miRNAs in the Expression Regulation of Dopamine-Related Genes and Proteins in Endometrial Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. RNA Extraction
2.3. Microarray Analysis
2.4. Real-Time Quantitative Reverse Transcription PCR
2.5. Enzyme-Linked Immunosorbent Assay (ELISA)
2.6. Statistical Analysis
3. Results
3.1. Dopamine-Related Gene Expression Profile in Endometrial Tissues Determined by Microarrays and qRT-PCR
3.2. Dopamine-Related Proteins in the Serum of Patients Determined by ELISA
3.3. Prediction of Dopamine-Related Gene Expression Regulation by miRNAs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olguín, H.J.; Guzmán, D.C.; García, E.H.; Mejía, G.B. The Role of Dopamine and Its Dysfunction as a Consequence of Oxidative Stress. Oxidative Med. Cell. Longev. 2016, 2016, 9730467. [Google Scholar] [CrossRef] [Green Version]
- Sobczuk, P.; Łomiak, M.; Cudnoch-Jędrzejewska, A. Dopamine D1 Receptor in Cancer. Cancers 2020, 12, 3232. [Google Scholar] [CrossRef] [PubMed]
- Kline, C.L.B.; Ralff, M.D.; Lulla, A.R.; Wagner, J.M.; Abbosh, P.H.; Dicker, D.T.; Allen, J.E.; El-Deiry, W.S. Role of Dopamine Receptors in the Anticancer Activity of ONC201. Neoplasia 2018, 20, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Rosas-Cruz, A.; Salinas-Jazmín, N.; Velázquez, M.A.V. Dopamine Receptors in Cancer: Are They Valid Therapeutic Targets? Technol. Cancer Res. Treat. 2021, 20, 15330338211027913. [Google Scholar] [CrossRef] [PubMed]
- McCutcheon, R.; Krystal, J.H.; Howes, O.D. Dopamine and glutamate in schizophrenia: Biology, symptoms and treatment. World Psychiatry 2020, 19, 15–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, X.; Kaminga, A.C.; Wen, S.W.; Wu, X.; Acheampong, K.; Liu, A. Dopamine and Dopamine Receptors in Alzheimer’s Disease: A Systematic Review and Network Meta-Analysis. Front. Aging Neurosci. 2019, 11, 175. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, D.S.; Holmes, C.; Lopez, G.J.; Wu, T.; Sharabi, Y. Cerebrospinal fluid biomarkers of central dopamine deficiency predict Parkinson’s disease. Park. Relat. Disord. 2018, 50, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.-L.; Wang, X.; Xing, J.-S.; Yu, Z.-L.; Lou, J.-C.; Ma, X.-C.; Zhang, B. Anti-cancer effects of dopamine in human glioma: Involvement of mitochondrial apoptotic and anti-inflammatory pathways. Oncotarget 2017, 8, 88488–88500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Wang, Z.-B.; Luo, C.; Mao, X.-Y.; Li, X.; Yin, J.-Y.; Zhang, W.; Zhou, H.-H.; Liu, Z.-Q. The Prospective Value of Dopamine Receptors on Bio-Behavior of Tumor. J. Cancer 2019, 10, 1622–1632. [Google Scholar] [CrossRef]
- Lee, J.-K.; Nam, D.-H.; Lee, J. Repurposing antipsychotics as glioblastoma therapeutics: Potentials and challenges. Oncol. Lett. 2016, 11, 1281–1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Rizzo, S.; Femia, M.; Buscarino, V.; Franchi, D.; Garbi, A.; Zanagnolo, V.; Del Grande, M.; Manganaro, L.; Alessi, S.; Giannitto, C.; et al. Endometrial cancer: An overview of novelties in treatment and related imaging keypoints for local staging. Cancer Imaging 2018, 18, 45. [Google Scholar] [CrossRef]
- Remmerie, M.; Janssens, V. Targeted Therapies in Type II Endometrial Cancers: Too Little, but Not Too Late. Int. J. Mol. Sci. 2018, 19, 2380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santaballa, A.; Matías-Guiu, X.; Redondo, A.; Carballo, N.; Gil, M.; Gómez, C.; Gorostidi, M.; Gutierrez, M.; Gónzalez-Martín, A. SEOM clinical guidelines for endometrial cancer (2017). Clin. Transl. Oncol. 2018, 20, 29–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helpman, L.; Kupets, R.; Covens, A.; Saad, R.S.; Khalifa, M.A.; Ismiil, N.; Ghorab, Z.; Dubé, V.; Nofech-Mozes, S. Assessment of endometrial sampling as a predictor of final surgical pathology in endometrial cancer. Br. J. Cancer 2013, 110, 609–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, S.; Shao, H.; Ban, X.; Zhang, H.; You, Y.; Zhou, N.; Mao, X.; Zhao, H.; Chen, J.; Lu, Z. Detection of POLE Subtypes in High-Grade Endometrioid Carcinoma by BaseScope-ISH Assay. Front. Oncol. 2019, 9, 831. [Google Scholar] [CrossRef] [PubMed]
- Raffone, A.; Travaglino, A.; Raimondo, D.; Boccellino, M.P.; Maletta, M.; Borghese, G.; Casadio, P.; Insabato, L.; Mollo, A.; Zullo, F.; et al. Tumor-infiltrating lymphocytes and POLE mutation in endometrial carcinoma. Gynecol. Oncol. 2021, 161, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, Z.; Shen, X.; Cui, X.; Guo, Y. Identification of novel biomarkers and small molecule drugs in human colorectal cancer by microarray and bioinformatics analysis. Mol. Genet. Genom. Med. 2019, 7, e00713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, W.; Liu, B.; Qu, S.; Liang, G.; Luo, W.; Gong, C. MicroRNAs and cancer: Key paradigms in molecular therapy (Review). Oncol. Lett. 2017, 15, 2735–2742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bray, F.; Msc, M.L.; Weiderpass, E.; Soerjomataram, I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021, 127, 3029–3030. [Google Scholar] [CrossRef] [PubMed]
- Pucci, C.; Martinelli, C.; Ciofani, G. Innovative approaches for cancer treatment: Current perspectives and new challenges. Ecancermedicalscience 2019, 13, 961. [Google Scholar] [CrossRef] [PubMed]
- Leng, Z.G.; Lin, S.J.; Wu, Z.R.; Guo, Y.H.; Cai, L.; Shang, H.B.; Tang, H.; Xue, Y.J.; Lou, M.Q.; Zhao, W.; et al. Activation of DRD5 (dopamine receptor D5) inhibits tumor growth by autophagic cell death. Autophagy 2017, 13, 1404–1419. [Google Scholar] [CrossRef]
- Lu, M.; Li, J.; Luo, Z.; Zhang, S.; Xue, S.; Wang, K.; Shi, Y.; Zhang, C.; Chen, H.; Li, Z. Roles of dopamine receptors and their antagonist thioridazine in hepatoma metastasis. OncoTargets Ther. 2015, 8, 1543–1551. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Huang, Y.; Yin, Y.; Fan, Y.; Sun, W.; Zhao, X.; Tucker, K.; Staley, A.; Paraghamian, S.; Hawkins, G.; et al. ONC206, an Imipridone Derivative, Induces Cell Death Through Activation of the Integrated Stress Response in Serous Endometrial Cancer In Vitro. Front. Oncol. 2020, 10, 577141. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; Li, X.; Li, S.; Sheng, D.; Li, W.; Song, M. MicroRNA-15a-5p promotes the proliferation and invasion of T98G glioblastoma cells via targeting cell adhesion molecule 1. Oncol. Lett. 2020, 21, 103. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.-Q.; Tang, H.; Yang, J.; Gu, X.-Y.; Wang, S.-M.; Ding, Y. MicroRNA-15a-5p down-regulation inhibits cervical cancer by targeting TP53INP1 in vitro. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 8219–8229. [Google Scholar]
- Zhou, L.; Wang, W.; Wang, F.; Yang, S.; Hu, J.; Lu, B.; Pan, Z.; Ma, Y.; Zheng, M.; Zhou, L.; et al. Plasma-derived exosomal miR-15a-5p as a promising diagnostic biomarker for early detection of endometrial carcinoma. Mol. Cancer 2021, 20, 57. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-M.; Wan, X.-H.; Sang, G.-Y.; Zhao, J.-D.; Zhu, Q.-Y.; Wang, D.-M. miR-15a-5p suppresses endometrial cancer cell growth via Wnt/β-catenin signaling pathway by inhibiting WNT3A. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 4810–4818. [Google Scholar] [PubMed]
- Pornour, M.; Ahangari, G.; Hejazi, S.H.; Ahmadkhaniha, H.R.; Akbari, M.E. Dopamine receptor gene (DRD1-DRD5) expression changes as stress factors associated with breast cancer. Asian Pac. J. Cancer Prev. 2015, 15, 10339–10343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, M.; Yu, T.; Hu, J.; Hu, L. Dopamine D2 receptor blocker thioridazine induces cell death in human uterine cervical carcinoma cell line SiHa. J. Obstet. Gynaecol. Res. 2015, 41, 1240–1245. [Google Scholar] [CrossRef] [PubMed]
- Hoeppner, L.H.; Wang, Y.; Sharma, A.; Javeed, N.; Van Keulen, V.P.; Wang, E.; Yang, P.; Roden, A.C.; Peikert, T.; Molina, J.R.; et al. Dopamine D2 receptor agonists inhibit lung cancer progression by reducing angiogenesis and tumor infiltrating myeloid derived suppressor cells. Mol. Oncol. 2014, 9, 270–281. [Google Scholar] [CrossRef] [PubMed]
- Williford, S.E.; Libby, C.J.; Ayokanmbi, A.; Otamias, A.; Gordillo, J.J.; Gordon, E.R.; Cooper, S.J.; Redmann, M.; Li, Y.; Griguer, C.; et al. Novel dopamine receptor 3 antagonists inhibit the growth of primary and temozolomide resistant glioblastoma cells. PLoS ONE 2021, 16, e0250649. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Li, P.; Liu, W.; Lu, Z.; Feng, J.; Zeng, X.; Yang, J.; Zhao, W. miR-141-3p suppresses proliferation and promotes apoptosis by targeting GLI2 in osteosarcoma cells. Oncol. Rep. 2017, 39, 747–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Z.; Li, X.; Liu, S.; Li, C.; Wang, X.; Xing, J. MiR-141–3p inhibits cell proliferation, migration and invasion by targeting TRAF5 in colorectal cancer. Biochem. Biophys. Res. Commun. 2019, 514, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.-J.; Gao, L.; Guo, Y.-N.; Liang, Z.-Q.; Li, D.-M.; Tang, Y.-L.; Liu, Y.-H.; Gao, W.-J.; Zeng, J.-J.; Shi, L.; et al. Upregulation of microRNA miR-141-3p and its prospective targets in endometrial carcinoma: A comprehensive study. Bioengineered 2021, 12, 2941–2956. [Google Scholar] [CrossRef]
- Liu, X.; Niu, N.; Li, P.; Zhai, L.; Xiao, K.; Chen, W.; Zhuang, X. LncRNA OGFRP1 acts as an oncogene in NSCLC via miR-4640-5p/eIF5A axis. Cancer Cell Int. 2021, 21, 425. [Google Scholar] [CrossRef] [PubMed]
- Shao, N.; Ma, G.; Zhang, J.; Zhu, W. miR-221-5p enhances cell proliferation and metastasis through post-transcriptional regulation of SOCS1 in human prostate cancer. BMC Urol. 2018, 18, 14. [Google Scholar] [CrossRef] [Green Version]
- Veer, A.V.; Carlezon, W.A. Role of kappa-opioid receptors in stress and anxiety-related behavior. Psychopharmacology 2013, 229, 435–452. [Google Scholar] [CrossRef]
- Sherman, S.K.; Carr, J.C.; Wang, D.; O’Dorisio, M.S.; O’Dorisio, T.M.; Howe, J.R. Gastric inhibitory polypeptide receptor (GIPR) is a promising target for imaging and therapy in neuroendocrine tumors. Surgery 2013, 154, 1206–1214. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, H.; Shuman, L.; Warrick, J.I.; Raman, J.D.; DeGraff, D.J. Androgen represses opioid growth factor receptor (OGFR) in human prostate cancer LNCaP cells and OGFR expression in human prostate cancer tissue. Am. J. Clin. Exp. Urol. 2018, 6, 164–171. [Google Scholar]
- Fu, W.; Wu, X.; Yang, Z.; Mi, H. The effect of miR-124-3p on cell proliferation and apoptosis in bladder cancer by targeting EDNRB. Arch. Med Sci. 2019, 15, 1154–1162. [Google Scholar] [CrossRef]
- Wu, Q.; Zhong, H.; Jiao, L.; Wen, Y.; Zhou, Y.; Zhou, J.; Lu, X.; Song, X.; Ying, B. MiR-124-3p inhibits the migration and invasion of Gastric cancer by targeting ITGB3. Pathol.-Res. Pract. 2020, 216, 152762. [Google Scholar] [CrossRef] [PubMed]
- Dumas, J.A.; Makarewicz, J.A.; Bunn, J.; Nickerson, J.; McGee, E. Dopamine-dependent cognitive processes after menopause: The relationship between COMT genotype, estradiol, and working memory. Neurobiol. Aging 2018, 72, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Gao, Y.; Zeng, K.; Yin, Y.; Zhao, M.; Wei, J.; Chen, Q. The levels of the sex hormones are not different between type 1 and type 2 endometrial cancer. Sci. Rep. 2016, 6, 39744. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Singh, G.; Rai, V. Evaluation of COMT Gene rs4680 Polymorphism as a Risk Factor for Endometrial Cancer. Indian J. Clin. Biochem. 2020, 35, 63–71. [Google Scholar] [CrossRef]
- Salama, S.A.; Kamel, M.; Awad, M.; Ben Nasser, A.; Al-Hendy, A.; Botting, S.; Arrastia, C. Catecholestrogens induce oxidative stress and malignant transformation in human endometrial glandular cells: Protective effect of catechol-O-methyltransferase. Int. J. Cancer 2008, 123, 1246–1254. [Google Scholar] [CrossRef] [PubMed]
- Salih, S.M.; Salama, S.A.; Jamaluddin, M.; Fadl, A.A.; Blok, L.J.; Burger, C.W.; Nagamani, M.; Al-Hendy, A. Progesterone-Mediated Regulation of Catechol-O-Methyl Transferase Expression in Endometrial Cancer Cells. Reprod. Sci. 2008, 15, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Edman, L.C.; Sánchez-Alcañiz, J.A.; Fritz, N.; Bonilla, S.; Hecht, J.; Uhlén, P.; Pleasure, S.J.; Villaescusa, J.C.; Marin, O.; et al. Cxcl12/Cxcr4 signaling controls the migration and process orientation of A9-A10 dopaminergic neurons. Development 2013, 140, 4554–4564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodea, G.O.; Spille, J.-H.; Abe, P.; Andersson, A.S.; Acker-Palmer, A.; Stumm, R.; Kubitscheck, U.; Blaess, S. Reelin and CXCL12 regulate distinct migratory behaviors during the development of the dopaminergic system. Development 2014, 141, 661–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samarendra, H.; Jones, K.; Petrinic, T.; Silva, M.A.; Reddy, S.; Soonawalla, Z.; Gordon-Weeks, A. A meta-analysis of CXCL12 expression for cancer prognosis. Br. J. Cancer 2017, 117, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Riese, D.J.I.; Shen, J. The Role of the CXCL12/CXCR4/CXCR7 Chemokine Axis in Cancer. Front. Pharmacol. 2020, 11, 574667. [Google Scholar] [CrossRef] [PubMed]
- Gelmini, S.; Mangoni, M.; Castiglione, F.; Beltrami, C.; Pieralli, A.; Andersson, K.L.; Fambrini, M.; Taddei, G.L.; Serio, M.; Orlando, C. The CXCR4/CXCL12 axis in endometrial cancer. Clin. Exp. Metastasis 2009, 26, 261–268. [Google Scholar] [CrossRef]
- Liu, P.; Long, P.; Huang, Y.; Sun, F.; Wang, Z. CXCL12/CXCR4 axis induces proliferation and invasion in human endometrial cancer. Am. J. Transl. Res. 2016, 8, 1719–1729. [Google Scholar] [PubMed]
- Teng, F.; Tian, W.-Y.; Wang, Y.-M.; Zhang, Y.-F.; Guo, F.; Zhao, J.; Gao, C.; Xue, F.-X. Cancer-associated fibroblasts promote the progression of endometrial cancer via the SDF-1/CXCR4 axis. J. Hematol. Oncol. 2016, 9, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felix, A.S.; Stone, R.A.; Chivukula, M.; Bowser, R.; Parwani, A.; Linkov, F.; Edwards, R.P.; Weissfeld, J.L. Survival outcomes in endometrial cancer patients are associated with CXCL12 and estrogen receptor expression. Int. J. Cancer 2011, 131, E114–E121. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Gao, Y.; Gao, S.; Song, D.; Feng, Y. MiR-135b-5p promotes viability, proliferation, migration and invasion of gastric cancer cells by targeting Krüppel-like factor 4 (KLF4). Arch. Med. Sci. 2020, 16, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Saiyin, H.; Zhao, J.; Fang, Y.; Rong, Y.; Shi, C.; Lou, W.; Kuang, T. Overexpression of miR-135b-5p promotes unfavorable clinical characteristics and poor prognosis via the repression of SFRP4 in pancreatic cancer. Oncotarget 2017, 8, 62195–62207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.-W.; Chang, Y.-L.; Chang, Y.-C.; Lin, J.-C.; Chen, C.-C.; Pan, S.-H.; Wu, C.-T.; Chen, H.-Y.; Yang, S.-C.; Hong, T.-M.; et al. MicroRNA-135b promotes lung cancer metastasis by regulating multiple targets in the Hippo pathway and LZTS1. Nat. Commun. 2013, 4, 1877. [Google Scholar] [CrossRef] [Green Version]
- Pu, T.; Shen, M.; Li, S.; Yang, L.; Gao, H.; Xiao, L.; Zhong, X.; Zheng, H.; Liu, Y.; Ye, F.; et al. Repression of miR-135b-5p promotes metastasis of early-stage breast cancer by regulating downstream target SDCBP. Lab. Investig. 2019, 99, 1296–1308. [Google Scholar] [CrossRef]
- Tsukamoto, O.; Miura, K.; Mishima, H.; Abe, S.; Kaneuchi, M.; Higashijima, A.; Miura, S.; Kinoshita, A.; Yoshiura, K.-I.; Masuzaki, H. Identification of endometrioid endometrial carcinoma-associated microRNAs in tissue and plasma. Gynecol. Oncol. 2014, 132, 715–721. [Google Scholar] [CrossRef]
- Torres, A.; Torres, K.; Pesci, A.; Ceccaroni, M.; Paszkowski, T.; Cassandrini, P.; Zamboni, G.; Maciejewski, R. Diagnostic and prognostic significance of miRNA signatures in tissues and plasma of endometrioid endometrial carcinoma patients. Int. J. Cancer 2013, 132, 1633–1645. [Google Scholar] [CrossRef] [PubMed]
ID | Gene | mRNA Microarrays | qRT-PCR | ||||
---|---|---|---|---|---|---|---|
G1 vs. C | G2 vs. C | G3 vs. C | G1 vs. C | G2 vs. C | G3 vs. C | ||
203666_at | CXCL12 | 8.59 * | 10.02 * | 11.45 * | 9.54 * | 10.36 * | 12.54 * |
206355_at | GNAL | 5.08 * | 7.77 * | 8.98 * | 5.14 * | 6.98 * | 9.14 * |
206356_s_at | GNAL | 4.98 * | 7.54 * | 9.01 * | |||
207553_at | OPRK1 | 2.14 * | 9.52 * | 15.08 * | 1.52 * | 8.41 * | 16.36 * |
208486_at | DRD5 | −4.25 * | −3.69 * | −4.87 * | −4.65 * | −4.01 * | −4.30 * |
208817_at | COMT | −8.54 * | −9.11 * | −9.66 * | −8.54 * | −9.74 * | −10.25 * |
208818_s_at | COMT | −8.41 * | −9.36 * | −9.95 * | |||
211624_s_at | DRD2 | 8.41 * | 12.36 * | 14.99 * | 8.41 * | 12.65 * | 15.47 * |
216924_s_at | DRD2 | 8.47 * | 12.25 * | 15.03 * | |||
216938_x_at | DRD2 | 8.42 * | 12.54 * | 14.74 * | |||
211625_s_at | DRD3 | 10.25 * | 11.98 * | 19.58 * | 10.66 * | 12.54 * | 21.99 * |
214559_at | DRD3 | 10.33 * | 12.06 * | 21.01 * |
Proteins (pg/mL) | Group | |||
---|---|---|---|---|
C | G1 | G2 | G3 | |
CXCL12 | 654.21 ± 2.36 | 1452.36 ± 3.65 * | 2987.25 ± 1.69 * | 4874.6 ± 2.65 * |
OPRK1 | 3.68 ± 0.65 | 4.96 ± 0.98 * | 5.77 ± 1.14 * | 8.01 ± 0.54 * |
DRD5 | 4.58 ± 0.85 | 2.01 ± 0.74 * | 0.89 ± 0.11 * | 0.66 ± 0.36 * |
COMT | 3.11 ± 0.22 | 1.54 ± 021 * | 0.88 ± 0.098 * | 0.74 ± 0.14 * |
DRD2 | 4.54 ± 0.55 | 8.14 ± 0.74 * | 12.55 ± 1.33 * | 14.09 ± 1.69 * |
DRD3 | 4.66 ± 0.47 | 7.96 ± 0.98 * | 11.54 ± 1.06 * | 13.96 ± 1.11 * |
mRNA | miRNA | miRNA Microarrays | ||
---|---|---|---|---|
G1 vs. C | G2 vs. C | G3 vs. C | ||
CXCL12 | hsa-miR−135b-5p | 1.77 * | 1.89 * | 1.55 * |
OPRK1 | hsa-miR-124-3p.1 | −2.01 * | −2.14 * | 1.66 * |
DRD5 | hsa-miR-15a-5p | −1.01 * | 4.74 * | 2.01 * |
DRD2 | hsa-miR-141-3p | −2.69 * | −2.54 * | −3.01 * |
DRD3 | hsa-miR-4640-5p hsa-miR-221-5p | −3.01 * 2.51 * | 1.02 * 2.77 * | 1.44 * 1.25 * |
COMT | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czerwiński, M.; Bednarska-Czerwińska, A.; Zmarzły, N.; Boroń, D.; Oplawski, M.; Grabarek, B.O. miRNAs in the Expression Regulation of Dopamine-Related Genes and Proteins in Endometrial Cancer. J. Clin. Med. 2021, 10, 4939. https://doi.org/10.3390/jcm10214939
Czerwiński M, Bednarska-Czerwińska A, Zmarzły N, Boroń D, Oplawski M, Grabarek BO. miRNAs in the Expression Regulation of Dopamine-Related Genes and Proteins in Endometrial Cancer. Journal of Clinical Medicine. 2021; 10(21):4939. https://doi.org/10.3390/jcm10214939
Chicago/Turabian StyleCzerwiński, Michał, Anna Bednarska-Czerwińska, Nikola Zmarzły, Dariusz Boroń, Marcin Oplawski, and Beniamin Oskar Grabarek. 2021. "miRNAs in the Expression Regulation of Dopamine-Related Genes and Proteins in Endometrial Cancer" Journal of Clinical Medicine 10, no. 21: 4939. https://doi.org/10.3390/jcm10214939
APA StyleCzerwiński, M., Bednarska-Czerwińska, A., Zmarzły, N., Boroń, D., Oplawski, M., & Grabarek, B. O. (2021). miRNAs in the Expression Regulation of Dopamine-Related Genes and Proteins in Endometrial Cancer. Journal of Clinical Medicine, 10(21), 4939. https://doi.org/10.3390/jcm10214939