Lymphocytic Infiltrate and p53 Protein Expression as Predictive Markers of Response and Outcome in Myelodysplastic Syndromes Treated with Azacitidine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Bone Marrow Morphologic Evaluation
2.3. Statistical Analysis
3. Results
3.1. Comparison between Pre-Treatment and Post-Treatment Morphological and Immunophenotypical Feature of BM Biopsies
3.2. Pre-Treatment Prognostic Factors
3.3. Cytogenetic IPSS-R Score
3.4. Lymphocytic Infiltrate
3.5. p53-Positive Precursors
3.6. Post-Treatment Prognostic Factors
3.7. Blasts
3.8. Lymphocytic Infiltrate
3.9. p53-Positive Precursors
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Swerdlow, S.H.; Campo, E.; Harris, N.L.; Jaffe, E.S.; Pileri, S.A.; Stein, H.; Thiele, J. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues; IARC Press: Lyon, France, 2017. [Google Scholar]
- Gangat, N.; Patnaik, M.M.; Tefferi, A. Myelodysplastic syndromes: Contemporary review and how we treat. Am. J. Hematol. 2016, 91, 76–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cazzola, M. Myelodysplastic Syndromes. N. Engl. J. Med. 2020, 383, 1358–1374. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, P.L.; Tuechler, H.; Schanz, J.; Sanz, G.; Garcia-Manero, G.; Solé, F.; Bennett, J.M.; Bowen, D.; Fenaux, P.; Dreyfus, F.; et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood 2012, 120, 2454–2465. [Google Scholar] [CrossRef]
- Della Porta, M.G.; Tuechler, H.; Malcovati, L.; Schanz, J.; Sanz, G.; Garcia-Manero, G.; Solé, F.; Bennett, J.M.; Bowen, D.; Fenaux, P.; et al. Validation of WHO classification-based Prognostic Scoring System (WPSS) for myelodysplastic syndromes and comparison with the revised International Prognostic Scoring System (IPSS-R). A study of the International Working Group for Prognosis in Myelodyspl. Leukemia 2015, 29, 1502–1513. [Google Scholar] [CrossRef]
- Greenberg, P.; Cox, C.; LeBeau, M.M.; Fenaux, P.; Morel, P.; Sanz, G.; Sanz, M.; Vallespi, T.; Hamblin, T.; Oscier, D.; et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 1997, 89, 2079–2088. [Google Scholar] [CrossRef]
- Fenaux, P.; Mufti, G.J.; Hellstrom-Lindberg, E.; Santini, V.; Finelli, C.; Giagounidis, A.; Schoch, R.; Gattermann, N.; Sanz, G.; List, A.; et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: A randomised, open-label, phase III study. Lancet Oncol. 2009, 10, 223–232. [Google Scholar] [CrossRef] [Green Version]
- Scott, L.J. Azacitidine: A Review in Myelodysplastic Syndromes and Acute Myeloid Leukaemia. Drugs 2016, 76, 889–900. [Google Scholar] [CrossRef] [PubMed]
- Itzykson, R.; Thépot, S.; Quesnel, B.; Dreyfus, F.; Beyne-Rauzy, O.; Turlure, P.; Vey, N.; Recher, C.; Dartigeas, C.; Legros, L.; et al. Prognostic factors for response and overall survival in 282 patients with higher-risk myelodysplastic syndromes treated with azacitidine. Blood 2011, 117, 403–411. [Google Scholar] [CrossRef] [Green Version]
- Reda, G.; Riva, M.; Fattizzo, B.; Cassin, R.; Giannarelli, D.; Pennisi, M.; Freyrie, A.; Cairoli, R.; Molteni, A.; Cortelezzi, A. Bone Marrow Fibrosis and Early Hematological Response as Predictors of Poor Outcome in Azacitidine Treated High Risk-Patients with Myelodysplastic Syndromes or Acute Myeloid Leukemia. Semin. Hematol. 2018, 55, 202–208. [Google Scholar] [CrossRef]
- Liapis, I.; Batsali, A.; Mitrakos, A.; Kouvidi, E.; Galanopoulos, A.; PhD, M.D.; Pontikoglou, C.; PhD, M.D.; Kanavakis, E.; Papadaki, H.A.; et al. The Effect of 5-Azacitidine Treatment on the Biologic Characteristics of Bone Marrow Mesenchymal Stem Cells in Patients with Myelodysplastic Syndromes. Blood 2017, 130, 4242. [Google Scholar] [CrossRef]
- Silverman, L.R.; Holland, J.F.; Weinberg, R.S.; Alter, B.P.; Davis, R.B.; Ellison, R.R.; Demakos, E.P.; Cornell, C.J., Jr.; Carey, R.W.; Schiffer, C.; et al. Effects of treatment with 5-azacytidine on the in vivo and in vitro hematopoiesis in patients with myelodysplastic syndromes. Leukemia 1993, 7 (Suppl. 1), 21–29. [Google Scholar]
- Subirá, D.; Alhan, C.; Oelschlaegel, U.; Porwit, A.; Psarra, K.; Westers, T.M.; Golbano, N.; Nilsson, L.; van de Loosdrecht, A.A.; de Miguel, D. Monitoring treatment with 5-Azacitidine by flow cytometry predicts duration of hematological response in patients with myelodysplastic syndrome. Ann. Hematol. 2021, 100, 1711–1722. [Google Scholar] [CrossRef] [PubMed]
- Cheson, B.D.; Greenberg, P.L.; Bennett, J.M.; Lowenberg, B.; Wijermans, P.W.; Nimer, S.D.; Pinto, A.; Beran, M.; de Witte, T.M.; Stone, R.M.; et al. Clinical application and proposal for modification of the International Working Group (IWG) response criteria in myelodysplasia. Blood 2006, 108, 419–425. [Google Scholar] [CrossRef] [Green Version]
- Thiele, J.; Kvasnicka, H.M. Myelofibrosis--what’s in a name? Consensus on definition and EUMNET grading. Pathobiology 2007, 74, 89–96. [Google Scholar] [CrossRef]
- Ruzinova, M.B.; Lee, Y.-S.; Duncavage, E.J.; Welch, J.S. TP53 immunohistochemistry correlates with TP53 mutation status and clearance in decitabine-treated patients with myeloid malignancies. Haematologica 2019, 104, e345–e348. [Google Scholar] [CrossRef]
- Fernandez-Pol, S.; Ma, L.; Ohgami, R.S.; Arber, D.A. Immunohistochemistry for p53 is a useful tool to identify cases of acute myeloid leukemia with myelodysplasia-related changes that are TP53 mutated, have complex karyotype, and have poor prognosis. Mod. Pathol. 2017, 30, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Sallman, D.A.; McLemore, A.F.; Aldrich, A.L.; Komrokji, R.S.; McGraw, K.L.; Dhawan, A.; Geyer, S.; Hou, H.; Eksioglu, E.A.; Sullivan, A.; et al. TP53 mutations in myelodysplastic syndromes and secondary AML confer an immunosuppressive phenotype. Blood 2020, 136, 2812–2823. [Google Scholar] [CrossRef] [PubMed]
- McGraw, K.L.; Nguyen, J.; Komrokji, R.S.; Sallman, D.; Al Ali, N.H.; Padron, E.; Lancet, J.E.; Moscinski, L.C.; List, A.F.; Zhang, L. Immunohistochemical pattern of p53 is a measure of TP53 mutation burden and adverse clinical outcome in myelodysplastic syndromes and secondary acute myeloid leukemia. Haematologica 2016, 101, e320–e323. [Google Scholar] [CrossRef] [PubMed]
- Bontkes, H.J.; Ruben, J.M.; Alhan, C.; Westers, T.M.; Ossenkoppele, G.J.; van de Loosdrecht, A.A. Azacitidine differentially affects CD4(pos) T-cell polarization in vitro and in vivo in high risk myelodysplastic syndromes. Leuk. Res. 2012, 36, 921–930. [Google Scholar] [CrossRef] [Green Version]
- Fozza, C.; Crobu, V.; Isoni, M.A.; Dore, F. The immune landscape of myelodysplastic syndromes. Crit. Rev. Oncol. Hematol. 2016, 7, 90–99. [Google Scholar] [CrossRef]
- Fozza, C.; Corda, G.; Barraqueddu, F.; Virdis, P.; Contini, S.; Galleu, A.; Isoni, A.; Dore, F.; Angelucci, E.; Longinotti, M. Azacitidine improves the T-cell repertoire in patients with myelodysplastic syndromes and acute myeloid leukemia with multilineage dysplasia. Leuk. Res. 2015, 39, 957–963. [Google Scholar] [CrossRef] [PubMed]
- Götze, K.; Müller-Thomas, C.; Peschel, C. The role of azacitidine in the management of myelodysplastic syndromes (MDS). Cancer Manag. Res. 2009, 1, 119–130. [Google Scholar] [CrossRef] [Green Version]
- Santini V How I treat MDS after hypomethylating agent failure. Blood 2019, 133, 521–529. [CrossRef] [Green Version]
- Platzbecker, U.; Fenaux, P.; Adès, L.; Giagounidis, A.; Santini, V.; van de Loosdrecht, A.A.; Bowen, D.; de Witte, T.; Garcia-Manero, G.; Hellström-Lindberg, E.; et al. Proposals for revised IWG 2018 hematological response criteria in patients with MDS included in clinical trials. Blood 2019, 133, 1020–1030. [Google Scholar] [CrossRef] [Green Version]
- Ramos, F.; Robledo, C.; Izquierdo-García, F.M.; Suárez-Vilela, D.; Benito, R.; Fuertes, M.; Insunza, A.; Barragán, E.; del Rey, M.; de Morales, J.M.G.; et al. Bone marrow fibrosis in myelodysplastic syndromes: A prospective evaluation including mutational analysis. Oncotarget 2016, 7, 30492–30503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melody, M.; Al Ali, N.; Zhang, L.; Ramadan, H.; Padron, E.; Sallman, D.; Sweet, K.; Lancet, J.; List, A.; Bennett, J.M.; et al. Decoding Bone Marrow Fibrosis in Myelodysplastic Syndromes. Clin. Lymphoma Myeloma Leuk. 2020, 20, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Aanei, C.M.; Catafal, L.C. Evaluation of bone marrow microenvironment could change how myelodysplastic syndromes are diagnosed and treated. Cytom. Part A 2018, 93, 916–928. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, S.M.M.; Filho, F.D.R.; Vassallo, J.; Pinheiro, M.P.; Metze, K.; Lorand-Metze, I. Bone marrow lymphoid aggregates in myelodysplastic syndromes: Incidence, immunomorphological characteristics and correlation with clinical features and survival. Leuk. Res. 2002, 26, 525–530. [Google Scholar] [CrossRef]
- Meers, S.; Vandenberghe, P.; Boogaerts, M.; Verhoef, G.; Delforge, M. The clinical significance of activated lymphocytes in patients with myelodysplastic syndromes: A single centre study of 131 patients. Leuk. Res. 2008, 32, 1026–1035. [Google Scholar] [CrossRef]
Sex (%) | |
Female | 22 (39%) |
Male | 35 (61%) |
Follow up (mean value in months) (range) | 28 (5–108) |
Outcome (%) | |
Dead of disease | 40 (70%) |
Alive with disease | 17 (30%) |
Diagnosis (%) | |
MDS-EB1 | 12 (21%) |
MDS-EB2 | 41 (72%) |
MDS-MLD | 4 (7%) |
Number of AZA cycles (mean value) (range) | 13 (3–41) |
IWG response criteria—Best Response (%) | |
Complete remission | 23 (41%) |
Partial remission | 5 (9%) |
Stable disease | 11 (20%) |
Hematological improvement | 7 (12%) |
Progression disease | 8 (14%) |
Failure | 2 (4%) |
Progression to AML (%) | 28 (49%) |
Months to progression, mean value (range) | 17 (0–77) |
IPSS (%) | |
Intermediate-1 risk | 4 (7%) |
Intermediate-2 risk | 43 (75%) |
High risk | 10 (18%) |
IPSS-R (%) | |
Low risk | 3 (5%) |
Intermediate risk | 11 (19%) |
High risk | 28 (49%) |
Very high risk | 15 (27%) |
WPSS (%) | |
Intermediate risk | 6 (11%) |
High risk | 43 (75%) |
Very high risk | 8 (14%) |
IPSS-R Cytogenetic score | |
Before treatment (57 pts) | |
Very good | 2 (4%) |
Good | 28 (47%) |
Intermediate | 7 (12%) |
Poor | 4 (7%) |
Very poor | 16 (25%) |
After treatment (47 pts)—Best response | |
Very good | 2 (4%) |
Good | 28 (60%) |
Intermediate | 5 (11%) |
Poor | 3 (6%) |
Very poor | 9 (19%) |
Bone Marrow Biopsy | Pre-Treatment Biopsy | Post-Treatment Biopsy | ||||
---|---|---|---|---|---|---|
Blasts | 12.62% | 11.11% | ||||
MDS-EB1 6.42% | MDS-EB2 15.33% | MDS-MLD 3.5% | MDS-EB1 12.42% | MDS-EB2 10.37% | MDS-MLD 9.5% | |
p53 | 3.71% | 3.1% | ||||
MDS-EB1 4.13% | MDS-EB2 2.71% | MDS-MLD 0.5% | MDS-EB1 3.11% | MDS-EB2 2.08% | MDS-MLD 0.5% | |
Lymphocytic infiltrate | 7.63% | 8.29% | ||||
MDS-EB1 7% | MDS-EB2 8% | MDS-MLD 4% | MDS-EB1 6% | MDS-EB2 9% | MDS-MLD 6% | |
Fibrosis | ||||||
MF-0 | 29 (51%) | 27 (48%) | ||||
MDS-EB1 58.33% | MDS-EB2 46.4% | MDS-MLD 75% | MDS-EB1 41.66% | MDS-EB2 51.21% | MDS-MLD 25% | |
MF-1 | 18 (32%) | 19 (33%) | ||||
MDS-EB1 8.33% | MDS-EB2 39% | MDS-MLD 25% | MDS-EB1 16.66% | MDS-EB2 34.14% | MDS-MLD 75% | |
MF-2 | 10 (17%) | 8 (14%) | ||||
MDS-EB1 33.33% | MDS-EB2 14.6% | MDS-MLD 0% | MDS-EB1 25% | MDS-EB2 12.19% | MDS-MLD 0% | |
MF-3 | 0 (0%) | 3 (5%) | ||||
MDS-EB1 0% | MDS-EB2 0% | MDS-MLD 0% | MDS-EB1 16.66% | MDS-EB2 2.43% | MDS-MLD 0% | |
Blasts on peripheral blood | 2.19% | 2.63% | ||||
MDS-EB1 2% | MDS-EB2 2% | MDS-MLD 0% | MDS-EB1 4% | MDS-EB2 3% | MDS-MLD 0% | |
Blasts on aspirate smear | 11% | 6.71% | ||||
MDS-EB1 7% | MDS-EB2 12% | MDS-MLD 3% | MDS-EB1 5% | MDS-EB2 8% | MDS-MLD 4% | |
Blasts on flow-cytometry | 5.62% | 4.35% | ||||
MDS-EB1 8% | MDS-EB2 8% | MDS-MLD 0% | MDS-EB1 6.7% | MDS-EB2 5.3% | MDS-MLD 0% |
Overall Survival | Progression to AML | Response to Treatment | |
---|---|---|---|
Higher R-IPSS cytogenetic risk | - | Positive correlation; p = 0.004 (poor/very poor risk in AML: 46%; poor/very poor risk in non-AML: 24%) | - |
Higher lymphocytic infiltrate | - | Negative correlation; p = 0.017 (mean percentage in AML: 6.64; mean percentage in non-AML: 8.59) | Positive correlation; p = 0.004 (mean percentage in responders: 8.21; mean percentage in non-responders: 4.9) |
Higher p53 expression | - | Positive correlation; p = 0.001 (mean percentage in AML: 4.7; mean percentage in non-AML: 0.8) | - |
Number of Cases | 20/57 (35%) |
Mean percentage of p53+ elements (range) | 6% (1–40%) |
IPSS | |
Intermediate-1 risk | 0 |
Intermediate-2 risk | 16/20 (80%) |
High risk | 4/20 (20%) |
IPSS-R | |
Low risk | 2/20 (10%) |
Intermediate risk | 3/20 (15%) |
High risk | 7/20 (35%) |
Very high risk | 8/20 (40%) |
WPSS | |
Intermediate risk | 0 |
High risk | 15/20 (75%) |
Very high risk | 5/20 (25%) |
Mean number of AZA cycles (range) | 6 (3–9) |
Cytogenetic Score IPSS-R | |
Very good | 0 |
Good | 7/20 (35%) |
Intermediate | 2/20 (10%) |
Poor | 1/20 (5%) |
Very poor | 10/20 (50%) |
Overall Survival | Progression to AML | Response to Treatment | |
---|---|---|---|
Higher blastic count | Negative correlation; p = 0.035 (mean percentage in dead of disease: 11.7; mean percentage in alive at follow up: 8.29) | Positive correlation; p = 0.04 (mean percentage in AML: 12.4; mean in non-AML: 9.6) | - |
Higher lymphocytic infiltrate | - | - | Positive correlation; p = 0.004 (mean percentage in responders: 8.96; mean percentage in non-responder: 6.10) |
Higher p53 expression | - | Positive correlation; p = 0.013 (mean percentage in AML: 3.2; mean percentage in non-AML: 1.06) | Negative correlation; p = 0.003 (mean percentage in responders: 1.5; mean percentage in non-responders: 4.8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pescia, C.; Boggio, F.; Croci, G.A.; Cassin, R.; Barella, M.; Pettine, L.; Reda, G.; Sabattini, E.; Finelli, C.; Gianelli, U. Lymphocytic Infiltrate and p53 Protein Expression as Predictive Markers of Response and Outcome in Myelodysplastic Syndromes Treated with Azacitidine. J. Clin. Med. 2021, 10, 4809. https://doi.org/10.3390/jcm10214809
Pescia C, Boggio F, Croci GA, Cassin R, Barella M, Pettine L, Reda G, Sabattini E, Finelli C, Gianelli U. Lymphocytic Infiltrate and p53 Protein Expression as Predictive Markers of Response and Outcome in Myelodysplastic Syndromes Treated with Azacitidine. Journal of Clinical Medicine. 2021; 10(21):4809. https://doi.org/10.3390/jcm10214809
Chicago/Turabian StylePescia, Carlo, Francesca Boggio, Giorgio Alberto Croci, Ramona Cassin, Marco Barella, Loredana Pettine, Gianluigi Reda, Elena Sabattini, Carlo Finelli, and Umberto Gianelli. 2021. "Lymphocytic Infiltrate and p53 Protein Expression as Predictive Markers of Response and Outcome in Myelodysplastic Syndromes Treated with Azacitidine" Journal of Clinical Medicine 10, no. 21: 4809. https://doi.org/10.3390/jcm10214809
APA StylePescia, C., Boggio, F., Croci, G. A., Cassin, R., Barella, M., Pettine, L., Reda, G., Sabattini, E., Finelli, C., & Gianelli, U. (2021). Lymphocytic Infiltrate and p53 Protein Expression as Predictive Markers of Response and Outcome in Myelodysplastic Syndromes Treated with Azacitidine. Journal of Clinical Medicine, 10(21), 4809. https://doi.org/10.3390/jcm10214809