The Influence of Missing Data on Disabilities in Patients Treated with High-Dose Spinal Cord Stimulation: A Tipping Point Sensitivity Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Outcome Measurements
2.3. Statistical Analysis
2.4. Sensitivity Analysis
3. Results
3.1. Descriptive Statistics
3.2. Longitudinal Effect of HD-SCS on Disability
3.3. Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kapural, L.; Peterson, E.; Provenzano, D.A.; Staats, P. Clinical Evidence for Spinal Cord Stimulation for Failed Back Surgery Syndrome (FBSS): Systematic Review. Spine 2017, 42, S61–S66. [Google Scholar] [CrossRef]
- Baber, Z.; Erdek, M.A. Failed back surgery syndrome: Current perspectives. J. Pain Res. 2016, 9, 979–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rigoard, P.; Basu, S.; Desai, M.; Taylor, R.; Annemans, L.; Tan, Y.; Johnson, M.J.; Van den Abeele, C.; North, R. Multicolumn Spinal Cord Stimulation for Predominant Back Pain in Failed Back Surgery Syndrome Patients: A Multicenter Randomized Controlled Trial. Pain 2019, 160, 1410–1420. [Google Scholar] [CrossRef]
- Taylor, R.S.; Desai, M.J.; Rigoard, P.; Taylor, R.J. Predictors of pain relief following spinal cord stimulation in chronic back and leg pain and failed back surgery syndrome: A systematic review and meta-regression analysis. Pain Pract. 2014, 14, 489–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linderoth, B. Spinal cord stimulation mechanisms of action; experimental evidence and clinical application. Reg. Anesth. Pain Med. 2010, 35, E19–E23. [Google Scholar] [CrossRef]
- Linderoth, B.; Foreman, R.D. Conventional and Novel Spinal Stimulation Algorithms: Hypothetical Mechanisms of Action and Comments on Outcomes. Neuromodulation 2017, 20, 525–533. [Google Scholar] [CrossRef]
- Miller, J.P.; Eldabe, S.; Buchser, E.; Johanek, L.M.; Guan, Y.; Linderoth, B. Parameters of Spinal Cord Stimulation and Their Role in Electrical Charge Delivery: A Review. Neuromodulation 2016, 19, 373–384. [Google Scholar] [CrossRef]
- Sweet, J.; Badjatiya, A.; Tan, D.; Miller, J. Paresthesia-Free High-Density Spinal Cord Stimulation for Postlaminectomy Syndrome in a Prescreened Population: A Prospective Case Series. Neuromodulation 2016, 19, 260–267. [Google Scholar] [CrossRef]
- Wille, F.; Breel, J.S.; Bakker, E.W.; Hollmann, M.W. Altering Conventional to High Density Spinal Cord Stimulation: An Energy Dose-Response Relationship in Neuropathic Pain Therapy. Neuromodulation 2017, 20, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Falowski, S.M.; Moore, G.A.; Cornidez, E.G.; Hutcheson, J.K.; Candido, K.; Peña, I.; Blomme, B.; Capobianco, R.A. Improved Psychosocial and Functional Outcomes and Reduced Opioid Usage Following Burst Spinal Cord Stimulation. Neuromodulation 2020, 24, 581–590. [Google Scholar] [CrossRef]
- Hazard, R.G.; Spratt, K.F.; McDonough, C.M.; Olson, C.M.; Ossen, E.S.; Hartmann, E.M.; Carlson, R.J.; LaVoie, J. Patient-centered evaluation of outcomes from rehabilitation for chronic disabling spinal disorders: The impact of personal goal achievement on patient satisfaction. Spine J. 2012, 12, 1132–1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henssen, D.; Scheepers, N.; Kurt, E.; Arnts, I.; Steegers, M.; Vissers, K.; van Dongen, R.; Engels, Y. Patients’ Expectations on Spinal Cord Stimulation for Failed Back Surgery Syndrome: A Qualitative Exploration. Pain Pract. 2018, 18, 452–462. [Google Scholar] [CrossRef]
- Pope, J.E.; Fishman, M. Redefining Success: Longitudinal Patient Reported Outcome Measures and the Importance of Psychometric Testing for Optimization in Neuromodulation. Neuromodulation 2019, 22, 119–120. [Google Scholar] [CrossRef]
- Goudman, L.; Moens, M. Moving Beyond a Pain Intensity Reporting: The Value of Goal Identification in Neuromodulation. Neuromodulation 2020, 23, 1057–1058. [Google Scholar] [CrossRef] [PubMed]
- Goudman, L.; De Smedt, A.; Eldabe, S.; Rigoard, P.; Linderoth, B.; De Jaeger, M.; Moens, M.; Discover, C. High-dose spinal cord stimulation for patients with failed back surgery syndrome: A multicenter effectiveness and prediction study. Pain 2021, 162, 582–590. [Google Scholar] [CrossRef]
- De Jaeger, M.; Goudman, L.; Eldabe, S.; Van Dongen, R.; De Smedt, A.; Moens, M. The association between pain intensity and disability in patients with failed back surgery syndrome, treated with spinal cord stimulation. Disabil. Rehabil. 2019, 43, 2157–2163. [Google Scholar] [CrossRef]
- Sabourin, S.; Tram, J.; Sheldon, B.L.; Pilitsis, J.G. Defining minimal clinically important differences in pain and disability outcomes of patients with chronic pain treated with spinal cord stimulation. J. Neurosurg. Spine 2021, 1, 1–8. [Google Scholar] [CrossRef]
- Fairbank, J.C.; Couper, J.; Davies, J.B.; O’Brien, J.P. The Oswestry low back pain disability questionnaire. Physiotherapy 1980, 66, 271–273. [Google Scholar] [PubMed]
- Klebanoff, M.A.; Cole, S.R. Use of multiple imputation in the epidemiologic literature. Am. J. Epidemiol. 2008, 168, 355–357. [Google Scholar] [CrossRef] [Green Version]
- Little, R.; Rubin, D. Statistical Analysis With Missing Data; John Wiley Sons: New York, NY, USA, 1987. [Google Scholar]
- Potthoff, R.F.; Tudor, G.E.; Pieper, K.S.; Hasselblad, V. Can one assess whether missing data are missing at random in medical studies? Stat. Methods Med. Res. 2006, 15, 213–234. [Google Scholar] [CrossRef]
- Thabane, L.; Mbuagbaw, L.; Zhang, S.; Samaan, Z.; Marcucci, M.; Ye, C.; Thabane, M.; Giangregorio, L.; Dennis, B.; Kosa, D.; et al. A tutorial on sensitivity analyses in clinical trials: The what, why, when and how. BMC Med. Res. Methodol. 2013, 13, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Jaeger, M.; van Hooff, R.J.; Goudman, L.; Espinoza, A.V.; Brouns, R.; Puylaert, M.; Duyvendak, W.; Moens, M. High-Density in Spinal Cord stimulation: Virtual Expert Registry (DISCOVER): Study Protocol for a Prospective Observational Trial. Anesthesiol. Pain Med. 2017, 7, e13640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fairbank, J.C.; Pynsent, P.B. The Oswestry Disability Index. Spine 2000, 25, 2940–2952; discussion 2952. [Google Scholar] [CrossRef]
- Park, K.B.; Shin, J.S.; Lee, J.; Lee, Y.J.; Kim, M.R.; Lee, J.H.; Shin, K.M.; Shin, B.C.; Cho, J.H.; Ha, I.H. Minimum Clinically Important Difference and Substantial Clinical Benefit in Pain, Functional, and Quality of Life Scales in Failed Back Surgery Syndrome Patients. Spine 2017, 42, E474–E481. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, J.C.; Gluud, C.; Wetterslev, J.; Winkel, P. When and how should multiple imputation be used for handling missing data in randomised clinical trials—A practical guide with flowcharts. BMC Med. Res. Methodol. 2017, 17, 162. [Google Scholar] [CrossRef] [Green Version]
- Lachin, J.M. Fallacies of last observation carried forward analyses. Clin. Trials 2016, 13, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Ratitch, B.; O’Kelly, M.; Tosiello, R. Missing data in clinical trials: From clinical assumptions to statistical analysis using pattern mixture models. Pharm. Stat. 2013, 12, 337–347. [Google Scholar] [CrossRef]
- Cro, S.; Morris, T.P.; Kenward, M.G.; Carpenter, J.R. Sensitivity analysis for clinical trials with missing continuous outcome data using controlled multiple imputation: A practical guide. Stat. Med. 2020, 39, 2815–2842. [Google Scholar] [CrossRef]
- Yan, X.; Lee, S.; Li, N. Missing data handling methods in medical device clinical trials. J. Biopharm. Stat. 2009, 19, 1085–1098. [Google Scholar] [CrossRef]
- Fitzmaurice, G.M.; Laird, N.M.; Ware, J.H. Applied Longitudinal Analysis, 2nd ed.; John Wiley & Sons., Inc.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Leurent, B.; Gomes, M.; Faria, R.; Morris, S.; Grieve, R.; Carpenter, J.R. Sensitivity Analysis for Not-at-Random Missing Data in Trial-Based Cost-Effectiveness Analysis: A Tutorial. Pharmacoeconomics 2018, 36, 889–901. [Google Scholar] [CrossRef] [Green Version]
- Schafer, J.L. Analysis of Incomplete Multivariate Data; Chapman and Hall: New York, NY, USA, 1997. [Google Scholar]
- Rubin, D.B. Multiple Imputation for Nonresponse in Surveys; John Wiley and Sons: New York, NY, USA, 1987. [Google Scholar]
- Amirdelfan, K.; Yu, C.; Doust, M.W.; Gliner, B.E.; Morgan, D.M.; Kapural, L.; Vallejo, R.; Sitzman, B.T.; Yearwood, T.L.; Bundschu, R.; et al. Long-term quality of life improvement for chronic intractable back and leg pain patients using spinal cord stimulation: 12-month results from the SENZA-RCT. Qual. Life Res. 2018, 27, 2035–2044. [Google Scholar] [CrossRef] [Green Version]
- LeDoux, M.S.; Langford, K.H. Spinal cord stimulation for the failed back syndrome. Spine 1993, 18, 191–194. [Google Scholar] [CrossRef]
- Thomson, S.J.; Kruglov, D.; Duarte, R.V. A Spinal Cord Stimulation Service Review From a Single Centre Using a Single Manufacturer Over a 7.5 Year Follow-Up Period. Neuromodulation 2017, 20, 589–599. [Google Scholar] [CrossRef]
- Scalone, L.; Zucco, F.; Lavano, A.; Costantini, A.; De Rose, M.; Poli, P.; Fortini, G.; Demartini, L.; De Simone, E.; Menardo, V.; et al. Benefits in pain perception, ability function and health-related quality of life in patients with failed back surgery syndrome undergoing spinal cord stimulation in a clinical practice setting. Health Qual. Life Outcomes 2018, 16, 68. [Google Scholar] [CrossRef] [PubMed]
- Reddy, R.D.; Moheimani, R.; Yu, G.G.; Chakravarthy, K.V. A Review of Clinical Data on Salvage Therapy in Spinal Cord Stimulation. Neuromodulation 2019, 23, 562–571. [Google Scholar] [CrossRef] [PubMed]
- Gewandter, J.S.; Dworkin, R.H.; Turk, D.C.; Devine, E.G.; Hewitt, D.; Jensen, M.P.; Katz, N.P.; Kirkwood, A.A.; Malamut, R.; Markman, J.D.; et al. Improving Study Conduct and Data Quality in Clinical Trials of Chronic Pain Treatments: IMMPACT Recommendations. J. Pain 2020, 21, 931–942. [Google Scholar] [CrossRef]
- Kim, Y. Missing data handling in chronic pain trials. J. Biopharm. Stat. 2011, 21, 311–325. [Google Scholar] [CrossRef]
- Cai, X.; Gewandter, J.S.; He, H.; Turk, D.C.; Dworkin, R.H.; McDermott, M.P. Estimands and missing data in clinical trials of chronic pain treatments: Advances in design and analysis. Pain 2020, 161, 2308–2320. [Google Scholar] [CrossRef]
- Carpenter, J.R.; Smuk, M. Missing data: A statistical framework for practice. Biom. J. 2021, 63, 915–947. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. ICH E9 (R1) Addendum on Estimands and Sensitivity Analysis in Clinical Trials to the Guideline on Statistical Principles for Clinical Trials: Step 5; European Medicines Agency: Amsterdam, The Netherlands, 2020.
- Molenberghs, G.; Kenward, M.G. Analysis of Incomplete Data. In Analysis of Clinical Trials Using SAS, 2nd ed.; Dmitrienko, A., Koch, G.G., Eds.; SAS Institute: Cary, NC, USA, 2017. [Google Scholar]
- Wright, A.; Hannon, J.; Hegedus, E.J.; Kavchak, A.E. Clinimetrics corner: A closer look at the minimal clinically important difference (MCID). J. Man. Manip. Ther. 2012, 20, 160–166. [Google Scholar] [CrossRef] [Green Version]
- Hung, M.; Saltzman, C.L.; Kendall, R.; Bounsanga, J.; Voss, M.W.; Lawrence, B.; Spiker, R.; Brodke, D. What Are the MCIDs for PROMIS, NDI, and ODI Instruments Among Patients With Spinal Conditions? Clin. Orthop. Relat. Res. 2018, 476, 2027–2036. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.-M.; Yu, X.-M.; Xu, X.-D.; Song, R.-X.; Yu, L.-L.; Yu, X.-C. Posterior Lumbar Interbody Fusion with Interspinous Fastener Provides Comparable Clinical Outcome and Fusion Rate to Pedicle Screws. Orthop. Surg. 2017, 9, 198–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallinckrodt, C.H.; Lin, Q.; Molenberghs, M. A structured framework for assessing sensitivity to missing data assumptions in longitudinal clinical trials. Pharm. Stat. 2013, 12, 1–6. [Google Scholar] [CrossRef] [PubMed]
Variable | Regression Estimates | Standard Error | 95% Confidence Interval | Type III Test |
---|---|---|---|---|
Intercept | 25.05 | 2.34 | (20.43–29.66) | p < 0.001 |
NRS low back | 2.32 | 0.25 | (1.82–2.81) | p < 0.001 |
NRS leg | 1.87 | 0.21 | (1.44–2.30) | p < 0.001 |
Time | −7.68 | 1.37 | (−10.39–−4.98) | p < 0.001 |
Time1 | 7.61 | 1.40 | (4.84–10.38) | p < 0.001 |
Type | Baseline | 1 Month | 3 Months | 12 Months | Number | Percentage |
---|---|---|---|---|---|---|
Completers | O | O | O | O | 81 | 43.78% |
Monotone missingness | O | O | O | M | 30 | 16.22% |
O | O | M | M | 17 | 9.19% | |
O | M | M | M | 47 | 25.41% | |
Non-monotone missingsness | O | O | M | O | 2 | 1.08% |
O | M | O | O | 2 | 1.08% | |
O | M | O | M | 1 | 0.54% | |
O | M | M | O | 5 | 2.70% |
Variable | Regression Estimates | Standard Error | 95% Confidence Interval | Type III Test |
---|---|---|---|---|
Intercept | 25.65 | 2.26 | (21.19–30.12) | p < 0.001 |
NRS low back | 2.27 | 0.23 | (1.81–2.73) | p < 0.001 |
NRS leg | 1.83 | 0.20 | (1.43–2.23) | p < 0.001 |
Time | −8.51 | 1.44 | (−11.39–−5.63) | p < 0.001 |
Time1 | 8.46 | 1.49 | (5.49–11.43) | p < 0.001 |
Shift | p-Value Time | p-Value Time1 |
---|---|---|
−30 | 0.0087 | 0.0536 |
−27 | 0.0010 | 0.0082 |
−24 | 0.0001 | 0.0009 |
−21 | <0.0001 | 0.0001 |
−18 | <0.0001 | <0.0001 |
−15 | <0.0001 | <0.0001 |
−12 | <0.0001 | <0.0001 |
−9 | <0.0001 | <0.0001 |
−6 | <0.0001 | <0.0001 |
−3 | <0.0001 | <0.0001 |
0 | <0.0001 | <0.0001 |
3 | <0.0001 | <0.0001 |
6 | <0.0001 | <0.0001 |
9 | 0.0001 | 0.0001 |
12 | 0.0013 | 0.0009 |
15 | 0.0142 | 0.0081 |
18 | 0.1018 | 0.0537 |
21 | 0.4237 | 0.2375 |
24 | 0.9702 | 0.6724 |
27 | 0.3914 | 0.7435 |
30 | 0.0997 | 0.2918 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goudman, L.; Molenberghs, G.; Duarte, R.V.; Moens, M. The Influence of Missing Data on Disabilities in Patients Treated with High-Dose Spinal Cord Stimulation: A Tipping Point Sensitivity Analysis. J. Clin. Med. 2021, 10, 4897. https://doi.org/10.3390/jcm10214897
Goudman L, Molenberghs G, Duarte RV, Moens M. The Influence of Missing Data on Disabilities in Patients Treated with High-Dose Spinal Cord Stimulation: A Tipping Point Sensitivity Analysis. Journal of Clinical Medicine. 2021; 10(21):4897. https://doi.org/10.3390/jcm10214897
Chicago/Turabian StyleGoudman, Lisa, Geert Molenberghs, Rui V. Duarte, and Maarten Moens. 2021. "The Influence of Missing Data on Disabilities in Patients Treated with High-Dose Spinal Cord Stimulation: A Tipping Point Sensitivity Analysis" Journal of Clinical Medicine 10, no. 21: 4897. https://doi.org/10.3390/jcm10214897
APA StyleGoudman, L., Molenberghs, G., Duarte, R. V., & Moens, M. (2021). The Influence of Missing Data on Disabilities in Patients Treated with High-Dose Spinal Cord Stimulation: A Tipping Point Sensitivity Analysis. Journal of Clinical Medicine, 10(21), 4897. https://doi.org/10.3390/jcm10214897