Prognostic Value of N-Terminal Pro-Brain Natriuretic Peptide and High-Sensitivity Troponin T Levels in the Natural History of Transthyretin Amyloid Cardiomyopathy and Their Evolution after Tafamidis Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Selecting Patients for Cohort A and Cohort B
2.3. Statistical Analysis
2.4. Assessing Evolution of NT-proBNP and cTnT-HS Levels over Time
2.5. Assessing the Impact of Changes in NT-proBNP and cTnT-HS Levels on Event-Free Survival
3. Results
3.1. Study Population
3.2. Patient Characteristics and Assessment of Changes in NT-proBNP and cTnT-HS Levels over Time in Cohort A
3.3. Assessment of the Impact of Increased NT-proBNP and cTnT-HS Levels on Event-Free Survival in Cohort A
3.4. Multivariate Analysis to Identify Factors Associated with Extended EFS in Patients in Cohort A
3.5. Patient Characteristics and Assessment of the Effect of Tafamidis on NT-proBNP Levels in Cohort B (n = 248)
4. Discussion
4.1. Cardiac Biomarkers during the Evolution of Transthyretin Amyloid Cardiomyopathy (ATTR-CA)
4.2. Prognosis
4.3. Tafamidis
4.4. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maurer, M.S.; Mann, D.L. The Tafamidis Drug Development Program: A Translational Triumph. JACC Basic Transl. Sci. 2018, 3, 871–873. [Google Scholar] [CrossRef] [PubMed]
- Coelho, T.; Merlini, G.; Bulawa, C.E.; Fleming, J.A.; Judge, D.P.; Kelly, J.W.; Maurer, M.S.; Plante-Bordeneuve, V.; Labaudiniere, R.; Mundayat, R.; et al. Mechanism of Action and Clinical Application of Tafamidis in Hereditary Transthyretin Amyloidosis. Neurol. Ther. 2016, 5, 1–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, S.J. Targeted Therapeutics for Transthyretin Cardiac Amyloidosis. Circulation 2019, 139, 444–447. [Google Scholar] [CrossRef] [PubMed]
- Maurer, M.S.; Schwartz, J.H.; Gundapaneni, B.; Elliott, P.M.; Merlini, G.; Waddington-Cruz, M.; Kristen, A.V.; Grogan, M.; Witteles, R.; Damy, T.; et al. Tafamidis Treatment for Patients with Transthyretin Amyloid Cardiomyopathy. N. Engl. J. Med. 2018, 379, 1007–1016. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Jia, Y.; Zhu, B. BNP and NT-proBNP as Diagnostic Biomarkers for Cardiac Dysfunction in Both Clinical and Forensic Medicine. Int. J. Mol. Sci. 2019, 20, 1820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraemer, B.F.; Seizer, P.; Geisler, T.; Klingel, K.; Kandolf, R.; Lindemann, S.; Gawaz, M. Persistent troponin elevation in a patient with cardiac amyloidosis. Clin. Cardiol. 2009, 32, E39–E42. [Google Scholar] [CrossRef] [PubMed]
- Castiglione, V.; Franzini, M.; Aimo, A.; Carecci, A.; Lombardi, C.M.; Passino, C.; Rapezzi, C.; Emdin, M.; Vergaro, G. Use of biomarkers to diagnose and manage cardiac amyloidosis. Eur. J. Heart Fail. 2021, 23, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Grogan, M.; Scott, C.G.; Kyle, R.A.; Zeldenrust, S.R.; Gertz, M.A.; Lin, G.; Klarich, K.W.; Miller, W.L.; Maleszewski, J.J.; Dispenzieri, A. Natural History of Wild-Type Transthyretin Cardiac Amyloidosis and Risk Stratification Using a Novel Staging System. J. Am. Coll. Cardiol. 2016, 68, 1014–1020. [Google Scholar] [CrossRef] [PubMed]
- Gillmore, J.D.; Damy, T.; Fontana, M.; Hutchinson, M.; Lachmann, H.J.; Martinez-Naharro, A.; Quarta, C.C.; Rezk, T.; Whelan, C.J.; Gonzalez-Lopez, E.; et al. A new staging system for cardiac transthyretin amyloidosis. Eur. Heart J. 2018, 39, 2799–2806. [Google Scholar] [CrossRef] [PubMed]
- Naumova, E.N.; Must, A.; Laird, N.M. Tutorial in Biostatistics: Evaluating the impact of ‘critical periods’ in longitudinal studies of growth using piecewise mixed effects models. Int. J. Epidemiol. 2001, 30, 1332–1341. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.I.; Cho, K.I.; Kim, H.S.; Heo, J.H.; Cha, T.J. Association between the N-terminal plasma brain natriuretic peptide levels or elevated left ventricular filling pressure and thromboembolic risk in patients with non-valvular atrial fibrillation. J. Cardiol. 2016, 68, 110–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nah, E.H.; Kim, S.Y.; Cho, S.; Kim, S.; Cho, H.I. Plasma NT-proBNP levels associated with cardiac structural abnormalities in asymptomatic health examinees with preserved ejection fraction: A retrospective cross-sectional study. BMJ Open 2019, 9, e026030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, C. Essential biochemistry and physiology of (NT-pro)BNP. Eur. J. Heart Fail. 2004, 6, 257–260. [Google Scholar] [CrossRef]
- Gray, J.R. The use of B-type natriuretic peptide to diagnose congestive heart failure. Clin. Lab. Sci. 2006, 19, 214–217. [Google Scholar] [PubMed]
- Alpert, J.S.; Thygesen, K.; Antman, E.; Bassand, J.P. Myocardial infarction redefined—A consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J. Am. Coll. Cardiol. 2000, 36, 959–969. [Google Scholar]
- Ochi, Y.; Kubo, T.; Nakashima, Y.; Baba, Y.; Hirota, T.; Yamasaki, N.; Yamashita, T.; Ueda, M.; Ando, Y.; Kitaoka, H. Integrated diagnostic approach to wild-type transthyretin cardiac amyloidosis with the use of high-sensitivity cardiac troponin T measurement and (99 m)Tc-pyrophosphate scintigraphy. J. Cardiol. 2020, 75, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Damy, T.; Deux, J.F.; Moutereau, S.; Guendouz, S.; Mohty, D.; Rappeneau, S.; Guellich, A.; Hittinger, L.; Loric, S.; Lefaucheur, J.P.; et al. Role of natriuretic peptide to predict cardiac abnormalities in patients with hereditary transthyretin amyloidosis. Amyloid 2013, 20, 212–220. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, S.; Palladini, G.; Sanchorawala, V.; Wechalekar, A. Update on treatment of light chain amyloidosis. Haematologica 2014, 99, 209–221. [Google Scholar] [CrossRef] [Green Version]
- Dispenzieri, A.; Gertz, M.A.; Kumar, S.K.; Lacy, M.Q.; Kyle, R.A.; Saenger, A.K.; Grogan, M.; Zeldenrust, S.R.; Hayman, S.R.; Buadi, F.; et al. High sensitivity cardiac troponin T in patients with immunoglobulin light chain amyloidosis. Heart 2014, 100, 383–388. [Google Scholar] [CrossRef]
- Palladini, G.; Campana, C.; Klersy, C.; Balduini, A.; Vadacca, G.; Perfetti, V.; Perlini, S.; Obici, L.; Ascari, E.; d’Eril, G.M.; et al. Serum N-terminal pro-brain natriuretic peptide is a sensitive marker of myocardial dysfunction in AL amyloidosis. Circulation 2003, 107, 2440–2445. [Google Scholar] [CrossRef]
- Palladini, G.; Barassi, A.; Klersy, C.; Pacciolla, R.; Milani, P.; Sarais, G.; Perlini, S.; Albertini, R.; Russo, P.; Foli, A.; et al. The combination of high-sensitivity cardiac troponin T (hs-cTnT) at presentation and changes in N-terminal natriuretic peptide type B (NT-proBNP) after chemotherapy best predicts survival in AL amyloidosis. Blood 2010, 116, 3426–3430. [Google Scholar] [CrossRef]
- Qian, G.; Wu, C.; Zhang, Y.; Chen, Y.D.; Dong, W.; Ren, Y.H. Prognostic value of high-sensitivity cardiac troponin T in patients with endomyocardial-biopsy proven cardiac amyloidosis. J. Geriatr. Cardiol. 2014, 11, 136–140. [Google Scholar] [PubMed]
- Damy, T.; Jaccard, A.; Guellich, A.; Lavergne, D.; Galat, A.; Deux, J.F.; Hittinger, L.; Dupuis, J.; Frenkel, V.; Rigaud, C.; et al. Identification of prognostic markers in transthyretin and AL cardiac amyloidosis. Amyloid 2016, 23, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Law, S.; Petrie, A.; Chacko, L.; Cohen, O.C.; Ravichandran, S.; Gilbertson, J.A.; Rowczenio, D.; Wechalekar, A.; Martinez-Naharro, A.; Lachmann, H.J.; et al. Disease progression in cardiac transthyretin amyloidosis is indicated by serial calculation of National Amyloidosis Centre transthyretin amyloidosis stage. ESC Heart Fail. 2020, 7, 3942–3949. [Google Scholar] [CrossRef] [PubMed]
- Kreusser, M.M.; Volz, M.J.; Knop, B.; Ehlermann, P.; Schmack, B.; Ruhparwar, A.; Hegenbart, U.; Schonland, S.O.; Katus, H.A.; Raake, P.W. A novel risk score to predict survival in advanced heart failure due to cardiac amyloidosis. Clin. Res. Cardiol. 2020, 109, 700–713. [Google Scholar] [CrossRef]
- Comenzo, R.L.; Reece, D.; Palladini, G.; Seldin, D.; Sanchorawala, V.; Landau, H.; Falk, R.; Wells, K.; Solomon, A.; Wechalekar, A.; et al. Consensus guidelines for the conduct and reporting of clinical trials in systemic light-chain amyloidosis. Leukemia 2012, 26, 2317–2325. [Google Scholar] [CrossRef] [Green Version]
- Sherwood, M.W.; Kristin Newby, L. High-sensitivity troponin assays: Evidence, indications, and reasonable use. J. Am. Heart Assoc. 2014, 3, e000403. [Google Scholar] [CrossRef] [Green Version]
- Muchtar, E.; Kumar, S.K.; Gertz, M.A.; Grogan, M.; AbouEzzeddine, O.F.; Jaffe, A.S.; Dispenzieri, A. Staging systems use for risk stratification of systemic amyloidosis in the era of high-sensitivity troponin T assay. Blood 2019, 133, 763–766. [Google Scholar] [CrossRef] [Green Version]
Cohort A | ATTRv-CA | ATTRwt-CA | p-Value | |
---|---|---|---|---|
n | 454 | 134 | 320 | |
Age at inclusion, years | 77.0 ± 9.6 | 70.1 ± 11.2 | 79.8 ± 7.1 | <0.01 (ANOVA) |
Age at amyloidosis diagnosis, years | 76.9 ± 9.6 | 70.0 ± 11.4 | 79.8 ± 7.1 | <0.01 (ANOVA) |
Male, n (%) | 374 (82.4) | 96 (71.6) | 278 (86.9) | <0.01 (Chi2) |
BMI, kg.m−2 | 25.3 ± 3.7 | 24.8 ± 3.7 | 25.4 ± 3.7 | 0.16 (Chi2) |
Carpal tunnel history, n (%) | 319 (70.3) | 98 (73.1) | 221 (69.1) | 0.39 (Chi2) |
ATTR V122I, n (%) | 89 (19.6) | 89 (66.4) | 0 (0.0) | NA |
ATTR V30M, n (%) | 13 (2.9) | 13 (9.7) | 0 (0.0) | NA |
NYHA class, n (%) | 0.43 (Chi2) | |||
I | 45 (13.4) | 15 (16.3) | 30 (12.3) | |
II | 161 (48.1) | 38 (41.3) | 123 (50.6) | |
III | 112 (33.4) | 33 (35.9) | 79 (32.5) | |
IV | 17 (5.1) | 6 (6.5) | 11 (4.5) | |
Heart rate, bpm | 74.8 ± 15.8 | 75.2 ± 15.6 | 74.6 ± 15.9 | 0.74 (ANOVA) |
Systolic blood pressure, mmHg | 128.0 ± 20.9 | 120.6 ± 19.8 | 130.7 ± 20.7 | <0.01 (ANOVA) |
Diastolic blood pressure, mmHg | 74.6 ± 12.4 | 72.9 ± 10.0 | 75.2 ± 13.2 | 0.12 (ANOVA) |
Atrial fibrillation, n (%) | 102 (22.5) | 11 (8.2) | 91 (28.4) | <0.01 (Chi2) |
NT-proBNP at baseline, ng/L * | 2818(1460; 5571) | 2463(839; 5278) | 3216 (1701; 5623) | 0.07 (ANOVA) |
Time interval between NT-proBNP values, months, median (IQR) | 4.8 (1.7–12.9) | 5.0 (1.7–13.4) | 4.6 (1.7–12.8) | 0.75 (ANOVA) |
Class of NT-proBNP at baseline | <0.01 (Chi2) | |||
≤3000 ng/L | 233 (51.3) | 83 (61.9) | 150 (46.9) | |
>3000 ng/L | 221 (48.7) | 51 (38.1) | 170 (53.1) | |
cTnT-HS at baseline, ng/L * | 62.0 (41.0; 91.0) | 62.0 (37.0; 92.0) | 62.5 (42.0; 90.5) | 0.77 (ANOVA) |
Time interval between cTnT-HSvalues, months, median (IQR) | 3.8 (1.5–11.4) | 4.0 (1.4–10.0) | 3.7 (1.5–11.8) | 0.52 (ANOVA) |
Class of cTnT-HS at baseline | 0.68 (Chi2) | |||
≤50 ng/L | 155 (36.5) | 46 (38.0) | 109 (35.9) | |
>50 ng/L | 270 (63.5) | 75 (62.0) | 195 (64.1) | |
eGFR at baseline, mL/min/1.73 m2 * | 59.2 (46.9; 76.5) | 59.1 (43.1; 82.2) | 59.2 (49.0; 74.7) | 0.15 (ANOVA) |
Gillmore stage at baseline | 0.02 (Chi2) | |||
Stage 1 | 192 (48.9) | 72 (55.0) | 120 (45.8) | |
Stage 2 | 137 (34.9) | 33 (25.2) | 104 (39.7) | |
Stage 3 | 64 (16.3) | 26 (19.8) | 38 (14.5) | |
Missing data | 61 | 3 | 58 | |
Martha Grogan stage at baseline | 0.26 (Chi2) | |||
Stage 1 | 126 (29.6) | 42 (34.7) | 84 (27.6) | |
Stage 2 | 121 (28.5) | 35 (28.9) | 86 (28.3) | |
Stage 3 | 178 (41.9) | 44 (36.4) | 134 (44.1) | |
Missing data | 29 | 13 | 16 | |
LVEF, % | 48.5 ± 12.3 | 50.7 ± 12.2 | 47.4 ± 12.3 | 0.18 (ANOVA) |
IVST, mm | 17.8 ± 3.4 | 17.9 ± 3.9 | 17.7 ± 3.2 | 0.77 (ANOVA) |
LV Global strain, % | −10.8 ± 3.4 | −10.9 ± 3.6 | −10.8 ± 3.3 | 0.90 (ANOVA) |
Cohort B | ATTRv-CA | ATTRwt-CA | p-Value | |
---|---|---|---|---|
N | 248 | 63 | 185 | |
Age at inclusion, mean ± SD | 75.5 ± 9.8 | 67.5 ± 11.7 | 78.2 ± 7.3 | <0.01 (ANOVA) |
Age at amyloidosis diagnosis, mean ± SD | 75.4 ± 9.8 | 67.3 ± 11.7 | 78.1 ± 7.3 | <0.01 (ANOVA) |
Male, n (%) | 203 (81.9) | 44 (69.8) | 159 (85.9) | <0.01 (Chi2) |
BMI(kg/m2), mean ± SD | 25.2 ± 3.3 | 24.5 ± 3.1 | 25.4 ± 3.4 | <0.01 (ANOVA) |
Carpal tunnel surgery/symptoms, n (%) | 193 (77.8) | 47 (74.6) | 146 (78.9) | 0.48 |
ATTR V122I, n (%) | 33 (13.3) | 33 (52.4) | 0 (0.0) | |
ATTR V30M, n (%) | 12 (4.8) | 12 (19.0) | 0 (0.0) | |
NYHA class, n (%) | 0.82 (Chi2) | |||
I | 27 (14.3) | 6 (15.0) | 21 (14.1) | |
II | 104 (55.0) | 20 (50.0) | 84 (56.4) | |
III | 57 (30.2) | 14 (35.0) | 43 (28.9) | |
IV | 1 (0.5) | 0 (0.0) | 1 (0.7) | |
Heart rate (bpm), mean ± SD | 75.2 ± 14.1 | 78.9 ± 16.6 | 74.1 ± 13.1 | 0.05 (ANOVA) |
Systolic blood pressure, mean ± SD | 132.2 ± 20.5 | 125.9 ± 22.1 | 134.0 ± 19.8 | 0.02 (ANOVA) |
Diastolic blood pressure, mean ± SD | 75.5 ± 13.2 | 74.7 ± 12.2 | 75.7 ± 13.5 | 0.67 (ANOVA) |
Atrial fibrillation, n (%) | 49 (20.5) | 6 (9.8) | 43 (24.2) | 0.02 (Chi2) |
NT-proBNP at baseline (ng/L), median (IQR) | 1980 (1008; 3810) | 1034 (341; 2546) | 2166 (1249; 4005) | <0.01 (ANOVA) |
NT-proBNP class, n (%) | 0.02 (Chi2) | |||
≤3000 ng/L | 168 (67.7) | 50 (79.4) | 118 (63.8) | |
>3000 ng/L | 80 (32.3) | 13 (20.6) | 67 (36.2) | |
cTnT-HS at baseline, median (IQR) | 55.0 (32.0; 75.0) | 51.5 (25.0; 73.0) | 56.0 (34.0; 75.0) | 0.26 (ANOVA) |
cTnT-HS class, n (%) | 0.74 (Chi2) | |||
≤50 ng/L | 108 (46.2) | 26 (48.1) | 82 (45.6) | |
>50 ng/L | 126 (53.8) | 28 (51.9) | 98 (54.4) | |
Missing data | 14 | 9 | 5 | |
Creatinine at baseline, mean ± SD | 109.0 ± 41.4 | 102.4 ± 47.5 | 111.3 ± 39.0 | 0.15 (ANOVA) |
eGFR (mL/min/1.73 m2), median (IQR) | 62.8 (51.5; 78.7) | 68.4 (53.5; 94.7) | 61.8 (49.9; 76.4) | <0.01 (ANOVA) |
Gillmore stage, n (%) | 0.18 (Chi2) | |||
Stage 1 | 148 (61.4) | 44 (71.0) | 104 (58.1) | |
Stage 2 | 68 (28.2) | 14 (22.6) | 54 (30.2) | |
Stage 3 | 25 (10.4) | 4 (6.5) | 21 (11.7) | |
Missing data | 7 | 1 | 6 | |
Martha Grogan stage, n (%) | 0.45 (Chi2) | |||
Stage 1 | 98 (41.9) | 25 (46.3) | 73 (40.6) | |
Stage 2 | 68 (29.1) | 17 (31.5) | 51 (28.3) | |
Stage 3 | 68 (29.1) | 12 (22.2) | 56 (31.1) | |
Missing data | 14 | 9 | 5 | |
LVEF (%), mean ± SD | 50.1 ± 12.6 | 54.9 ± 11.1 | 48.2 ± 12.8 | 0.07 (ANOVA) |
IVST (mm), mean ± SD | 17.7 ± 3.2 | 17.0 ± 3.6 | 18.1 ± 3.1 | 0.27 (ANOVA) |
LV Global strain, mean ± SD | −11.0 ± 3.4 | −12.9 ± 3.7 | −10.2 ± 3.0 | <0.01 (ANOVA) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oghina, S.; Josse, C.; Bézard, M.; Kharoubi, M.; Delbarre, M.-A.; Eyharts, D.; Zaroui, A.; Guendouz, S.; Galat, A.; Hittinger, L.; et al. Prognostic Value of N-Terminal Pro-Brain Natriuretic Peptide and High-Sensitivity Troponin T Levels in the Natural History of Transthyretin Amyloid Cardiomyopathy and Their Evolution after Tafamidis Treatment. J. Clin. Med. 2021, 10, 4868. https://doi.org/10.3390/jcm10214868
Oghina S, Josse C, Bézard M, Kharoubi M, Delbarre M-A, Eyharts D, Zaroui A, Guendouz S, Galat A, Hittinger L, et al. Prognostic Value of N-Terminal Pro-Brain Natriuretic Peptide and High-Sensitivity Troponin T Levels in the Natural History of Transthyretin Amyloid Cardiomyopathy and Their Evolution after Tafamidis Treatment. Journal of Clinical Medicine. 2021; 10(21):4868. https://doi.org/10.3390/jcm10214868
Chicago/Turabian StyleOghina, Silvia, Constant Josse, Mélanie Bézard, Mounira Kharoubi, Marc-Antoine Delbarre, Damien Eyharts, Amira Zaroui, Soulef Guendouz, Arnault Galat, Luc Hittinger, and et al. 2021. "Prognostic Value of N-Terminal Pro-Brain Natriuretic Peptide and High-Sensitivity Troponin T Levels in the Natural History of Transthyretin Amyloid Cardiomyopathy and Their Evolution after Tafamidis Treatment" Journal of Clinical Medicine 10, no. 21: 4868. https://doi.org/10.3390/jcm10214868
APA StyleOghina, S., Josse, C., Bézard, M., Kharoubi, M., Delbarre, M. -A., Eyharts, D., Zaroui, A., Guendouz, S., Galat, A., Hittinger, L., Fanen, P., Teiger, E., Mouri, N., Montestruc, F., & Damy, T. (2021). Prognostic Value of N-Terminal Pro-Brain Natriuretic Peptide and High-Sensitivity Troponin T Levels in the Natural History of Transthyretin Amyloid Cardiomyopathy and Their Evolution after Tafamidis Treatment. Journal of Clinical Medicine, 10(21), 4868. https://doi.org/10.3390/jcm10214868