The Role of Microbial Factors in Prostate Cancer Development—An Up-to-Date Review
Abstract
:1. Introduction
2. Microbiome Detection Techniques—How Did We Get Here?
3. Can Microbiota Maintaining Chronic Inflammation Be Attributed to Prostate Cancer Development?
4. Single Species over Quantity—Can Microbiome Directly Stimulate Oncogenesis?
5. Can Urinary Microbiota Reduce Baseline Risk and Limit Progression?
6. Exogenous Microbial Factors—Is STDs’ Role Important?
7. Gut Microbiome and Its Possible Impact on Prostate Carcinogenesis
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef]
- OECD, European Union. Health at a Glance: Europe 2020: State of Health in the EU Cycle [Internet]; OECD: Paris, France, 2020; [Cited 9 July 2021]. (Health at a Glance: Europe); Available online: https://www.oecd-ilibrary.org/social-issues-migration-health/health-at-a-glance-europe-2020_82129230-en (accessed on 11 February 2021).
- Joint Research Centre. ECIS—European Cancer Information System. 2020. Available online: https://ecis.jrc.ec.europa.eu (accessed on 11 February 2021).
- Perdana, N.R.; Mochtar, C.A.; Umbas, R.; Hamid, A.R.A.H. The Risk Factors of Prostate Cancer and Its Prevention: A Literature Review. Acta Med. Indones. 2016, 48, 228–238. [Google Scholar]
- Massari, F.; Mollica, V.; Di Nunno, V.; Gatto, L.; Santoni, M.; Scarpelli, M.; Cimadamore, A.; Lopez-Beltran, A.; Cheng, L.; Battelli, N.; et al. The Human Microbiota and Prostate Cancer: Friend or Foe? Cancers 2019, 11, 459. [Google Scholar] [CrossRef] [Green Version]
- Costello, E.K.; Stagaman, K.; Dethlefsen, L.; Bohannan, B.J.M.; Relman, D.A. The Application of Ecological Theory Toward an Understanding of the Human Microbiome. Science 2012, 336, 1255–1262. [Google Scholar] [CrossRef] [Green Version]
- Cho, I.; Blaser, M.J. The human microbiome: At the interface of health and disease. Nat. Rev. Genet. 2012, 13, 260–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwabe, R.F.; Jobin, C. The microbiome and cancer. Nat. Rev. Cancer. 2013, 13, 800–812. [Google Scholar] [CrossRef] [Green Version]
- Porter, C.M.; Shrestha, E.; Peiffer, L.B.; Sfanos, K.S. The microbiome in prostate inflammation and prostate cancer. Prostate Cancer Prostatic Dis. 2018, 21, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Caini, S.; Gandini, S.; Dudas, M.; Bremer, V.; Severi, E.; Gherasim, A. Sexually transmitted infections and prostate cancer risk: A systematic review and meta-analysis. Cancer Epidemiol. 2014, 38, 329–338. [Google Scholar] [CrossRef]
- De Marzo, A.M.; Platz, E.A.; Sutcliffe, S.; Xu, J.; Grönberg, H.; Drake, C.G.; Nakai, Y.; Isaacs, W.B.; Nelson, W.G. Inflammation in prostate carcinogenesis. Nat. Rev. Cancer 2007, 7, 256–269. [Google Scholar] [CrossRef] [Green Version]
- Sutcliffe, S. Sexually transmitted infections and risk of prostate cancer: Review of historical and emerging hypotheses. Futur. Oncol. 2010, 6, 1289–1311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, M.; Bollinger, D.; Hagler, A.; Hartwell, H.; Rivers, B.; Ward, K.; Steck, T.R. Viable but Nonculturable Bacteria Are Present in Mouse and Human Urine Specimens. J. Clin. Microbiol. 2004, 42, 753–758. [Google Scholar] [CrossRef] [Green Version]
- Wolfe, A.J.; Toh, E.; Shibata, N.; Rong, R.; Kenton, K.S.; Fitzgerald, M.; Mueller, E.R.; Schreckenberger, P.C.; Dong, Q.; Nelson, D.E.; et al. Evidence of Uncultivated Bacteria in the Adult Female Bladder. J. Clin. Microbiol. 2012, 50, 1376–1383. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, E.; White, J.R.; Yu, S.-H.; Kulac, I.; Ertunc, O.; De Marzo, A.M.; Yegnasubramanian, S.; Mangold, L.A.; Partin, A.W.; Sfanos, K.S. Profiling the Urinary Microbiome in Men with Positive versus Negative Biopsies for Prostate Cancer. J. Urol. 2018, 199, 161–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.; Meng, H.; Zhou, F.; Ni, X.; Shen, S.; Das, U.N. Urinary microbiota in patients with prostate cancer and benign prostatic hyperplasia. Arch. Med. Sci. 2015, 2, 385–394. [Google Scholar] [CrossRef]
- Banerjee, S.; Alwine, J.C.; Wei, Z.; Tian, T.; Shih, N.; Sperling, C.; Guzzo, T.; Feldman, M.D.; Robertson, E.S. Microbiome signatures in prostate cancer. Carcinogenesis 2019, 40, 749–764. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Gnanasekar, A.; Lee, A.; Li, W.T.; Haas, M.; Wang-Rodriguez, J.; Chang, E.Y.; Rajasekaran, M.; Ongkeko, W.M. Influence of Intratumor Microbiome on Clinical Outcome and Immune Processes in Prostate Cancer. Cancers 2020, 12, 2524. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Ramnarine, V.R.; Bell, R.; Volik, S.; Davicioni, E.; Hayes, V.M.; Ren, S.; Collins, C.C. Metagenomic and metatranscriptomic analysis of human prostate microbiota from patients with prostate cancer. BMC Genom. 2019, 20, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golombos, D.M.; Ayangbesan, A.; O’Malley, P.; Lewicki, P.; Barlow, L.; Barbieri, C.E.; Chan, C.; DuLong, C.; Abu-Ali, G.; Huttenhower, C.; et al. The Role of Gut Microbiome in the Pathogenesis of Prostate Cancer: A Prospective, Pilot Study. Urology 2018, 111, 122–128. [Google Scholar] [CrossRef]
- Feng, Y.; Jaratlerdsiri, W.; Patrick, S.M.; Lyons, R.J.; Haynes, A.; Collins, C.C.; Stricker, P.D.; Bornman, M.R.; Hayes, V.M. Metagenomic analysis reveals a rich bacterial content in high-risk prostate tumors from African men. Prostate 2019, 79, 1731–1738. [Google Scholar] [CrossRef] [Green Version]
- Cavarretta, I.; Ferrarese, R.; Cazzaniga, W.; Saita, D.; Lucianò, R.; Ceresola, E.R.; Locatelli, I.; Visconti, L.; Lavorgna, G.; Briganti, A.; et al. The Microbiome of the Prostate Tumor Microenvironment. Eur. Urol. 2017, 72, 625–631. [Google Scholar] [CrossRef]
- Shannon, B.A.; Garrett, K.L.; Cohen, R.J. Links between Propionibacterium acnes and prostate cancer. Future Oncol. 2006, 2, 225–232. [Google Scholar] [CrossRef]
- Miyake, M.; Ohnishi, K.; Hori, S.; Nakano, A.; Nakano, R.; Yano, H.; Ohnishi, S.; Owari, T.; Morizawa, Y.; Itami, Y.; et al. Mycoplasma genitalium Infection and Chronic Inflammation in Human Prostate Cancer: Detection Using Prostatectomy and Needle Biopsy Specimens. Cells 2019, 8, 212. [Google Scholar] [CrossRef] [Green Version]
- De Marzo, A.M.; Marchi, V.L.; Epstein, J.I.; Nelson, W.G. Proliferative inflammatory atrophy of the prostate: Implications for prostatic carcinogenesis. Am. J. Pathol. 1999, 155, 1985–1992. [Google Scholar] [CrossRef]
- Ma, X.; Chi, C.; Fan, L.; Dong, B.; Shao, X.; Xie, S.; Li, M.; Xue, W. The Microbiome of Prostate Fluid Is Associated With Prostate Cancer. Front. Microbiol. 2019, 10, 1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alanee, S.; El-Zawahry, A.; Dynda, D.; Dabaja, A.; McVary, K.; Karr, M.; Braundmeier-Fleming, A. A prospective study to examine the association of the urinary and fecal microbiota with prostate cancer diagnosis after transrectal biopsy of the prostate using 16sRNA gene analysis. Prostate 2019, 79, 81–87. [Google Scholar] [CrossRef]
- Al-Marhoon, M.S. Is there a role for Helicobacter pylori infection in urological diseases? Urol. J. 2008, 5, 139–143. [Google Scholar] [PubMed]
- Ribarska, T.; Goering, W.; Droop, J.; Bastian, K.-M.; Ingenwerth, M.; Schulz, W.A. Deregulation of an imprinted gene network in prostate cancer. Epigenetics 2014, 9, 704–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, M.; Patel, K.; Huang, C.-C.; Costa, F.D.; Kondo, A.; Soares, F.A.; Tomita, T.; Sredni, S.T. Loss of expression of the Neural Cell Adhesion Molecule 1 (NCAM1) in atypical teratoid/rhabdoid tumors: A new diagnostic marker? Appl. Cancer Res. 2017, 37, 14. [Google Scholar] [CrossRef]
- Abate, W.; Alrammah, H.; Kiernan, M.; Tonks, A.J.; Jackson, S.K. Lysophosphatidylcholine acyltransferase 2 (LPCAT2) co-localises with TLR4 and regulates macrophage inflammatory gene expression in response to LPS. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Wood, L.M.; Paterson, Y. Attenuated Listeria Monocytogenes: A Powerful and Versatile Vector for the Future of Tumor Immunotherapy. Front Cell Infect Microbiol. 12 May 2014. Available online: http://journal.frontiersin.org/article/10.3389/fcimb.2014.00051/abstract (accessed on 13 February 2021).
- Crocetto, F.; Arcaniolo, D.; Napolitano, L.; Barone, B.; La Rocca, R.; Capece, M.; Caputo, V.F.; Imbimbo, C.; De Sio, M.; Calace, F.P.; et al. Impact of Sexual Activity on the Risk of Male Genital Tumors: A Systematic Review of the Literature. Int. J. Environ. Res. Public Health 2021, 18, 8500. [Google Scholar] [CrossRef]
- Spence, A.R.; Rousseau, M.-C.; Parent, M.-É. Sexual partners, sexually transmitted infections, and prostate cancer risk. Cancer Epidemiol. 2014, 38, 700–707. [Google Scholar] [CrossRef]
- Vázquez-Salas, R.A.; Torres-Sánchez, L.; López-Carrillo, L.; Romero-Martínez, M.; Manzanilla-García, H.A.; Cruz-Ortíz, C.H.; Mendoza-Peña, F.; Jiménez-Ríos, M.; Rodríguez-Covarrubias, F.; Hernández-Toríz, N.; et al. History of gonorrhea and prostate cancer in a population-based case–control study in Mexico. Cancer Epidemiol. 2016, 40, 95–101. [Google Scholar] [CrossRef]
- Chung, S.D.; Lin, Y.K.; Huang, C.C.; Lin, H.C. Increased risk of prostate cancer following sexually transmitted infection in an Asian population. Epidemiol. Infect. 2013, 141, 2663–2670. [Google Scholar] [CrossRef] [Green Version]
- Cheng, I.; Witte, J.S.; Jacobsen, S.J.; Haque, R.; Quinn, V.P.; Quesenberry, C.P.; Caan, B.J.; Van Den Eeden, S.K. Prostatitis, Sexually Transmitted Diseases, and Prostate Cancer: The California Men’s Health Study. PLoS ONE 2010, 5, e8736. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Kim, D.Y.; Kim, C.S.; Kim, H.J.; Lee, D.H.; Lee, H.M.; Ko, W.; Lee, G. The association between Toll-like receptor 4 (TLR4) polymorphisms and the risk of prostate cancer in Korean men. Cancer Genet. Cytogenet. 2009, 190, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Giovannucci, E.; Lazarus, R.; Kraft, P.; Ketkar, S.; Hunter, D.J. Sequence Variants of Toll-Like Receptor 4 and Susceptibility to Prostate Cancer. Cancer Res. 2005, 65, 11771–11778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kundu, S.D.; Lee, C.; Billips, B.K.; Habermacher, G.M.; Zhang, Q.; Liu, V.; Wong, L.Y.; Klumpp, D.J.; Thumbikat, P. The toll-like receptor pathway: A novel mechanism of infection-induced carcinogenesis of prostate epithelial cells. Prostate 2007, 68, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Najafi, A.; Nosrati, M.R.C.; Ghasemi, E.; Navi, Z.; Yousefi, A.; Majidiani, H.; Ghaneialvar, H.; Sayehmiri, K.; Galvan-Ramirez, M.D.L.L.; Fakhar, M. Is there association between Trichomonas vaginalis infection and prostate cancer risk?: A systematic review and meta-analysis. Microb. Pathog. 2019, 137, 103752. [Google Scholar] [CrossRef]
- Han, I.; Kim, J.; Jang, K.; Ryu, J. Inflammatory mediators of prostate epithelial cells stimulated with Trichomonas vagi nalis promote proliferative and invasive properties of prostate cancer cells. Prostate 2019, 79, 1133–1146. [Google Scholar] [CrossRef]
- Kim, J.-H.; Moon, H.-S.; Kim, K.-S.; Hwang, H.-S.; Ryu, J.-S.; Park, S.-Y. Comparison of Seropositivity to Trichomonas vaginalis between Men with Prostatic Tumor and Normal Men. Korean J. Parasitol. 2019, 57, 21–25. [Google Scholar] [CrossRef] [Green Version]
- Han, I.-H.; Song, H.-O.; Ryu, J.-S. IL-6 produced by prostate epithelial cells stimulated with Trichomonas vaginalis promotes proliferation of prostate cancer cells by inducing M2 polarization of THP-1-derived macrophages. PLoS Negl. Trop. Dis. 2020, 14, e0008126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crocetto, F.; Boccellino, M.; Barone, B.; Di Zazzo, E.; Sciarra, A.; Galasso, G.; Settembre, G.; Quagliuolo, L.; Imbimbo, C.; Boffo, S.; et al. The Crosstalk between Prostate Cancer and Microbiota Inflammation: Nutraceutical Products Are Useful to Balance This Interplay? Nutrients 2020, 12, 2648. [Google Scholar] [CrossRef]
- Petyaev, I.M.; Zigangirova, N.A.; Morgunova, E.Y.; Kyle, N.H.; Fedina, E.D.; Bashmakov, Y.K. Chlamydia trachomatis Growth and Cytokine mRNA Response in a Prostate Cancer Cell Line. Adv. Urol. 2019, 2019, 6287057. [Google Scholar] [CrossRef]
- Liss, M.A.; White, J.R.; Goros, M.; Gelfond, J.; Leach, R.; Johnson-Pais, T.; Lai, Z.; Rourke, E.; Basler, J.; Ankerst, D.; et al. Metabolic Biosynthesis Pathways Identified from Fecal Microbiome Associated with Prostate Cancer. Eur. Urol. 2018, 74, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Sfanos, K.S.; Markowski, M.C.; Peiffer, L.B.; Ernst, S.E.; White, J.R.; Pienta, K.J.; Antonarakis, E.S.; Ross, A.E. Compositional differences in gastrointestinal microbiota in prostate cancer patients treated with androgen axis-targeted therapies. Prostate Cancer Prostatic Dis. 2018, 21, 448–539. [Google Scholar] [CrossRef] [Green Version]
- Amirian, E.S.; Petrosino, J.F.; Ajami, N.J.; Liu, Y.; Mims, M.P.; Scheurer, M.E. Potential role of gastrointestinal microbiota composition in prostate cancer risk. Infect. Agents Cancer 2013, 8, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, S.-M.; Lee, M.-T.; Lam, H.-M.; Leung, Y.-K. Estrogens and Prostate Cancer: Etiology, Mediators, Prevention, and Management. Endocrinol. Metab. Clin. N. Am. 2011, 40, 591–614. [Google Scholar] [CrossRef] [Green Version]
- Petrelli, F.; Ghidini, M.; Ghidini, A.; Perego, G.; Cabiddu, M.; Khakoo, S.; Oggionni, E.; Abeni, C.; Hahne, J.C.; Tomasello, G.; et al. Use of Antibiotics and Risk of Cancer: A Systematic Review and Meta-Analysis of Observational Studies. Cancers 2019, 11, 1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ternák, G.; Berényi, K.; Sümegi, A.; Szenczi, A.; Fodor, B.; Németh, B.; Kiss, I. Antibiotic Consumption Patterns in European Countries May Be Associated with the Incidence of Major Carcinomas. Antibiotics 2020, 9, 643. [Google Scholar] [CrossRef] [PubMed]
- Manfredi, C.; Calace, F.P.; Fusco, F.; Quattrone, C.; Giordano, D.; Crocetto, F.; Creta, M.; De Sio, M.; Arcaniolo, D. Escherichia coli Nissle 1917 as adjuvant therapy in patients with chronic bacterial prostatitis: A non-blinded, randomized, controlled trial. World J. Urol. 2021, 1–7. [Google Scholar] [CrossRef]
Microbe | Urine/Stool/PC Tissue | Assay | Mechanism of Action | Outcome | Citation |
---|---|---|---|---|---|
Propionibacterium spp. | PC tissue | whole genome sequencing; massive ultradeep pyrosequencing; PCR | Chronic inflammation | Increased prevalence | [21,22,24] |
Staphylococcus spp. | |||||
Proteobacterium spp. | |||||
Mycoplasma genitalium | |||||
Anaerococcus lactolyticus Varibaculum cambriense | Urine | NGS; PCR | Chronic inflammation | Increased prevalence | [15] |
Actinobaculum schaalii | |||||
Propionimicrobium lymphophilum | |||||
Ureaplasma spp. | |||||
Ochrobactrum spp. | EPS | PCR-DGGE | Immune dysfunction? | Cancer (stage) progression | [16] |
Helicobacter pylori | PC tissue | PCR; NGS | cagA integration in PPP1R9A and NCAM | Increased prevalence | [17] |
HPV18 | PC tissue | PCR; NGS | Viral DNA integration into FAM111B and KCNC4, intergenic and intronic regions | Increased prevalence | [17] |
KSHV | PC tissue | PCR; NGS | Viral DNA integration into ORF75, intergenic and intronic regions | Increased prevalence | [17] |
Gardnerella vaginalis | PC tissue | RNA-sequencing | Downregulation of immune-associated genes (LPCAT2, TLR3, TGFB2) | Increased tumor progression | [18] |
Listeria monocytogenes | PC tissue | RNA-sequencing | Increased ROS production and cytokines release, induction of cytotoxic T-cells’ response, | Decreased Gleason score | [18] |
Pseudomonas spp. | PC tissue | DNA and RNA sequencing | Increased small RNAs expression | Reduced progression to metastatic disease | [19] |
Bacteroides massiliensis | Stool | NGS | Increased free estrogens in bloodstream due to β-glucuronidases | Increased prevalence | [20] |
Trichomonas vaginalis * | human prostate cancer cell lines (PC3, DU145, and LNCaP) | Quantitative RT PCR, Reverse transcriptase PCR, Western Blot, ELISA Immunofluorescence assay | Increased IL-6 and CCL2 and CXCL8 production; induction of M2 macrophage polarization | Neoplastic progression | [44] |
Chlamydia trachomatis * | human prostate cancer epithelial cell line (CWR-R1) | Quantitative RT PCR, Immunofluorescence assay | Increased mRNA expression for IL-6 and FGF-2 | Chemoresistance and progression to metastatic disease | [46] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garbas, K.; Zapała, P.; Zapała, Ł.; Radziszewski, P. The Role of Microbial Factors in Prostate Cancer Development—An Up-to-Date Review. J. Clin. Med. 2021, 10, 4772. https://doi.org/10.3390/jcm10204772
Garbas K, Zapała P, Zapała Ł, Radziszewski P. The Role of Microbial Factors in Prostate Cancer Development—An Up-to-Date Review. Journal of Clinical Medicine. 2021; 10(20):4772. https://doi.org/10.3390/jcm10204772
Chicago/Turabian StyleGarbas, Karolina, Piotr Zapała, Łukasz Zapała, and Piotr Radziszewski. 2021. "The Role of Microbial Factors in Prostate Cancer Development—An Up-to-Date Review" Journal of Clinical Medicine 10, no. 20: 4772. https://doi.org/10.3390/jcm10204772
APA StyleGarbas, K., Zapała, P., Zapała, Ł., & Radziszewski, P. (2021). The Role of Microbial Factors in Prostate Cancer Development—An Up-to-Date Review. Journal of Clinical Medicine, 10(20), 4772. https://doi.org/10.3390/jcm10204772