Identifying Patients without a Survival Benefit following Transfemoral and Transapical Transcatheter Aortic Valve Replacement
Abstract
:1. Introduction
2. Methods
2.1. Design and Patients
2.2. Procedure
2.3. Endpoints
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Preinterventional Parameters of Survival in the First Year
3.3. Interventional Factors of Survival in the First Year
3.4. Adverse Events
4. Discussion
4.1. Clinical Baseline Characteristics
4.2. Interventional Factors
4.3. Success Factors and Adverse Events
5. Study Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Braghiroli, J.; Kapoor, K.; Thielhelm, T.P.; Ferreira, T.; Cohen, M.G. Transcatheter aortic valve replacement in low risk patients: A review of PARTNER 3 and Evolut low risk trials. Cardiovasc. Diagn. Ther. 2020, 10, 59–71. [Google Scholar] [CrossRef]
- Falk, V.; Baumgartner, H.; Bax, J.J.; De Bonis, M.; Hamm, C.; Holm, P.J.; Iung, B.; Lancellotti, P.; Lansac, E.; Muñoz, D.R.; et al. 2017 ESC/EACTS Guidelines for the Management of Valvular Heart Disease. Rev. Esp. Cardiol. 2018, 71, 110. [Google Scholar] [CrossRef]
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Makkar, R.; Kodali, S.K.; Russo, M.; Kapadia, S.R.; Malaisrie, S.C.; Cohen, D.J.; Pibarot, P.; et al. Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1695–1705. [Google Scholar] [CrossRef]
- Mack, M.J.; Leon, M.B.; Smith, C.R.; Miller, D.C.; Moses, J.W.; Tuzcu, E.M.; Webb, J.G.; Douglas, P.S.; Anderson, W.N.; Blackstone, E.H.; et al. 5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): A randomised controlled trial. Lancet 2015, 385, 2477–2484. [Google Scholar] [CrossRef]
- Popma, J.J.; Deeb, G.M.; Yakubov, S.J.; Mumtaz, M.; Gada, H.; O’Hair, D.; Bajwa, T.; Heiser, J.C.; Merhi, W.; Kleiman, N.S.; et al. Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1706–1715. [Google Scholar] [CrossRef]
- Orlando, R.; Pennant, M.; Rooney, S.; Khogali, S.; Bayliss, S.; Hassan, A.; Moore, D.; Barton, P. Cost-effectiveness of transcatheter aortic valve implantation (TAVI) for aortic stenosis in patients who are high risk or contraindicated for surgery: A model-based economic evaluation. Heal. Technol. Assess. 2013, 17, 1–86. [Google Scholar] [CrossRef] [PubMed]
- Baron, S.J.; Wang, K.; House, J.A.; Magnuson, E.A.; Reynolds, M.R.; Makkar, R.; Herrmann, H.C.; Kodali, S.; Thourani, V.H.; Kapadia, S.; et al. Cost-Effectiveness of Transcatheter Versus Surgical Aortic Valve Replacement in Patients with Severe Aortic Stenosis at Intermediate Risk. Circulation 2019, 139, 877–888. [Google Scholar] [CrossRef]
- Geisler, B.P.; Jørgensen, T.H.; Thyregod, H.G.H.; Pietzsch, J.B.; Søndergaard, L. Cost-effectiveness of transcatheter versus surgical aortic valve replacement in patients at lower surgical risk: Results from the NOTION trial. EuroIntervention 2019, 15, e959–e967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Mourik, M.S.; Vendrik, J.; Abdelghani, M.; van Kesteren, F.; Henriques, J.P.; Driessen, A.H.; Wykrzykowska, J.J.; de Winter, R.J.; Piek, J.J.; Tijssen, J.G.; et al. Guideline-defined futility or patient-reported outcomes to assess treatment success after TAVI: What to use? Results from a prospective cohort study with long-term follow-up. Open Heart 2018, 5, e000879. [Google Scholar] [CrossRef]
- Martin, G.P.; Sperrin, M.; Ludman, P.F.; De Belder, M.A.; Gale, C.P.; Toff, W.D.; Moat, N.E.; Trivedi, U.; Buchan, I.; Mamas, M.A. Inadequacy of existing clinical prediction models for predicting mortality after transcatheter aortic valve implantation. Am. Hear J. 2016, 184, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Conradi, L.; Seiffert, M.; Schnabel, R.; Schön, G.; Blankenberg, S.; Reichenspurner, H.; Diemert, P.; Treede, H.; Silaschi, M. Predicting Risk in Transcatheter Aortic Valve Implantation: Comparative Analysis of EuroSCORE II and Established Risk Stratification Tools. Thorac. Cardiovasc. Surg. 2014, 63, 472–478. [Google Scholar] [CrossRef] [Green Version]
- Amrane, H.; Deeb, G.M.; Popma, J.J.; Yakubov, S.J.; Gleason, T.G.; Van Mieghem, N.M.; Reardon, M.J.; Williams, M.R.; Mumtaz, M.; Kappetein, A.P.; et al. Causes of death in intermediate-risk patients: The Randomized Surgical Replacement and Transcatheter Aortic Valve Implantation Trial. J. Thorac. Cardiovasc. Surg. 2019, 158, 718–728.e3. [Google Scholar] [CrossRef]
- Dewey, T.M.; Brown, D.; Ryan, W.H.; Herbert, M.A.; Prince, S.L.; Mack, M.J. Reliability of risk algorithms in predicting early and late operative outcomes in high-risk patients undergoing aortic valve replacement. J. Thorac. Cardiovasc. Surg. 2008, 135, 180–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nashef, S.A.; Roques, F.; Sharples, L.D.; Nilsson, J.; Smith, C.; Goldstone, A.R.; Lockowandt, U.; Euroscore, i.i. EuroSCORE II. Eur. J. Cardiothorac Surg. 2012, 41, 734–744. [Google Scholar] [CrossRef] [Green Version]
- Roques, F.; Michel, P.; Goldstone, A.; Nashef, S. The logistic EuroSCORE. Eur. Hear J. 2003, 24, 882–883. [Google Scholar] [CrossRef]
- Mach, M.; Wilbring, M.; Winkler, B.; Alexiou, K.; Kappert, U.; Delle-Karth, G.; Grabenwöger, M.; Matschke, K. Cut-down outperforms complete percutaneous transcatheter valve implantation. Asian Cardiovasc. Thorac. Ann. 2018, 26, 107–113. [Google Scholar] [CrossRef]
- Kappetein, A.P.; Head, S.J.; Généreux, P.; Piazza, N.; Van Mieghem, N.M.; Blackstone, E.H.; Brott, T.G.; Cohen, D.J.; Cutlip, D.E.; Van Es, G.-A.; et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: The Valve Academic Research Consortium-2 consensus document (VARC-2). Eur. J. Cardio-Thoracic Surg. 2012, 42, S45–S60. [Google Scholar] [CrossRef]
- Reardon, M.J.; Van Mieghem, N.M.; Popma, J.J.; Kleiman, N.S.; Søndergaard, L.; Mumtaz, M.; Adams, D.H.; Deeb, G.M.; Maini, B.; Gada, H.; et al. Surgical or Transcatheter Aortic-Valve Replacement in Intermediate-Risk Patients. N. Engl. J. Med. 2017, 376, 1321–1331. [Google Scholar] [CrossRef] [PubMed]
- Leon, M.B.; Smith, C.R.; Mack, M.J.; Makkar, R.R.; Svensson, L.G.; Kodali, S.K.; Thourani, V.H.; Tuzcu, E.M.; Miller, D.C.; Herrmann, H.C.; et al. Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients. N. Engl. J. Med. 2016, 374, 1609–1620. [Google Scholar] [CrossRef]
- Mohr, F.W.; Holzhey, D.; Möllmann, H.; Beckmann, A.; Veit, C.; Figulla, H.R.; Cremer, J.; Kuck, K.-H.; Lange, R.; Zahn, R.; et al. The German Aortic Valve Registry: 1-year results from 13 680 patients with aortic valve disease. Eur. J. Cardio-Thoracic Surg. 2014, 46, 808–816. [Google Scholar] [CrossRef] [PubMed]
- Biasco, L.; Ferrari, E.; Pedrazzini, G.; Faletra, F.; Moccetti, T.; Petracca, F.; Moccetti, M. Access Sites for TAVI: Patient Selection Criteria, Technical Aspects, and Outcomes. Front. Cardiovasc. Med. 2018, 5, 88. [Google Scholar] [CrossRef] [PubMed]
- Madigan, M.; Atoui, R. Non-transfemoral access sites for transcatheter aortic valve replacement. J. Thorac. Dis. 2018, 10, 4505–4515. [Google Scholar] [CrossRef]
- Bleiziffer, S.; Krane, M.; Deutsch, M.; Elhmidi, Y.; Piazza, N.; Voss, B.; Lange, R. Which way in? The Necessity of Multiple Approaches to Transcatheter Valve Therapy. Curr. Cardiol. Rev. 2014, 9, 268–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaasch, W.H.; D’Agostino, R.S. Transcatheter aortic valve implantation: The transfemoral versus the transapical approach. Ann. Cardiothorac. Surg. 2012, 1, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Ramlawi, B.; Anaya-Ayala, J.E.; Reardon, M.J. Transcatheter Aortic Valve Replacement (TAVR): Access Planning and Strategies. Methodist DeBakey Cardiovasc. J. 2012, 8, 22–25. [Google Scholar] [CrossRef] [Green Version]
- Mach, M.; Poschner, T.; Hasan, W.; Szalkiewicz, P.; Andreas, M.; Winkler, B.; Geisler, S.; Geisler, D.; Rudziński, P.N.; Watzal, V.; et al. The Iliofemoral tortuosity score predicts access and bleeding complications during transfemoral transcatheter aortic valve replacement: DataData from the VIenna Cardio Thoracic aOrtic valve registrY (VICTORY). Eur. J. Clin. Investig. 2021, 51, e13491. [Google Scholar]
- Mach, M.; Koschutnik, M.; Wilbring, M.; Winkler, B.; Reinweber, M.; Alexiou, K.; Kappert, U.; Adlbrecht, C.; Delle-Karth, G.; Grabenwöger, M.; et al. Impact of COPD on Outcome in Patients Undergoing Transfemoral versus Transapical TAVI. Thorac. Cardiovasc. Surg. 2019, 67, 251–256. [Google Scholar] [CrossRef]
- Conrotto, F.; D’Ascenzo, F.; D’Amico, M.; Moretti, C.; Pavani, M.; Scacciatella, P.; Omedè, P.; Montefusco, A.; Biondi-Zoccai, G.; Gaita, F.; et al. Outcomes of patients with low-pressure aortic gradient undergoing transcatheter aortic valve implantation: A Meta-analysis. Catheter. Cardiovasc. Interv. 2017, 89, 1100–1106. [Google Scholar] [CrossRef]
- Conrotto, F.; D’Ascenzo, F.; Stella, P.; Pavani, M.; Rossi, M.L.; Brambilla, N.; Napodano, M.; Covolo, E.; Saia, F.; Tarantini, G.; et al. Transcatheter aortic valve implantation in low ejection fraction/low transvalvular gradient patients: The rule of 40. J. Cardiovasc Med. (Hagerstown) 2017, 18, 103–108. [Google Scholar] [CrossRef]
- Penso, M.; Pepi, M.; Fusini, L.; Muratori, M.; Cefalù, C.; Mantegazza, V.; Gripari, P.; Ali, S.; Fabbiocchi, F.; Bartorelli, A.; et al. Predicting Long-Term Mortality in TAVI Patients Using Machine Learning Techniques. J. Cardiovasc. Dev. Dis. 2021, 8, 44. [Google Scholar] [CrossRef]
- Afshar, A.H.; Pourafkari, L.; Nader, N.D. Periprocedural considerations of transcatheter aortic valve implantation for anesthesiologists. J. Cardiovasc. Thorac. Res. 2016, 8, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Conrotto, F.; Salizzoni, S.; Andreis, A.; D’Ascenzo, F.; D’Onofrio, A.; Agrifoglio, M.; Chieffo, A.; Colombo, A.; Rapetto, F.; Santini, F.; et al. Transcatheter Aortic Valve Implantation in Patients with Advanced Chronic Kidney Disease. Am. J. Cardiol. 2017, 119, 1438–1442. [Google Scholar] [CrossRef] [PubMed]
- Van Der Boon, R.M.; Marcheix, B.; Tchetche, D.; Chieffo, A.; Van Mieghem, N.M.; Dumonteil, N.; Vahdat, O.; Maisano, F.; Serruys, P.W.; Kappetein, A.P.; et al. Transapical versus transfemoral aortic valve implantation: A multicenter collaborative study. Ann. Thorac. Surg. 2014, 97, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Schymik, G.; Würth, A.; Bramlage, P.; Herbinger, T.; Heimeshoff, M.; Pilz, L.; Schymik, J.S.; Wondraschek, R.; Süselbeck, T.; Gerhardus, J.; et al. Long-Term Results of Transapical Versus Transfemoral TAVI in a Real World Population of 1000 Patients With Severe Symptomatic Aortic Stenosis. Circ. Cardiovasc. Interv. 2015, 8, e000761. [Google Scholar] [CrossRef] [Green Version]
- Pascual, I.; Carro, A.; Avanzas, P.; Hernandez-Vaquero, D.; Díaz, R.; Rozado, J.; Lorca, R.; Martín, M.; Silva, J.; Morís, C. Vascular approaches for transcatheter aortic valve implantation. J. Thorac. Dis. 2017, 9, S478–S487. [Google Scholar] [CrossRef] [Green Version]
Combined Access | TF-TAVR | TA-TAVR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Futile | Non-Futile | Futile | Non-Futile | |||||||
Demographics | ||||||||||
n = 532 | n = 32 | n = 234 | n = 59 | n = 207 | ||||||
Age, median (MAD) | 82 | (5.9) | 84.5 | (5.2) | 83 | (5.9) | 83 | (7.4) | 80 | (7.4) |
Female, n (%) | 335 | (63) | 19 | (59.4) | 153 | (65.4) | 33 | (55.9) | 130 | (62.8) |
Body mass index kg/m2, median (MAD) | 25.8 | (4.7) | 26.2 | (5.4) | 25.9 | (4.4) | 24.8 | (4.9) | 26.1 | (4.9) |
Risk profile | ||||||||||
Logistic EuroSCORE, median (MAD) | 15.1 | (9.2) | 13.6 | (6.5) | 14.5 | (8.4) | 19.3 | (11.8) | 15.5 | (10.4) |
EuroSCORE II, median (MAD) | 4.6 | (3.2) | 4.8 | (2.3) | 4.3 | (2.9) | 6.6 | (3.7) | 4.6 | (3.5) |
Incremental risk score, median (MAD) | 6 | (8.9) | 9.5 | (9.6) | 6.2 | (9.1) | 7 | (10.4) | 5 | (7.4) |
Chronic health conditions and risk factors ordered by its frequency | ||||||||||
Hypertension, n (%) | 467 | (87.8) | 30 | (93.8) | 205 | (87.6) | 53 | (89.8) | 179 | (86.5) |
Dyslipidaemia, n (%) | 320 | (60.2) | 19 | (59.4) | 123 | (52.6) | 43 | (72.9) | 135 | (65.2) |
Renal impairment eGFR < 60 mL/min/1.73 m2, n (%) | 296 | (55.6) | 16 | (50) | 129 | (55.1) | 34 | (57.6) | 117 | (56.5) |
Coronary artery disease, n (%) | 267 | (50.2) | 14 | (43.8) | 115 | (49.1) | 33 | (55.9) | 105 | (50.7) |
Prior PCI, n (%) | 165 | (31) | 10 | (31.2) | 70 | (29.9) | 20 | (33.9) | 65 | (31.4) |
Atrial fibrillation, n (%) | 163 | (30.6) | 11 | (34.4) | 67 | (28.6) | 17 | (28.8) | 68 | (32.9) |
Peripheral vascular disease, n (%) | 106 | (19.9) | 3 | (9.4) | 24 | (10.3) | 24 | (40.7) | 55 | (26.6) |
Diabetes mellitus (IDDM), n (%) | 91 | (17.1) | 5 | (15.6) | 38 | (16.2) | 13 | (22) | 35 | (16.9) |
Prior myocardial infarction, n (%) | 89 | (16.7) | 5 | (15.6) | 29 | (12.4) | 13 | (22) | 42 | (20.3) |
Permanent pacemaker, n (%) | 85 | (16) | 7 | (21.9) | 48 | (20.5) | 10 | (16.9) | 20 | (9.7) |
Previous CABG, n (%) | 84 | (15.8) | 5 | (15.6) | 30 | (12.8) | 11 | (18.6) | 38 | (18.4) |
Cerebrovascular disease, n (%) | 83 | (15.6) | 4 | (12.5) | 27 | (11.5) | 20 | (33.9) | 32 | (15.5) |
Cerebrovascular accident, n (%) | 70 | (13.2) | 4 | (12.5) | 34 | (14.5) | 9 | (15.3) | 23 | (11.1) |
COPD, n (%) | 66 | (12.4) | 4 | (12.5) | 15 | (6.4) | 14 | (23.7) | 33 | (15.9) |
Previous valve surgery, n (%) | 50 | (9.4) | 1 | (3.1) | 26 | (11.1) | 5 | (8.5) | 18 | (8.7) |
Liver cirrhosis, n (%) | 28 | (5.3) | 3 | (9.4) | 7 | (3) | 4 | (6.8) | 14 | (6.8) |
Home oxygen dependence, n (%) | 8 | (1.5) | 1 | (3.1) | 4 | (1.7) | 3 | (5.1) | 0 | (0) |
Wheel chair dependency, n(%) | 5 | (0.9) | 2 | (6.2) | 3 | (1.3) | 0 | (0) | 0 | (0) |
Renal replacement therapy, n (%) | 4 | (0.8) | 0 | (0) | 0 | (0) | 1 | (1.7) | 3 | (1.4) |
Creatinine mg/dL, median (MAD) | 1.1 | (0.4) | 1.2 | (0.5) | 1.1 | (0.4) | 1.2 | (0.4) | 1.1 | (0.3) |
Preinterventional echocardiographic data | ||||||||||
Low-flow–low-gradient stenosis, n (%) | 77 | (14.5) | 6 | (18.8) | 29 | (12.4) | 12 | (20.3) | 30 | (14.5) |
Aortic valve area, median (MAD) | 0.7 | (0.1) | 0.7 | (0.1) | 0.7 | (0.1) | 0.7 | (0.3) | 0.7 | (0.1) |
Mean pressure gradient, median (MAD) | 45 | (14.8) | 43 | (11.9) | 45.5 | (13.3) | 43.5 | (15.6) | 45 | (17.8) |
Max. pressure gradient, median (MAD) | 69 | (20.8) | 67 | (16.3) | 71 | (19.3) | 68.2 | (25.6) | 69 | (22.2) |
Peak velocity m/sec, median (MAD) | 4.1 | (0.6) | 4 | (0.5) | 4.1 | (0.6) | 4 | (0.6) | 4 | (0.7) |
LVEF %, median (MAD) | 55 | (7.4) | 60 | (0) | 60 | (0) | 55 | (7.4) | 55 | (7.4) |
Combined Access | TF-TAVR | TA-TAVR | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | HR | 95% CI | p-Value | ||||
Demographics | ||||||||||||
Transapical access | 1.9 | 1.2 | 2.9 | 0.003 | ||||||||
Age | 1.014 | 0.985 | 1.045 | 0.345 | 1.019 | 0.961 | 1.08 | 0.535 | 1.027 | 0.991 | 1.064 | 0.145 |
Male gender | 1.29 | 0.852 | 1.954 | 0.23 | 1.26 | 0.622 | 2.552 | 0.52 | 1.266 | 0.757 | 2.116 | 0.369 |
Body mass index | 0.988 | 0.948 | 1.03 | 0.56 | 1.019 | 0.955 | 1.088 | 0.565 | 0.967 | 0.916 | 1.021 | 0.227 |
Risk profile | ||||||||||||
Logistic EuroSCORE | 1.014 | 0.999 | 1.029 | 0.075 | 0.985 | 0.953 | 1.019 | 0.384 | 1.024 | 1.007 | 1.041 | 0.006 |
EuroSCORE II | 1.039 | 1.002 | 1.078 | 0.039 | 0.972 | 0.894 | 1.058 | 0.514 | 1.069 | 1.024 | 1.116 | 0.003 |
Incremental risk score | 1.008 | 0.986 | 1.03 | 0.5 | 1.003 | 0.966 | 1.042 | 0.876 | 1.011 | 0.985 | 1.038 | 0.414 |
Chronic health conditions and risk factors ordered by its frequency as in Table 1 | ||||||||||||
Hypertension | 1.468 | 0.711 | 3.034 | 0.299 | 1.991 | 0.476 | 8.331 | 0.346 | 1.324 | 0.569 | 3.08 | 0.515 |
Dyslipidaemia | 1.455 | 0.936 | 2.262 | 0.095 | 1.312 | 0.648 | 2.656 | 0.451 | 1.348 | 0.759 | 2.393 | 0.308 |
Renal impairment | 0.962 | 0.636 | 1.453 | 0.853 | 0.82 | 0.41 | 1.639 | 0.574 | 1.033 | 0.616 | 1.731 | 0.903 |
Coronary artery disease | 1.06 | 0.703 | 1.6 | 0.779 | 0.793 | 0.395 | 1.595 | 0.516 | 1.229 | 0.735 | 2.054 | 0.433 |
Prior PCI | 1.091 | 0.705 | 1.689 | 0.696 | 1.023 | 0.484 | 2.16 | 0.953 | 1.122 | 0.655 | 1.924 | 0.675 |
Atrial fibrillation | 1.008 | 0.646 | 1.573 | 0.973 | 1.259 | 0.607 | 2.612 | 0.535 | 0.861 | 0.49 | 1.512 | 0.602 |
Peripheral vascular disease | 1.765 | 1.126 | 2.768 | 0.013 | 0.906 | 0.276 | 2.975 | 0.871 | 1.719 | 1.022 | 2.89 | 0.041 |
Diabetes mellitus | 1.223 | 0.730 | 2.049 | 0.444 | 0.979 | 0.377 | 2.542 | 0.965 | 1.315 | 0.711 | 2.435 | 0.383 |
Prior myocardial infarction | 1.245 | 0.743 | 2.085 | 0.406 | 1.236 | 0.476 | 3.208 | 0.664 | 1.114 | 0.602 | 2.061 | 0.732 |
Permanent pacemaker | 1.215 | 0.717 | 2.058 | 0.47 | 1.101 | 0.476 | 2.545 | 0.822 | 1.591 | 0.806 | 3.142 | 0.181 |
Previous CABG | 1.141 | 0.665 | 1.958 | 0.632 | 1.229 | 0.473 | 3.191 | 0.672 | 1.01 | 0.525 | 1.945 | 0.976 |
Cerebrovascular disease | 2.042 | 1.281 | 3.256 | 0.003 | 1.076 | 0.377 | 3.066 | 0.892 | 2.322 | 1.354 | 3.982 | 0.002 |
Cerebrovascular accident | 1.132 | 0.629 | 2.035 | 0.68 | 0.855 | 0.3 | 2.439 | 0.77 | 1.417 | 0.697 | 2.882 | 0.336 |
COPD | 1.744 | 1.041 | 2.921 | 0.035 | 1.862 | 0.653 | 5.31 | 0.245 | 1.432 | 0.786 | 2.609 | 0.241 |
Previous valve surgery | 0.63 | 0.275 | 1.441 | 0.274 | 0.27 | 0.037 | 1.977 | 0.197 | 0.889 | 0.356 | 2.222 | 0.801 |
Liver cirrhosis | 1.545 | 0.715 | 3.34 | 0.269 | 2.564 | 0.781 | 8.417 | 0.121 | 1.057 | 0.383 | 2.917 | 0.915 |
Home oxygen dependence | 3.294 | 1.208 | 8.983 | 0.020 | 1.695 | 0.231 | 12.415 | 0.604 | 6.334 | 1.963 | 20.438 | 0.002 |
Wheel chair dependency | 3.402 | 0.838 | 13.818 | 0.087 | 4.976 | 1.188 | 20.844 | 0.028 | ||||
Renal replacement therapy | 1.614 | 0.225 | 11.584 | 0.634 | 1.235 | 0.171 | 8.914 | 0.835 | ||||
Creatinine mg/dL | 1.221 | 0.959 | 1.555 | 0.105 | 1.184 | 0.634 | 2.212 | 0.596 | 1.186 | 0.917 | 1.534 | 0.193 |
Preinterventional echocardiographic data | ||||||||||||
Aortic valve area | 2.798 | 0.812 | 9.64 | 0.103 | 3.07 | 0.408 | 23.085 | 0.276 | 2.219 | 0.454 | 10.839 | 0.325 |
Mean pressure gradient | 0.986 | 0.974 | 0.998 | 0.020 | 0.983 | 0.959 | 1.008 | 0.175 | 0.989 | 0.977 | 1.003 | 0.113 |
Max. pressure gradient | 0.988 | 0.979 | 0.997 | 0.009 | 0.987 | 0.97 | 1.005 | 0.156 | 0.99 | 0.98 | 1 | 0.051 |
Peak velocity m/sec | 0.841 | 0.659 | 1.072 | 0.161 | 0.871 | 0.576 | 1.316 | 0.511 | 0.841 | 0.621 | 1.139 | 0.262 |
LVEF % | 0.988 | 0.971 | 1.006 | 0.186 | 1.003 | 0.974 | 1.034 | 0.826 | 0.981 | 0.959 | 1.004 | 0.107 |
Low-flow–low-gradient stenosis | 1.509 | 0.901 | 2.528 | 0.118 | 1.581 | 0.651 | 3.842 | 0.312 | 1.397 | 0.741 | 2.633 | 0.302 |
Combined Access | TF-TAVR | TA-TAVR | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | HR | 95% CI | p-Value | ||||
Dichotomic parameters | ||||||||||||
Predillatation necessary | 1.469 | 0.909 | 2.374 | 0.116 | 1.448 | 0.508 | 4.127 | 0.489 | 2.046 | 1.175 | 3.561 | 0.011 |
Balloon expanding valve | 1.091 | 0.723 | 1.647 | 0.677 | 1.085 | 0.502 | 2.346 | 0.835 | 0.629 | 0.367 | 1.079 | 0.092 |
Postdillatation necessary | 1.322 | 0.805 | 2.171 | 0.271 | 0.872 | 0.336 | 2.265 | 0.779 | 1.61 | 0.896 | 2.893 | 0.111 |
Conversion to open surgery | 7.023 | 3.066 | 16.083 | <0.001 | 0 | 0 | Inf | 0.998 | 7.166 | 3.075 | 16.697 | <0.001 |
Unplanned V-i-V implantation | 0 | 0 | Inf | 0.995 | 0 | 0 | Inf | 0.996 | 0 | 0 | Inf | 0.995 |
Interval scaled parameters | ||||||||||||
Prosthesis size | 0.955 | 0.872 | 1.046 | 0.319 | 0.981 | 0.839 | 1.148 | 0.811 | 1.045 | 0.911 | 1.199 | 0.53 |
Absorbed radiation | 1 | 1 | 1 | 0.196 | 1 | 1 | 1 | 0.844 | 1 | 1 | 1 | 0.888 |
Contrast medium dosage | 1 | 0.999 | 1.001 | 0.521 | 1.002 | 1.001 | 1.003 | <0.001 | 1 | 0.998 | 1.002 | 0.776 |
Procedure time | 1.003 | 1 | 1.006 | 0.072 | 0.999 | 0.989 | 1.01 | 0.885 | 1.003 | 1 | 1.006 | 0.037 |
Max. creatinine in 72 h | 1.126 | 0.874 | 1.451 | 0.359 | 1.026 | 0.587 | 1.793 | 0.927 | 1.124 | 0.839 | 1.506 | 0.434 |
Total hours in the ICU | 1.004 | 1.002 | 1.005 | <0.001 | 1.006 | 1.002 | 1.009 | 0.001 | 1.003 | 1.002 | 1.004 | <0.001 |
Total hours ventilated | 1.007 | 1.005 | 1.009 | <0.001 | 1.001 | 0.988 | 1.013 | 0.936 | 1.008 | 1.006 | 1.011 | <0.001 |
Length of hospital stay | 1.028 | 1.015 | 1.042 | <0.001 | 1.019 | 0.993 | 1.046 | 0.151 | 1.038 | 1.019 | 1.058 | <0.001 |
Combined access | TF-TAVR | TA-TAVR | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | HR | 95% CI | p-Value | ||||
Dichotomic parameters | ||||||||||||
Device success | 0.528 | 0.294 | 0.95 | 0.033 | 0.65 | 0.267 | 1.579 | 0.341 | 0.219 | 0.099 | 0.482 | <0.001 |
30-day combined safety endpoint | 0.117 | 0.078 | 0.178 | <0.001 | 0.095 | 0.047 | 0.19 | <0.001 | 0.135 | 0.081 | 0.226 | <0.001 |
Acute kidney injury | 1.764 | 1.083 | 2.873 | 0.023 | 1.413 | 0.611 | 3.267 | 0.419 | 2.196 | 1.205 | 4.003 | 0.01 |
New pacemaker implanted | 0.619 | 0.299 | 1.28 | 0.196 | 0.833 | 0.32 | 2.17 | 0.709 | 0.553 | 0.173 | 1.77 | 0.318 |
New AV-block III | 0.526 | 0.23 | 1.205 | 0.129 | 0.448 | 0.107 | 1.877 | 0.272 | 0.603 | 0.218 | 1.667 | 0.33 |
New atrial fibrillation | 1.927 | 1.122 | 3.309 | 0.017 | 1.389 | 0.422 | 4.569 | 0.589 | 1.905 | 1.029 | 3.528 | 0.04 |
Major bleeding complication | 4.267 | 2.657 | 6.852 | <0.001 | 6.289 | 2.82 | 14.024 | <0.001 | 3.133 | 1.742 | 5.634 | <0.001 |
Reoperation for bleeding/tamponade | 2.788 | 1.548 | 5.021 | 0.001 | 2.268 | 0.689 | 7.46 | 0.178 | 2.772 | 1.402 | 5.479 | 0.003 |
Reoperation for other cardiac problems | 1.659 | 0.903 | 3.047 | 0.103 | 1.893 | 0.776 | 4.614 | 0.161 | 1.822 | 0.783 | 4.24 | 0.164 |
Reoperation for non-cardiac problems | 2.453 | 1.387 | 4.339 | 0.002 | 1.809 | 0.432 | 7.584 | 0.417 | 2.267 | 1.202 | 4.276 | 0.011 |
Pneumonia under antibiotic treatment | 1.843 | 0.926 | 3.669 | 0.082 | 0.374 | 0.051 | 2.739 | 0.333 | 5.042 | 2.378 | 10.688 | <0.001 |
New renal replacement therapy | 6.319 | 3.352 | 11.91 | <0.001 | 2.914 | 0.696 | 12.201 | 0.143 | 9.582 | 4.636 | 19.808 | <0.001 |
Major vascular complication | 1.952 | 0.716 | 5.319 | 0.191 | 0 | 0 | Inf | 0.997 | 5.513 | 1.996 | 15.225 | 0.001 |
Neurological adverse event | 3.576 | 1.45 | 8.818 | 0.006 | 4.086 | 1.243 | 13.432 | 0.02 | 4.486 | 1.091 | 18.455 | 0.038 |
Reoperation for valvular dysfunction | 3.491 | 0.859 | 14.194 | 0.081 | 0 | 0 | Inf | 0.998 | 4.237 | 1.03 | 17.434 | 0.045 |
Myocardial infarction | 8.152 | 2.003 | 33.17 | 0.003 | 0 | 0 | Inf | 0.998 | 41.535 | 9.121 | 189.135 | <0.001 |
Interval scaled parameters post-implant | ||||||||||||
Mean gradient aortic valve | 0.955 | 0.872 | 1.046 | 0.319 | 0.981 | 0.839 | 1.148 | 0.811 | 1.045 | 0.911 | 1.199 | 0.53 |
Max. gradient aortic valve | 1 | 1 | 1 | 0.196 | 1 | 1 | 1 | 0.844 | 1 | 1 | 1 | 0.888 |
Max. flow velocity aortic valve | 1 | 0.999 | 1.001 | 0.521 | 1.002 | 1.001 | 1.003 | <0.001 | 1 | 0.998 | 1.002 | 0.776 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geisler, D.; Rudziński, P.N.; Hasan, W.; Andreas, M.; Hasimbegovic, E.; Adlbrecht, C.; Winkler, B.; Weiss, G.; Strouhal, A.; Delle-Karth, G.; et al. Identifying Patients without a Survival Benefit following Transfemoral and Transapical Transcatheter Aortic Valve Replacement. J. Clin. Med. 2021, 10, 4911. https://doi.org/10.3390/jcm10214911
Geisler D, Rudziński PN, Hasan W, Andreas M, Hasimbegovic E, Adlbrecht C, Winkler B, Weiss G, Strouhal A, Delle-Karth G, et al. Identifying Patients without a Survival Benefit following Transfemoral and Transapical Transcatheter Aortic Valve Replacement. Journal of Clinical Medicine. 2021; 10(21):4911. https://doi.org/10.3390/jcm10214911
Chicago/Turabian StyleGeisler, Daniela, Piotr Nikodem Rudziński, Waseem Hasan, Martin Andreas, Ena Hasimbegovic, Christopher Adlbrecht, Bernhard Winkler, Gabriel Weiss, Andreas Strouhal, Georg Delle-Karth, and et al. 2021. "Identifying Patients without a Survival Benefit following Transfemoral and Transapical Transcatheter Aortic Valve Replacement" Journal of Clinical Medicine 10, no. 21: 4911. https://doi.org/10.3390/jcm10214911
APA StyleGeisler, D., Rudziński, P. N., Hasan, W., Andreas, M., Hasimbegovic, E., Adlbrecht, C., Winkler, B., Weiss, G., Strouhal, A., Delle-Karth, G., Grabenwöger, M., & Mach, M. (2021). Identifying Patients without a Survival Benefit following Transfemoral and Transapical Transcatheter Aortic Valve Replacement. Journal of Clinical Medicine, 10(21), 4911. https://doi.org/10.3390/jcm10214911