misery? A Critical Review of Women’s Higher Rates of Reported Depression. Fem. Psychol. 2010, 20, 9–35. [Google Scholar] [CrossRef]
- Osterberg, L.; Blaschke, T. Adherence to medication. N. Engl. J. Med. 2005, 353, 487–497. [Google Scholar] [CrossRef] [Green Version]
- Stangl, A.L.; Earnshaw, V.A.; Logie, C.H.; Van Brakel, W.; Simbayi, L.C.; Barré, I.; Dovidio, J.F. The Health Stigma and Discrimination Framework: A global, crosscutting framework to inform research, intervention development, and policy on health-related stigmas. BMC Med. 2019, 17, 31. [Google Scholar] [CrossRef]
- Hernandez, J.; Mota, L.; Huang, W.; Moore, D.; Baldwin, W. Sexually dimorphic regulation and induction of P450s by the constitutive androstane receptor (CAR). Toxicology 2009, 256, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Soldin, O.P.; Mattison, D. Sex Differences in Pharmacokinetics and Pharmacodynamics. Clin. Pharmacokinet. 2009, 48, 143–157. [Google Scholar] [CrossRef] [Green Version]
- Franconi, F.; Campesi, I. Pharmacogenomics, pharmacokinetics and pharmacodynamics: Interaction with biological differences between men and women. Br. J. Pharmacol. 2014, 171, 580–594. [Google Scholar] [CrossRef] [Green Version]
- Anderson, G.D. Sex and Racial Differences in Pharmacological Response: Where Is the Evidence? Pharmacogenetics, Pharmacokinetics, and Pharmacodynamics. J. Women’s Health 2005, 14, 19–29. [Google Scholar] [CrossRef]
- Sobolewski, M.; Singh, G.; Schneider, J.S.; Cory-Slechta, D.A. Different Behavioral Experiences Produce Distinctive Parallel Changes in, and Correlate With, Frontal Cortex and Hippocampal Global Post-translational Histone Levels. Front. Integr. Neurosci. 2018, 12, 29. [Google Scholar] [CrossRef] [Green Version]
- Fadiran, E.O.; Zhang, L. Effects of Sex Differences in the Pharmacokinetics of Drugs and Their Impact on the Safety of Medicines in Women. In Medicines for Women; Springer Gabler: Berlin/Heidelberg, Germany, 2014; pp. 41–68. [Google Scholar]
- Tracy, T.S.; Venkataramanan, R.; Glover, D.D.; Caritis, S. Temporal changes in drug metabolism (CYP1A2, CYP2D6 and CYP3A Activity) during pregnancy. Am. J. Obstet. Gynecol. 2005, 192, 633–639. [Google Scholar] [CrossRef]
- Zaigler, M.; Rietbrock, S.; Szymanski, J.; Dericks-Tan, J.; Staib, A.; Fuhr, U. Variation of CYP1A2-dependent caffeine metabolism during menstrual cycle in healthy women. Int. J. Clin. Pharmacol. Ther. 2000, 38, 235–244. [Google Scholar] [CrossRef]
- Gallagher, C.J.; Balliet, R.M.; Sun, D.; Chen, G.; Lazarus, P. Sex Differences in UDP-Glucuronosyltransferase 2B17 Expression and Activity. Drug Metab. Dispos. 2010, 38, 2204–2209. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, E. Gender-related differences in pharmacokinetics and their clinical significance. J. Clin. Pharm. Ther. 1999, 24, 339–346. [Google Scholar] [CrossRef]
- Feghali, M.; Venkataramanan, R.; Caritis, S. Pharmacokinetics of drugs in pregnancy. Semin. Perinatol. 2015, 39, 512–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vildhede, A.; Kimoto, E.; Rodrigues, A.D.; Varma, M.V.S. Quantification of Hepatic Organic Anion Transport Proteins OAT2 and OAT7 in Human Liver Tissue and Primary Hepatocytes. Mol. Pharm. 2018, 15, 3227–3235. [Google Scholar] [CrossRef] [PubMed]
- Lamba, V.; Lamba, J.; Yasuda, K.; Strom, S.; Davila, J.; Hancock, M.L.; Fackenthal, J.D.; Rogan, P.K.; Ring, B.; Wrighton, S.A.; et al. Hepatic CYP2B6 Expression: Gender and Ethnic Differences and Relationship toCYP2B6Genotype and CAR (Constitutive Androstane Receptor) Expression. J. Pharmacol. Exp. Ther. 2003, 307, 906–922. [Google Scholar] [CrossRef] [PubMed]
- Regitz-Zagrosek, V.; Kararigas, G. Mechanistic Pathways of Sex Differences in Cardiovascular Disease. Physiol. Rev. 2017, 97, 1–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feghali, M.N.; Mattison, D.R. Clinical Therapeutics in Pregnancy. J. Biomed. Biotechnol. 2011, 2011, 783528. [Google Scholar] [CrossRef]
- Dallmann, A.; Mian, P.; Anker, J.V.D.; Allegaert, K. Clinical Pharmacokinetic Studies in Pregnant Women and the Relevance of Pharmacometric Tools. Curr. Pharm. Des. 2019, 25, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Tracy, T.S.; Chaudhry, A.S.; Prasad, B.V.S.S.S.; Thummel, K.E.; Schuetz, E.G.; Zhong, X.-B.; Tien, Y.-C.; Jeong, H.; Pan, X.; Shireman, L.M.; et al. Interindividual Variability in Cytochrome P450-Mediated Drug Metabolism. Drug Metab. Dispos. 2016, 44, 343–351. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.S.; Unno, T.; Kim, B.-Y.; Park, M.-S. Sex Differences in Gut Microbiota. World J. Men’s Health 2020, 38, 48–60. [Google Scholar] [CrossRef]
- Sinha, T.; Vila, A.V.; Garmaeva, S.; Jankipersadsing, S.A.; Imhann, F.; Collij, V.; Bonder, M.J.; Jiang, X.; Gurry, T.; Alm, E.J.; et al. Analysis of 1135 gut metagenomes identifies sex-specific resistome profiles. Gut Microbes 2019, 10, 358–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, G.; Sandhu, K.V.; Griffin, B.T.; Dinan, T.G.; Cryan, J.F.; Hyland, N.P. Gut Reactions: Breaking Down Xenobiotic–Microbiome Interactions. Pharmacol. Rev. 2019, 71, 198–224. [Google Scholar] [CrossRef] [PubMed]
- Selwyn, F.P.; Cheng, S.L.; Bammler, T.K.; Prasad, B.; Vrana, M.; Klaassen, C.; Cui, J.Y. Developmental Regulation of Drug-Processing Genes in Livers of Germ-Free Mice. Toxicol. Sci. 2015, 147, 84–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolnick, D.I.; Snowberg, L.K.; Hirsch, P.E.; Lauber, C.L.; Org, E.; Parks, B.; Lusis, A.J.; Knight, R.; Caporaso, J.G.; Svanbäck, R. Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat. Commun. 2014, 5, 4500. [Google Scholar] [CrossRef] [PubMed]
- Elderman, M.; De Vos, P.; Faas, M. Role of Microbiota in Sexually Dimorphic Immunity. Front. Immunol. 2018, 9, 1018. [Google Scholar] [CrossRef] [Green Version]
- Le Bastard, Q.; Al-Ghalith, G.A.; Grégoire, M.; Chapelet, G.; Javaudin, F.; Dailly, E.; Batard, E.; Knights, D.; Montassier, E. Systematic review: Human gut dysbiosis induced by non-antibiotic prescription medications. Aliment. Pharmacol. Ther. 2018, 47, 332–345. [Google Scholar] [CrossRef] [Green Version]
- European Medicines Agency. Guideline on Good Pharmacovigilance Practices (GVP): Annex 1. EMA/876333/2011 Rev 4; European Medicines Agency: Amsterdam, The Netherlands, 2017.
- Lazarou, J.; Pomeranz, B.H.; Corey, P.N. Incidence of Adverse Drug Reactions in Hospitalized Patients: A Meta-Analysis of Prospective Studies. Surv. Anesthesiol. 1999, 43, 53–54. [Google Scholar] [CrossRef]
- Zucker, I.; Prendergast, B.J. Sex differences in pharmacokinetics predict adverse drug reactions in women. Biol. Sex Differ. 2020, 11, 32. [Google Scholar] [CrossRef]
- Hazell, L.; Shakir, S.A. Under-reporting of adverse drug reactions: A systematic review. Drug Saf. 2006, 29, 385–396. [Google Scholar] [CrossRef]
- Turner, R.M.; Pirmohamed, M. Cardiovascular Pharmacogenomics: Expectations and Practical Benefits. Clin. Pharmacol. Ther. 2013, 95, 281–293. [Google Scholar] [CrossRef]
- Carr, D.F.; Alfirevic, A.; Pirmohamed, M. Pharmacogenomics: Current State-of-the-Art. Genes 2014, 5, 430–443. [Google Scholar] [CrossRef] [Green Version]
- Giardina, C.; Cutroneo, P.M.; Mocciaro, E.; Russo, G.T.; Mandraffino, G.; Basile, G.; Rapisarda, F.; Ferrara, R.; Spina, E.; Arcoraci, V. Adverse Drug Reactions in Hospitalized Patients: Results of the FORWARD (Facilitation of Reporting in Hospital Ward) Study. Front. Pharmacol. 2018, 9, 350. [Google Scholar] [CrossRef]
- Crescioli, G.; Bettiol, A.; Bonaiuti, R.; Tuccori, M.; Rossi, M.; Capuano, A.; Pagani, S.; Spada, G.; Venegoni, M.; Vighi, G.D.; et al. Risk of Hospitalization Associated with Cardiovascular Medications in the Elderly Italian Population: A Nationwide Multicenter Study in Emergency Departments. Front. Pharmacol. 2021, 11, 611102. [Google Scholar] [CrossRef]
- Mehta, N.; Mazer-Amirshahi, M.; Schulman, C.; O’Connell, F.; Pourmand, A. Sex-based pharmacotherapy in acute care setting, a narrative review for emergency providers. Am. J. Emerg. Med. 2020, 38, 1253–1256. [Google Scholar] [CrossRef]
- Holm, L.; Ekman, E.; Blomgren, K.J. Influence of age, sex and seriousness on reporting of adverse drug reactions in Sweden. Pharmacoepidemiol. Drug Saf. 2017, 26, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Montastruc, J.; Lafaurie, M.; de Canecaude, C.; Durrieu, G.; Sommet, A.; Montastruc, F.; Bagheri, H. Fatal adverse drug reactions: A worldwide perspective in the World Health Organization pharmacovigilance database. Br. J. Clin. Pharmacol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Hakimi, Y.; Petitpain, N.; Pinzani, V.; Montastruc, J.-L.; Bagheri, H. Paradoxical adverse drug reactions: Descriptive analysis of French reports. Eur. J. Clin. Pharmacol. 2020, 76, 1169–1174. [Google Scholar] [CrossRef] [PubMed]
- Fuselli, S. Beyond drugs: The evolution of genes involved in human response to medications. Proc. R. Soc. B Boil. Sci. 2019, 286, 20191716. [Google Scholar] [CrossRef] [Green Version]
- Hunt, S. Pharmacogenetics, personalized medicine, and race. Nat. Educ. 2008, 1, 212. [Google Scholar]
- Eberly, L.A.; Yang, L.; Eneanya, N.D.; Essien, U.; Julien, H.; Nathan, A.S.; Khatana, S.A.M.; Dayoub, E.J.; Fanaroff, A.C.; Giri, J.; et al. Association of Race/Ethnicity, Gender, and Socioeconomic Status With Sodium-Glucose Cotransporter 2 Inhibitor Use Among Patients With Diabetes in the US. JAMA Netw. Open 2021, 4, e216139. [Google Scholar] [CrossRef]
- Scott, L.; Woodiwiss, A.J.; Maseko, M.J.; Veliotes, D.G.; Majane, O.H.; Paiker, J.; Sareli, P.; Norton, G. Aldosterone-to-Renin Ratio and the Relationship Between Urinary Salt Excretion and Blood Pressure in a Community of African Ancestry. Am. J. Hypertens. 2011, 24, 951–957. [Google Scholar] [CrossRef]
- Satoh, M.; Kikuya, M.; Hosaka, M.; Asayama, K.; Inoue, R.; Metoki, H.; Tsubota-Utsugi, M.; Hara, A.; Hirose, T.; Obara, T.; et al. Association of Aldosterone-to-Renin Ratio With Hypertension Differs by Sodium Intake: The Ohasama Study. Am. J. Hypertens. 2014, 28, 208–215. [Google Scholar] [CrossRef] [Green Version]
- Joseph, J.J.; Echouffo-Tcheugui, J.B.; Kalyani, R.R.; Yeh, H.-C.; Bertoni, A.G.; Effoe, V.S.; Casanova, R.; Sims, M.; Correa, A.; Wu, W.-C.; et al. Aldosterone, Renin, and Diabetes Mellitus in African Americans: The Jackson Heart Study. J. Clin. Endocrinol. Metab. 2016, 101, 1770–1778. [Google Scholar] [CrossRef] [Green Version]
- Clemmer, J.S.; Faulkner, J.L.; Mullen, A.J.; Butler, K.R.; Hester, R. Sex-specific responses to mineralocorticoid receptor antagonism in hypertensive African American males and females. Biol. Sex Differ. 2019, 10, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, J.J.T.; Rahman, M.; Scarpa, A.; Fatholahi, M.; Griffin, V.; Jean-Baptiste, R.; Islam, M.; Eissa, M.; White, S.; Douglas, J.G. Determinants of Salt Sensitivity in Black and White Normotensive and Hypertensive Women. Hypertension 2003, 42, 1087–1092. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Lu, Y.-F.; Corton, J.C.; Klaassen, C.D. Expression of cytochrome P450 isozyme transcripts and activities in human livers. Xenobiotica 2021, 51, 279–286. [Google Scholar] [CrossRef]
- Dahaba, A.A.; Perelman, S.I.; Moskowitz, D.M.; Bennett, H.L.; Shander, A.; Xiao, Z.; Huang, L.; An, G.; Bornemann, H.; Wilfinger, G.; et al. Geographic regional differences in rocuronium bromide dose-response relation and time course of action: An overlooked factor in determining recommended dosage. Anesthesiology 2006, 104, 950–953. [Google Scholar] [CrossRef] [Green Version]
- Ortolani, O.; Conti, A.; Chan, Y.K.; Sie, M.Y.; Ong, G.S.Y. Comparison of Propofol Consumption and Recovery Time in Caucasians from Italy, with Chinese, Malays and Indians from Malaysia. Anaesth. Intensiv. Care 2004, 32, 250–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahaba, A.A.; Xiao, Z.; Zhu, X.; Oettl, K.; Dong, H.; Xiong, L.; Zelzer, S.; Zhao, S.; Reibnegger, G. Location matters: Overlooked ethnic-geographic effect in China and Austria on propofol /cisatracurium sex-differences among a population pharmacokinetic/pharmacodynamic (PopPK/PD) covariate analysis in men, women and one transgender subject. Fundam. Clin. Pharmacol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Franconi, F.; Omboni, S.; Ambrosioni, E.; Reggiardo, G.; Campesi, I.; Borghi, C. Effects of Treatment with Zofenopril in Men and Women with Acute Myocardial Infarction: Gender Analysis of the SMILE Program. PLoS ONE 2014, 9, e111558. [Google Scholar] [CrossRef]
- Kokras, N.; Hodes, G.E.; Bangasser, D.A.; Dalla, C. Sex differences in the hypothalamic–pituitary–adrenal axis: An obstacle to antidepressant drug development? Br. J. Pharmacol. 2019, 176, 4090–4106. [Google Scholar] [CrossRef]
- Iwata, M.; Ota, K.T.; Duman, R.S. The inflammasome: Pathways linking psychological stress, depression, and systemic illnesses. Brain Behav. Immun. 2013, 31, 105–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derry, H.M.; Padin, A.C.; Kuo, J.L.; Hughes, S.; Kiecolt-Glaser, J.K. Sex Differences in Depression: Does Inflammation Play a Role? Curr. Psychiatry Rep. 2015, 17, 78. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, J.M.; Cooper, J.D.; Bot, M.; Guest, P.C.; Lamers, F.; Weickert, C.S.; Penninx, B.W.J.H.; Bahn, S. Sex Differences in Serum Markers of Major Depressive Disorder in the Netherlands Study of Depression and Anxiety (NESDA). PLoS ONE 2016, 11, e0156624. [Google Scholar] [CrossRef] [PubMed]
- Liukkonen, T.; Rasanen, P.; Jokelainen, J.; Leinonen, M.; Jarvelin, M.-R.; Meyer-Rochow, V.B.; Timonen, M. The association between anxiety and C-reactive protein (CRP) levels: Results from the Northern Finland 1966 Birth Cohort Study. Eur. Psychiatry 2011, 26, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, J.M.; Cooper, J.D.; Penninx, B.W.J.H.; Bahn, S. Variation in serum biomarkers with sex and female hormonal status: Implications for clinical tests. Sci. Rep. 2016, 6, 26947. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.L.; Rodriguez, M.V.J.; Salazar, A.S.; Montgomerie, M.E.; Raccamarich, P.D.; Starita, M.C.U.; Ojeda, I.T.B.; Beauchamps, L.; Vazquez, A.; Martinez, M.T.; et al. Sex Differences in the Association between Stress, Loneliness, and COVID-19 Burden Among People with HIV in the United States. AIDS Res. Hum. Retroviruses 2021, 37, 314–321. [Google Scholar] [CrossRef]
- Lavretsky, H.; Feldman, D.J. Precision medicine for breath-focused mind-body therapies for stress and anxiety: Are we ready yet? Glob. Adv. Health Med. 2021, 10, 2164956120986129. [Google Scholar] [CrossRef] [PubMed]
- Barfield, W.D. Social disadvantage and its effect on maternal and newborn health. Semin. Perinatol. 2021, 45, 151407. [Google Scholar] [CrossRef]
- Van Der Knaap, L.J.; Riese, H.; Hudziak, J.J.; Verbiest, M.M.P.J.; Verhulst, F.C.; Oldehinkel, A.J.; Van Oort, A.F.V. Glucocorticoid receptor gene (NR3C1) methylation following stressful events between birth and adolescence. The TRAILS study. Transl. Psychiatry 2014, 4, e381. [Google Scholar] [CrossRef]
- Reuveni, I.; Nugent, A.C.; Gill, J.; Vythilingam, M.; Carlson, P.J.; Lerner, A.; Neumeister, A.; Charney, D.S.; Drevets, W.C.; Bonne, O. Altered cerebral benzodiazepine receptor binding in post-traumatic stress disorder. Transl. Psychiatry 2018, 8, 206. [Google Scholar] [CrossRef] [Green Version]
- Bousquet, W.F.; Rupe, B.D.; Miya, T.S. Endocrine modification of drug responses in the rat. J. Pharmacol. Exp. Ther. 1965, 147, 376–379. [Google Scholar]
- Stitzel, R.E.; Furner, R.L. Stress-induced alterations in microsomal drug metabolism in the rat. Biochem. Pharmacol. 1967, 16, 1489–1494. [Google Scholar] [CrossRef]
- Seyle, A. Stress in Health and Disease; Springer: Berlin/Heidelberg, Germany, 1976. [Google Scholar]
- Seyle, A. Hormones and Resistance; Springer: Berlin/Heidelberg, Germany, 1976. [Google Scholar]
- Kourounakis, P.N.; Rekka, E. Induction of Drug Metabolism can be a Homeostatic Response. Arch. Pharm. 1991, 324, 161–164. [Google Scholar] [CrossRef]
- Alexidis, A.N.; Commandeur, J.N.; Rekka, E.A.; Groot, E.; Kourounakis, P.N.; Vermeulen, N.P. Novel piperidine derivatives: Inhibitory properties towards cytochrome P450 isoforms, and cytoprotective and cytotoxic characteristics. Environ. Toxicol. Pharmacol. 1996, 1, 81–88. [Google Scholar] [CrossRef]
- Rekka, E.; Ayalogu, E.O.; Lewis, D.F.; Gibson, G.G.; Ioannides, C. Induction of hepatic microsomal CYP4A activity and of peroxisomal beta-oxidation by two non-steroidal anti-inflammatory drugs. Arch. Toxicol. 1994, 68, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Daskalopoulos, E.P.; Malliou, F.; Rentesi, G.; Marselos, M.; Lang, M.A.; Konstandi, M.; Malliou, F. (Foteini) Stress is a critical player in CYP3A, CYP2C, and CYP2D regulation: Role of adrenergic receptor signaling pathways. Am. J. Physiol. Metab. 2012, 303, E40–E54. [Google Scholar] [CrossRef]
- Konstandi, M.; Johnson, E.O.; Lang, M.A. Consequences of psychophysiological stress on cytochrome P450-catalyzed drug metabolism. Neurosci. Biobehav. Rev. 2014, 45, 149–167. [Google Scholar] [CrossRef]
- Antonia, K.; Anastasia, A.; Tesseromatis, C. Stress can affect drug pharmacokinetics via serum/tissues protein binding and blood flow rate alterations. Eur. J. Drug Metab. Pharmacokinet. 2011, 37, 1–7. [Google Scholar] [CrossRef]
- Taylor, J.L.; Makarem, N.; Shimbo, D.; Aggarwal, B. Gender Differences in Associations Between Stress and Cardiovascular Risk Factors and Outcomes. Gend. Genome 2018, 2, 111–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rincón-Cortés, M.; Herman, J.P.; Lupien, S.; Maguire, J.; Shansky, R.M. Stress: Influence of sex, reproductive status and gender. Neurobiol. Stress 2019, 10, 100155. [Google Scholar] [CrossRef]
- American Psychological Association. American Psychological Association Stress in America: The State of Our Nation; American Psychological Association: Washington, DC, USA, 2017. [Google Scholar]
- Kokras, N.; Dalla, C. Preclinical sex differences in depression and antidepressant response: Implications for clinical research. J. Neurosci. Res. 2017, 95, 731–736. [Google Scholar] [CrossRef] [Green Version]
- Quinn, M.M.; Smith, P.M. Gender, Work and Health. Ann. Work Expo. Health 2018, 62, 389–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Sio, S.; Cedrone, F.; Trovato Battagliola, E.; Buomprisco, G.; Perri, R.; Greco, E. The perception of psychosocial risks and work-related stress in relation to job insecurity and gender differences: A cross-sectional study. Biomed. Res. Int. 2018, 2018, 7649085. [Google Scholar] [CrossRef] [Green Version]
- Walli-Attaei, M.; Joseph, P.; Rosengren, A.; Chow, C.K.; Rangarajan, S.; Lear, S.A.; AlHabib, K.F.; Davletov, K.; Dans, A.; Lanas, F.; et al. Variations between women and men in risk factors, treatments, cardiovascular disease incidence, and death in 27 high-income, middle-income, and low-income countries (PURE): A prospective cohort study. Lancet 2020, 396, 97–109. [Google Scholar] [CrossRef]
- Siegrist, J.; Li, J. Work Stress and Altered Biomarkers: A Synthesis of Findings Based on the Effort–Reward Imbalance Model. Int. J. Environ. Res. Pub. Health 2017, 14, 1373. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, C.; Ellenbogen, M.A. Tend-and-befriend is a beacon for change in stress research: A reply to Tops. Psychoneuroendocrinology 2014, 45, 212–213. [Google Scholar] [CrossRef]
- Parry, M. Caregiver Burden and Cardiovascular Disease: Can We Afford to Keep the Health of Caregivers in Canada Invisible? Can. J. Cardiol. 2019, 35, 1267–1269. [Google Scholar] [CrossRef]
- Office of Women Health. Available online: https://www.womenshealth.gov/a-z-topics/caregiver-stress (accessed on 30 June 2020).
- La, I.S.; Johantgen, M.; Storr, C.L.; Zhu, S.; Cagle, J.G.; Ross, A. Caregiver burden and related factors during active cancer treatment: A latent growth curve analysis. Eur. J. Oncol. Nurs. 2021, 52, 101962. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, K.; Greenman, P.S.; Pipe, A.; Johnson, S.M.; Tulloch, H. Reducing Caregiver Distress and Cardiovascular Risk: A Focus on Caregiver-Patient Relationship Quality. Can. J. Cardiol. 2019, 35, 1409–1411. [Google Scholar] [CrossRef]
- Torimoto-Sasai, Y.; Igarashi, A.; Wada, T.; Ogata, Y.; Yamamoto-Mitani, N. Female family caregivers face a higher risk of hypertension and lowered estimated glomerular filtration rates: A cross-sectional, comparative study. BMC Public Health 2015, 15, 177. [Google Scholar] [CrossRef] [Green Version]
- Delfino, L.L.; Komatsu, R.S.; Komatsu, C.; Neri, A.L.; Cachioni, M. Neuropsychiatric symptoms associated with family caregiver burden and depression. Dement. Neuropsychol. 2021, 15, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Yee, J.L.; Schulz, R. Gender differences in psychiatric morbidity among family caregivers: A review and analysis. Gerontologist 2000, 40, 147–164. [Google Scholar] [CrossRef]
- Pressler, S.J.; Gradus-Pizlo, I.; Chubinski, S.D.; Smith, G.; Wheeler, S.; Sloan, R.; Jung, M. Family caregivers of patients with heart failure: A longitudinal study. J. Cardiovasc. Nurs. 2013, 28, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Bhan, N.; Rao, N.; Raj, A. Gender Differences in the Associations between Informal Caregiving and Wellbeing in Low- and Middle-Income Countries. J. Women’s Health 2020, 29, 1328–1338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donelan, K.; Hill, C.A.; Hoffman, C.; Scoles, K.; Feldman, P.H.; Levine, C.; Gould, D. Challenged To Care: Informal Caregivers In A Changing Health System. Health Aff. 2002, 21, 222–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madison, A.A.; Shrout, M.R.; Renna, M.E.; Kiecolt-Glaser, J.K. Psychological and Behavioral Predictors of Vaccine Efficacy: Considerations for COVID-19. Perspect. Psychol. Sci. 2021, 16, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Fischinger, S.; Boudreau, C.; Butler, A.L.; Streeck, H.; Alter, G. Sex differences in vaccine-induced humoral immunity. Semin. Immunopathol. 2019, 41, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Glaser, R.; Sheridan, J.; Malarkey, W.B.; Maccallum, R.C.; Kiecolt-Glaser, J.K. Chronic Stress Modulates the Immune Response to a Pneumococcal Pneumonia Vaccine. Psychosom. Med. 2000, 62, 804–807. [Google Scholar] [CrossRef]
- Brydon, L.; Walker, C.; Wawrzyniak, A.; Whitehead, D.; Okamura, H.; Yajima, J.; Tsuda, A.; Steptoe, A. Synergistic effects of psychological and immune stressors on inflammatory cytokine and sickness responses in humans. Brain, Behav. Immun. 2009, 23, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Weiss, M.G.; Ramakrishna, J. Stigma interventions and research for international health. Lancet 2006, 367, 536–538. [Google Scholar] [CrossRef]
- Richardson, S.K. Gender Differences in Perceived Stigma among Sexual Minorities and Their Related Health Practices. Ph.D. Thesis, University of Northern Iowa, Cedar Falls, IA, USA, 2018. Available online: https://scholarworks.uni.edu/etd/581 (accessed on 18 June 2021).
- Wogen, J.; Restrepo, M.T. Human Rights, Stigma, and Substance Use. Health Hum. Rights 2020, 22, 51–60. [Google Scholar]
- Wellman, J.D.; Araiza, A.M.; Solano, C.; Berru, E. Sex differences in the relationships among weight stigma, depression, and binge eating. Appetite 2019, 133, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Ataro, Z.; Mengesha, M.M.; Abrham, A.; Digaffe, T. Gender Differences in Perceived Stigma and Coping Strategies Among People Living with HIV/AIDS at Jugal Hospital, Harar, Ethiopia. Psychol. Res. Behav. Manag. 2020, 13, 1191–1200. [Google Scholar] [CrossRef] [PubMed]
- Meyers, S.; Earnshaw, V.; D’Ambrosio, B.; Courchesne, N.; Werb, D.; Smith, L. The intersection of gender and drug use-related stigma: A mixed methods systematic review and synthesis of the literature. Drug Alcohol Depend. 2021, 223, 108706. [Google Scholar] [CrossRef] [PubMed]
- Hatzenbuehler, M.L.; Phelan, J.C.; Link, B. Stigma as a Fundamental Cause of Population Health Inequalities. Am. J. Pub. Health 2013, 103, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Constantinof, A.; Moisiadis, V.G.; Matthews, S. Programming of stress pathways: A transgenerational perspective. J. Steroid Biochem. Mol. Biol. 2016, 160, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Schuster, A.; Tang, C.; Yu, T.; Ortogero, N.; Bao, J.; Zheng, H.; Yan, W. Sperm-borne miRNAs and endo-siRNAs are important for fertilization and preimplantation embryonic development. Development 2016, 143, 635–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campesi, I.; Franconi, F.; Montella, A.; Dessole, S.; Capobianco, G. Human Umbilical Cord: Information Mine in Sex-Specific Medicine. Life 2021, 11, 52. [Google Scholar] [CrossRef] [PubMed]
- Soubry, A.; Verbeke, G.; Hoyo, C. Do early paternal exposures to lifestyle factors such as smoking increase the risk of chronic diseases in the offspring? Eur. J. Hum. Genet. 2014, 22, 1341–1342. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Cnattingius, S.; Bergstrom, M.; Ostberg, V.; Hjern, A. Prenatal parental depression and preterm birth: A national cohort study. Bjog 2016, 123, 1973–1982. [Google Scholar] [CrossRef]
- Hicks, L.M.; Swales, D.A.; Garcia, S.E.; Driver, C.; Davis, E.P. Does Prenatal Maternal Distress Contribute to Sex Differences in Child Psychopathology? Curr. Psychiatry Rep. 2019, 21, 7. [Google Scholar] [CrossRef]
- Constantinof, A.; Moisiadis, V.G.; Kostaki, A.; Szyf, M.; Matthews, S.G. Antenatal Glucocorticoid Exposure Results in Sex-Specific and Transgenerational Changes in Prefrontal Cortex Gene Transcription that Relate to Behavioural Outcomes. Sci. Rep. 2019, 9, 764. [Google Scholar] [CrossRef]
- Lipari, R.N.; Hedden, S.L.; Hughes, A. Substance use and mental health estimates from the 2013 national survey on drug use and health: Overview of findings. In The CBHSQ Report; SAMHSA: Rockville, MD, USA, 2014. [Google Scholar]
- Ross, E.J.; Graham, D.; Money, K.M.; Stanwood, G.D. Developmental Consequences of Fetal Exposure to Drugs: What We Know and What We Still Must Learn. Neuropsychopharmacology 2015, 40, 61–87. [Google Scholar] [CrossRef]
- Lauschke, V.M.; Barragan, I.; Ingelman-Sundberg, M. Pharmacoepigenetics and Toxicoepigenetics: Novel Mechanistic Insights and Therapeutic Opportunities. Annu. Rev. Pharmacol. Toxicol. 2018, 58, 161–185. [Google Scholar] [CrossRef] [PubMed]
- Champagne-Langabeer, T.; Hedges, A.L. Physician gender as a source of implicit bias affecting clinical decision-making processes: A scoping review. BMC Med. Educ. 2021, 21, 171. [Google Scholar] [CrossRef] [PubMed]
- Bertakis, K.D.; Helms, L.J.; Callahan, E.J.; Azari, R.; Robbins, J.A. The Influence of Gender on Physician Practice Style. Med. Care 1995, 33, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Berthold, H.; Gouni-Berthold, I.; Bestehorn, K.P.; Böhm, M.; Krone, W. Physician gender is associated with the quality of type 2 diabetes care. J. Intern. Med. 2008, 264, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Lurie, N.; Slater, J.; McGovern, P.; Ekstrum, J.; Quam, L.; Margolis, K. Preventive care for women. Does the sex of the physician matter? N. Engl. J. Med. 1993, 329, 478–482. [Google Scholar] [CrossRef]
- Roter, D.L.; Hall, J.A.; Aoki, Y. Physician gender effects in medical communication: A meta-analytic review. JAMA 2002, 288, 756–764. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, B.N.; Carnahan, S.; Huang, L. Patient–physician gender concordance and increased mortality among female heart attack patients. Proc. Natl. Acad. Sci. USA 2018, 115, 8569–8574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsugawa, Y.; Jena, A.B.; Figueroa, J.F.; Orav, E.J.; Blumenthal, D.M.; Jha, A.K. Comparison of Hospital Mortality and Readmission Rates for Medicare Patients Treated by Male vs Female Physicians. JAMA Intern. Med. 2017, 177, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Russo, V.; Orlando, V.; Monetti, V.M.; Galimberti, F.; Casula, M.; Olmastroni, E.; Tragni, E.; Menditto, E.; EDU.RE.DRUG Group; Catapanoa, A.L.; et al. Geographical Variation in Medication Prescriptions: A Multiregional Drug-Utilization Study. Front. Pharmacol. 2020, 11, 418. [Google Scholar] [CrossRef] [PubMed]
- Morrison, J.; Anderson, M.-J.; Sutton, M.; Munoz-Arroyo, R.; McDonald, S.; Maxwell, M.; Power, A.; Smith, M.; Wilson, P. Factors influencing variation in prescribing of antidepressants by general practices in Scotland. Br. J. Gen. Pr. 2009, 59, e25–e31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orzella, L.; Chini, F.; Rossi, P.G.; Borgia, P. Physician and patient characteristics associated with prescriptions and costs of drugs in the Lazio region of Italy. Health Policy 2010, 95, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Tamblyn, R.; Mcleod, P.; Hanley, J.A.; Girard, N.; Hurley, J. Physician and Practice Characteristics Associated with the Early Utilization of New Prescription Drugs. Med. Care 2003, 41, 895–908. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Read, S.H.; Rochon, P.A. Influence of Physician Sex and Gender on Prescribing Practices among Older Adults. J. Am. Geriatr. Soc. 2020, 68, 2764–2767. [Google Scholar] [CrossRef]
- Pawlikowski, J.; Sak, J.J.; Marczewski, K. Physicians’ religiosity and attitudes towards patients. Ann. Agric. Environ. Med. 2012, 19, 503–507. [Google Scholar]
- Fischer, J.; Stope, M.B.; Gümbel, D.; Hakenberg, O.; Burchardt, M.; Dräger, D.L. Einfluss von Kultur und Religion auf die Therapie von Krebspatienten. Urologe 2019, 58, 1179–1184. [Google Scholar] [CrossRef]
- Goyal, D.; Goyal, A.; Brittberg, M. Consideration of religious sentiments while selecting a biological product for knee arthroscopy. Knee Surg. Sports Traumatol. Arthrosc. 2012, 21, 1577–1586. [Google Scholar] [CrossRef]
- Fitzgerald, C.; Hurst, S. Implicit bias in healthcare professionals: A systematic review. BMC Med. Ethics 2017, 18, 451. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.K.; Tavaglione, N.; Hurst, S. Resolving the conflict: Clarifying ’vulnerability’ in health care ethics. Kennedy Inst. Ethics J. 2014, 24, 51–72. [Google Scholar] [CrossRef]
- Chapman, E.N.; Kaatz, A.; Carnes, M. Physicians and Implicit Bias: How Doctors May Unwittingly Perpetuate Health Care Disparities. J. Gen. Intern. Med. 2013, 28, 1504–1510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabin, J.A.; Marini, M.; Nosek, B. Implicit and Explicit Anti-Fat Bias among a Large Sample of Medical Doctors by BMI, Race/Ethnicity and Gender. PLoS ONE 2012, 7, e48448. [Google Scholar] [CrossRef] [Green Version]
- Hankivsky, O. Women’s health, men’s health, and gender and health: Implications of intersectionality. Soc. Sci. Med. 2012, 74, 1712–1720. [Google Scholar] [CrossRef] [PubMed]
- Hankivsky, O.; Christoffersen, A. Intersectionality and the determinants of health: A Canadian perspective. Crit. Pub. Health 2008, 18, 271–283. [Google Scholar] [CrossRef]
- Bowleg, L. The Problem With the Phrase Women and Minorities: Intersectionality—An Important Theoretical Framework for Public Health. Am. J. Pub. Health 2012, 102, 1267–1273. [Google Scholar] [CrossRef] [PubMed]
- Bauer, G.R.; Scheim, A.I. Methods for analytic intercategorical intersectionality in quantitative research: Discrimination as a mediator of health inequalities. Soc. Sci. Med. 2019, 226, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Crenshaw, K. Demarginalizing the Intersection of Race and Sex: A Black Feminist Critique of Antidiscrimination Doctrine, Feminist Theory, and Antiracist Politics [1989]. In Feminist Legal Theory; Routledge: London, UK, 2018; pp. 57–80. [Google Scholar]
- Hankivsky, O.; Reid, C.; Cormier, R.; Varcoe, C.; Clark, N.; Benoit, C.; Brotman, S. Exploring the promises of intersectionality for advancing women’s health research. Int. J. Equity Health 2010, 9, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keuchenius, A.; Mügge, L. Intersectionality on the go: The diffusion of Black feminist knowledge across disciplinary and geographical borders. Br. J. Sociol. 2021, 72, 360–378. [Google Scholar] [CrossRef]
- Marmot, M.G. Status syndrome: A challenge to medicine. JAMA 2006, 295, 1304–1307. [Google Scholar] [CrossRef]
- Fano, V.; Pezzotti, P.; Gnavi, R.; Bontempi, K.; Miceli, M.; Pagnozzi, E.; Giarrizzo, M.L.; Fortino, A. The role of socio-economic factors on prevalence and health outcomes of persons with diabetes in Rome, Italy. Eur. J. Public Health 2012, 23, 991–997. [Google Scholar] [CrossRef] [Green Version]
- Rahkonen, O.; Arber, S.; Lahelma, E.; Martikainen, P.; Silventoinen, K. Understanding Income Inequalities in Health among Men and Women in Britain and Finland. Int. J. Health Serv. 2000, 30, 27–47. [Google Scholar] [CrossRef]
- Amin, L.; Shah, B.R.; Bierman, A.S.; Lipscombe, L.L.; Wu, C.F.; Feig, D.S.; Booth, G.L. Gender differences in the impact of poverty on health: Disparities in risk of diabetes-related amputation. Diabet. Med. 2014, 31, 1410–1417. [Google Scholar] [CrossRef]
- Chetty, R.; Stepner, M.; Abraham, S.; Lin, S.; Scuderi, B.; Turner, N.; Bergeron, A.; Cutler, D. The Association between Income and Life Expectancy in the United States, 2001–2014. JAMA 2016, 315, 1750–1766. [Google Scholar] [CrossRef]
- Ahrenfeldt, L.; Christensen, K.; Segal, N.L.; Hur, Y.-M. Opposite-sex and same-sex twin studies of physiological, cognitive and behavioral traits. Neurosci. Biobehav. Rev. 2020, 108, 322–340. [Google Scholar] [CrossRef]
- Franconi, F.; Rosano, G.; Campesi, I. Need for gender-specific pre-analytical testing: The dark side of the moon in laboratory testing. Int. J. Cardiol. 2015, 179, 514–535. [Google Scholar] [CrossRef] [PubMed]
- Canadian Institutes of Health Research. 2017–2018 Departmental Results Report (DRR); Canadian Institutes of Health Research: Ottawa, ON, Canada, 2019. Available online: https://cihr-irsc.gc.ca/e/51091.html (accessed on 30 June 2021).
- Davis, J.D.; Kumbale, C.M.; Zhang, Q.; Voit, E.O. Dynamical systems approaches to personalized medicine. Curr. Opin. Biotechnol. 2019, 58, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Levine, G.N.; Cohen, B.E.; Commodore-Mensah, Y.; Fleury, J.; Huffman, J.C.; Khalid, U.; Labarthe, D.R.; Lavretsky, H.; Michos, E.D.; Spatz, E.S.; et al. Psychological Health, Well-Being, and the Mind-Heart-Body Connection: A Scientific Statement from the American Heart Association. Circulation 2021, 143, e763–e783. [Google Scholar] [CrossRef] [PubMed]
- Office of Disease Prevention and Health Promotion. Disparities; Office of Disease Prevention and Health Promotion: Washington, DC, USA, 2015. Available online: Healthypeople.gov (accessed on 30 June 2021).
- Parajuli, D.R.; Kuot, A.; Hamiduzzaman, M.; Gladman, J.; Isaac, V. Person-centered, non-pharmacological intervention in reducing psychotropic medications use among residents with dementia in Australian rural aged care homes. BMC Psychiatry 2021, 21, 36. [Google Scholar]
- Brännström, M.; Boman, K. Effects of person-centred and integrated chronic heart failure and palliative home care. PREFER: A randomized controlled study. Eur. J. Heart Fail. 2014, 16, 1142–1151. [Google Scholar] [CrossRef] [PubMed]
- Gopal, D.P.; Chetty, U.; O’Donnell, P.; Gajria, C.; Blackadder-Weinstein, J. Implicit bias in healthcare: Clinical practice, research and decision making. Future Health J. 2021, 8, 40–48. [Google Scholar] [CrossRef]
- WHO. Commission on the Social Determinants of Health, Closing the Gap in a Generation: Health Equity through Action on the Social Determinants of Health; Final Report of the Commission on Social Determinants of Health; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Ziegelstein, R.C. Personomics. JAMA Intern. Med. 2015, 175, 888–889. [Google Scholar] [CrossRef]
- Degtiar, I. A review of international coverage and pricing strategies for personalized medicine and orphan drugs. Health Policy 2017, 121, 1240–1248. [Google Scholar] [CrossRef]
Organization | Sex | Gender |
---|---|---|
WHO [2] | The different biological and physiological males and females characteristics. | Refers to the socially constructed characteristics of women and men, such as norms, roles, and relationships of and between groups of women and men. It varies from society to society and can change, including how they should interact with others of the same or opposite sex within households, communities, and workplaces. |
European Institute of Gender Equality [1] | Biological and physiological characteristics that define humans as female or male. | Social attributes and opportunities are associated with being female and male and with the relationships between women and men and girls and boys, as well as with the relations between women and those between men. |
National Institutes of Health [3] | Biological differences between females and males, including chromosomes, sex organs, and endogenous hormonal profiles. | Socially constructed and enacted roles and behaviors, which occur in a historical and cultural context and vary across societies and over time. All individuals act in many ways that fulfill the gender expectations of their society. With continuous interaction between sex and gender, health is determined by both biology and the expression of gender. |
Canadian Institutes of Health Research [4] | A set of biological attributes in humans and animals. It is primarily associated with physical and physiological features including chromosomes, gene expression, hormone levels and function, and reproductive/sexual anatomy. Sex is usually related to female or male, but there is variation in the biological attributes that comprise sex and how those attributes are expressed. | Refers to the socially constructed roles, behaviors, expressions, and identities of girls, women, boys, men, and gender-diverse people. It influences how people perceive themselves and each other, how they act and interact, and the distribution of power and resources in society. Gender is usually conceptualized as a binary (girl/woman and boy/man), yet there is considerable diversity on individuals and groups understand, experience, and express it. |
Australian Government [5] | Refers to the chromosomal, gonadal, and anatomical characteristics associated with biological sex. | It is a part of a person’s personal and social identity. It refers to the way that a person feels, presents, and is recognized within the community. A person’s gender may be reflected in outward social markers, including their name, outward appearance, mannerisms, and dress. |
Parameters | Sex Differences |
---|---|
Body weight | higher in M |
Gastric secretion (pH) | higher in M (hormone-dependent) |
Gastric emptying rate | higher in M (hormone-dependent) |
Gastro-intestinal mobility | higher in M (hormone-dependent) |
Fat | higher in F (differences are age-dependent) |
Muscular mass | higher in M (differences are age-dependent) |
Keratinocyte size | higher in M |
Skin pore size | higher in M |
Total water (intracellular and extracellular) | higher in M |
Albumin protein binding | = |
Red blood cells | higher in M (it could vary the distribution and metabolism of drugs) |
Plasma volume | higher in F |
Cardiac output | higher in M |
Heart rate | higher in F |
Regional blood flow | higher in M |
Glomerular filtration rate | higher in M |
Creatinine | higher in M |
CYP1A2 activity | higher in M |
CYP2A6 gene, protein, and activity | higher in F users of OC |
CYP2A7 gene | higher in F |
CYP2A16 gene | higher in F |
CYP2C16 activity | higher in M |
CYP2E1 activity | higher in M |
Liver CYP3A4 gene, protein, and activity | higher in F |
Liver CYP3A5 gene | higher in M |
Liver CYP3A7gene | higher in F |
CYP2B6 gene, protein, and activity | higher in F |
CYP2C9 activity | = |
CYP2C19 activity | = |
CYP2D6 activity | higher in M |
Liver CYP7A1 gene | higher in F |
Liver GSTA1/A2 gene | higher in F |
UDP-glucuronosyl-transferase 2 expression and activity (human liver) | higher in M |
SULT1A1 | higher in F than men with high androgen levels |
SULT1E1 liver | higher in F = |
N-acetyltransferase activity | higher in F |
Catechol-O-methyl-transferase activity | higher in M |
Liver OATP2, OATP7, expression | = |
Liver P-glycoprotein expression and activity | higher in M |
Liver breast cancer-resistant protein | higher in M |
Liver SLC3A1 gene (encodes neutral and basic amino acid transport protein rBAT) | higher in F |
Liver SLC13A1 gene (encodes sodium/sulfate cotransporter) | higher in M |
Liver SLC10A1 gene (encodes sodium/bile acid uptake system) | higher in F |
Liver ACSL4 gene (encodes Acyl-CoA synthetase long chain family member) | higher in F |
MRP | higher in F (differences are age-dependent) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campesi, I.; Montella, A.; Seghieri, G.; Franconi, F. The Person’s Care Requires a Sex and Gender Approach. J. Clin. Med. 2021, 10, 4770. https://doi.org/10.3390/jcm10204770
Campesi I, Montella A, Seghieri G, Franconi F. The Person’s Care Requires a Sex and Gender Approach. Journal of Clinical Medicine. 2021; 10(20):4770. https://doi.org/10.3390/jcm10204770
Chicago/Turabian StyleCampesi, Ilaria, Andrea Montella, Giuseppe Seghieri, and Flavia Franconi. 2021. "The Person’s Care Requires a Sex and Gender Approach" Journal of Clinical Medicine 10, no. 20: 4770. https://doi.org/10.3390/jcm10204770
APA StyleCampesi, I., Montella, A., Seghieri, G., & Franconi, F. (2021). The Person’s Care Requires a Sex and Gender Approach. Journal of Clinical Medicine, 10(20), 4770. https://doi.org/10.3390/jcm10204770