Single, Double and Triple Blockade of RAAS in Alport Syndrome: Different Tools to Freeze the Evolution of the Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
- Patients with a diagnosis of AS based on the presence of persistent glomerular hematuria associated with at least 2 of the following:
- -
- One or more pathogenic variants in COL4A3, COL4A4, and/or COL4A5 genes;
- -
- Kidney biopsy suggestive for AS: electron microscopy showing lamellated GBM and/or thinning and thickening of GBM and/or basket weave lesions and/or associated glomerular sclerosis;
- -
- Family history for AS;
- -
- Sensory-neural hearing loss;
- Age at onset of treatment <18 years;
- Presence of proteinuria (see Methods section);
- Follow-up greater than 12 months from the introduction of each RAAS blocker.
2.2. Methods
Statistical Analysis
3. Results
3.1. Patient Population
3.2. Proteinuria
3.3. Renal Function
3.4. Safety
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mallett, A.; Tang, W.; Clayton, P.A.; Stevenson, S.; McDonald, S.P.; Hawley, C.; Badve, S.; Boudville, N.; Brown, F.G.; Campbell, S.B.; et al. End-stage kidney disease due to Alport syndrome: Outcomes in 296 consecutive Australia and New Zealand Dialysis and Transplant Registry cases. Nephrol. Dial. Transpl. 2014, 29, 2277–2286. [Google Scholar] [CrossRef] [Green Version]
- Hattori, M.; Sako, M.; Kaneko, T.; Ashida, A.; Matsunaga, A.; Igarashi, T.; Itami, N.; Ohta, T.; Gotoh, Y.; Satomura, K.; et al. End-stage renal disease in Japanese children: A nationwide survey during 2006–2011. Clin. Exp. Nephrol. 2015, 19, 933–938. [Google Scholar] [CrossRef]
- Nozu, K.; Nakanishi, K.; Abe, Y.; Udagawa, T.; Okada, S.; Okamoto, T.; Kaito, H.; Kanemoto, K.; Kobayashi, A.; Tanaka, E.; et al. A review of clinical characteristics and genetic backgrounds in Alport syndrome. Clin. Exp. Nephrol. 2019, 23, 158–168. [Google Scholar] [CrossRef] [Green Version]
- Savige, J. Alport syndrome: Its effects on the glomerular filtration barrier and implications for future treatment. J. Physiol. 2014, 592, 4013–4023. [Google Scholar] [CrossRef]
- Gross, O.; Perin, L.; Deltas, C. Alport syndrome from bench to bedside: The potential of current treatment beyond RAAS blockade and the horizon of future therapies. Nephrol. Dial. Transpl. 2014, 29 (Suppl. 4), 124–130. [Google Scholar] [CrossRef] [Green Version]
- ESCAPE Trial Group; Wühl, E.; Trivelli, A.; Picca, S.; Litwin, M.; Peco-Antic, A.; Zurowska, A.; Testa, S.; Jankauskiene, A.; Emre, S.; et al. Strict blood-pressure control and progression of renal failure in children. N. Engl. J. Med. 2009, 361, 1639–1650. [Google Scholar]
- Stotter, B.R.; Ferguson, M.A. Should ACE inhibitors and ARBs be used in combination in children? Pediatric Nephrol. 2019, 34, 1521–1532. [Google Scholar] [CrossRef]
- Webb, N.J.A.; Shahinfar, S.; Wells, T.G.; Massaad, R.; Gleim, G.W.; Sisk, C.M.; Lam, C. Losartan and enalapril are comparable in reducing proteinuria in children with Alport syndrome. Pediatric Nephrol. 2013, 28, 737–743. [Google Scholar] [CrossRef]
- Webb, N.J.; Lam, C.; Shahinfar, S.; Strehlau, J.; Wells, T.G.; Gleim, G.W.; Tilleghem, C.L.B.D. Efficacy and safety of losartan in children with Alport syndrome—Results from a subgroup analysis of a prospective, randomized, placebo- or amlodipine-controlled trial. Nephrol. Dial. Transpl. 2011, 26, 2521–2526. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, F.; Ding, J.; Zhang, H.; Liu, X.; Wang, S.; Xiao, H.; Yao, Y.; Liu, J.; Zhong, X.; et al. Long-term treatment by ACE inhibitors and angiotensin receptor blockers in children with Alport syndrome. Pediatric Nephrol. 2016, 31, 67–72. [Google Scholar] [CrossRef]
- Kaito, H.; Nozu, K.; Iijima, K.; Nakanishi, K.; Yoshiya, K.; Kanda, K.; Krol, R.P.; Yoshikawa, N.; Matsuo, M. The effect of aldosterone blockade in patients with Alport syndrome. Pediatric Nephrol. 2006, 21, 1824–1829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González Monte, E.; Andrés, A.; Polanco, N.; Toribio, M.J.; Santana, R.; Gutiérrez Martínez, E.; González, J.; Ramírez, E.; Hernández, A.; Morales, E.; et al. Addition of spironolactone to dual blockade of renin angiotensin system dramatically reduces severe proteinuria in renal transplant patients: An uncontrolled pilot study at 6 months. Transpl. Proc. 2010, 42, 2899–2901. [Google Scholar] [CrossRef]
- Giani, M.; Mastrangelo, A.; Villa, R.; Turolo, S.; Marra, G.; Tirelli, A.S.; Hopfer, H.; Edefonti, A. Alport syndrome: The effects of spironolactone on proteinuria and urinary TGF-β1. Pediatric Nephrol. 2013, 28, 1837–1842. [Google Scholar] [CrossRef] [PubMed]
- Hogg, R.J.; Portman, R.J.; Milliner, D.; Lemley, K.V.; Eddy, A.; Ingelfinger, J. Evaluation and management of proteinuria and nephrotic syndrome in children: Recommendations from a pediatric nephrology panel established at the National Kidney Foundation conference on proteinuria, albuminuria, risk, assessment, detection, and elimination (PARADE). Pediatrics 2000, 105, 1242–1249. [Google Scholar]
- Gross, O.; Licht, C.; Anders, H.-J.; Hoppe, B.; Beck, B.; Tönshoff, B.; Höcker, B.; Wygoda, S.; Ehrich, J.H.; Pape, L.; et al. Early angiotensin-converting enzyme inhibition in Alport syndrome delays renal failure and improves life expectancy. Kidney Int. 2012, 81, 494–501. [Google Scholar] [CrossRef] [Green Version]
- Struthers, A.D. Aldosterone escape during ACE inhibitor therapy in chronic heart failure. Eur. Heart J. 1995, 16, 103–106. [Google Scholar] [CrossRef]
- Guney, I.; Selcuk, N.Y.; Altintepe, L.; Atalay, H.; Başarali, M.K.; Büyükbaş, S. Antifibrotic effects of aldosterone receptor blocker (spironolactone) in patients with chronic kidney disease. Ren. Fail. 2009, 31, 779–784. [Google Scholar] [CrossRef] [Green Version]
- Goumenos, D.S.; Tsakas, S.; El Nahas, A.M.; Alexandri, S.; Oldroyd, S.; Kalliakmani, P.; Vlachojannis, J.G. Transforming growth factor-beta(1) in the kidney and urine of patients with glomerular disease and proteinuria. Nephrol. Dial. Transpl. 2002, 17, 2145–2152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sayers, R.; Kalluri, R.; Rodgers, K.D.; Shield, C.F.; Meehan, D.T.; Cosgrove, D. Role for transforming growth factor-beta1 in alport renal disease progression. Kidney Int. 1999, 56, 1662–1673. [Google Scholar] [CrossRef] [Green Version]
- Cosgrove, D.; Rodgers, K.; Meehan, D.; Miller, C.; Bovard, K.; Gilroy, A.; Gardner, H.; Kotelianski, V.; Gotwals, P.; Amatucci, A.; et al. Integrin alpha1beta1 and transforming growth factor-beta1 play distinct roles in alport glomerular pathogenesis and serve as dual targets for metabolic therapy. Am. J. Pathol. 2000, 157, 1649–1659. [Google Scholar] [CrossRef]
- Stenvinkel, P.; Warady, B.; Pergola, P.; Inker, L.; Nozu, K.; Appel, G.; Meyer, C.; Block, G.; Knebelmann, B.; Silva, A.; et al. Study Design and Baseline Characteristics of the CARDINAL Trial: A Phase 3 Study of Bardoxolone Methyl in Patients with Alport Syndrome. Am. J. Nephrol. 2021, 52, 180–189. [Google Scholar]
- Gomez, I.G.; MacKenna, D.A.; Johnson, B.G.; Kaimal, V.; Roach, A.M.; Ren, S.; Nakagawa, N.; Xin, C.; Newitt, R.; Pandya, S.; et al. Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways. J. Clin. Investig. 2015, 125, 141–156. [Google Scholar] [CrossRef]
- Moschidou, D.; Corcelli, M.; Hau, K.-L.; Ekwalla, V.J.; Behmoaras, J.V.; De Coppi, P.; David, A.; Bou-Gharios, G.; Cook, H.T.; Pusey, C.D.; et al. Human Chorionic Stem Cells: Podocyte Differentiation and Potential for the Treatment of Alport Syndrome. Stem Cells Dev. 2016, 25, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, T.; Horinouchi, T.; Adachi, T.; Terakawa, M.; Takaoka, Y.; Omachi, K.; Takasato, M.; Takaishi, K.; Shoji, T.; Onishi, Y.; et al. Development of an exon skipping therapy for X-linked Alport syndrome with truncating variants in COL4A5. Nat. Commun. 2020, 11, 2777. [Google Scholar] [CrossRef] [PubMed]
- Hellerstein, S. Fluids and electrolytes: Physiology. Pediatrics Rev. 1993, 14, 70–79. [Google Scholar] [CrossRef]
- Helal, I.; Fick-Brosnahan, G.M.; Reed-Gitomer, B.; Schrier, R.W. Glomerular hyperfiltration: Definitions, mechanisms and clinical implications. Nat. Rev. Nephrol. 2012, 8, 293–300. [Google Scholar] [CrossRef]
- Gross, O.; Tonshoff, B.; Weber, L.T.; Pape, L.; Latta, K.; Fehrenbach, H.; Lange-Sperandio, B.; Zappel, H.; Hoyer, P.; Staude, H.; et al. A multicenter, randomized, placebo-controlled, double-blind phase 3 trial with open-arm comparison indicates safety and efficacy of nephroprotective therapy with ramipril in children with Alport’s syndrome. Kidney Int. 2020, 97, 1275–1286. [Google Scholar] [CrossRef] [Green Version]
Gender | |
Male | 10 (38.5%) |
Female | 16 (61.5%) |
Mutation | |
absent | 3 |
COL4A3 heterozygote | 1 |
COL4A4 heterozygote | 2 |
COL4A5 heterozygote | 11 |
COL4A5 hemizygote | 5 |
COL4A3 homozygote | 1 |
COL4A4 homozygote | 1 |
COL4A3 e COL4A5 dygenic | 1 |
COL4A4 e COL4A5 dygenic | 1 |
Age at the onset of treatment (years) | |
10.55 ± 5.02 | |
Proteinuria at onset (uPCR mg/mg) | |
1.46 ± 1.42 | |
Estimated GFR at onset (mL/min/1.73sm) | |
155.93 ± 49.31 | |
Serum K at onset (mmol/L) | |
4.29 ± 0.37 |
uPCR (mg/mg) | Time 0 Mean ± SD Median | 1 Month Mean ± SD Median | 3 Months Mean ± SD Median | 12 Months Mean ± SD Median | p Value | Pairwise p Values | |
---|---|---|---|---|---|---|---|
1st drug (n = 26) | 1.46 ± 1.42 0.93 | 1.32 ± 1.57 0.69 | 1.27 ± 1.61 0.68 | 1.12 ± 1.13 0.75 | 0.0016 | T0–1 m = 0.007 T0–3 m = 0.005 T0–12 m = 0.003 | 1 m–3 m = 0.29 1 m–12 m = 0.34 3 m–12 m = 0.78 |
2nd drug (n = 14) | 2.02 ± 1.35 1.28 | 1.74 ± 1.52 1.27 | 1.36 ± 1.16 0.89 | 1.50 ± 1.35 0.90 | 0.003 | T0–1 m = 0.068 T0–3 m = 0.006 T0–12 m = 0.007 | 1 m–3 m = 0.065 1 m–12 m = 0.27 3 m–12 m = 0.85 |
3rd drug (n = 7) | 2.77 ± 1.20 2.87 | 1.74 ± 0.86 1.97 | 1.47 ± 0.82 1.50 | 1.93 ± 1.27 1.67 | 0.014 | T0–1 m = 0.064 T0–3 m = 0.017 T0–12 m = 0.065 | 1 m–3 m = 0.18 1 m–12 m = 0.81 3 m–12 m = 0.31 |
eGFR (mL/min/1.73 sm) | Time 0 Mean ± SD Median | 1 Month Mean ± SD Median | 3 Months Mean ± SD Median | 12 Months Mean ± SD Median | p Value |
---|---|---|---|---|---|
1st drug (n = 26) | 155.93 ± 49.31 147.88 | 164.25 ± 44.28 152.05 | 160.62 ± 54.64 152.06 | 166.52 ± 52.52 157.03 | 0.41 |
2nd drug (n = 14) | 169.78 ± 95.17 138.86 | 165.72 ± 79.31 149.67 | 175.01 ± 96.80 160.33 | 167.90 ± 87.93 146.40 | 0.77 |
3rd drug (n = 7) | 145.33 ± 29.87 145.59 | 133.09 ± 35.05 128.23 | 126.08 ± 22.83 117.86 | 135.68 ± 30.58 131.70 | 0.18 |
sK (mmol/L) | Time 0 Mean ± SD Median | 1 Month Mean ± SD Median | 3 Months Mean ± SD Median | 12 Months Mean ± SD Median | p Value |
---|---|---|---|---|---|
1st drug (n = 26) | 4.29 ± 0.37 4.21 | 4.41 ± 0.38 4.40 | 4.40 ± 0.37 4.40 | 4.52 ± 0.37 4.45 | 0.027 |
2nd drug (n = 14) | 4.51 ± 0.41 4.40 | 4.65 ± 0.40 4.53 | 4.65 ± 0.47 4.59 | 4.57 ± 0.52 4.50 | 0.44 |
3rd drug (n = 7) | 4.68 ± 0.17 4.60 | 4.77 ± 0.23 4.80 | 4.80 ± 0.51 4.70 | 4.69 ± 0.38 4.60 | 0.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mastrangelo, A.; Brambilla, M.; Romano, G.; Serafinelli, J.; Puccio, G.; Giani, M.; Montini, G. Single, Double and Triple Blockade of RAAS in Alport Syndrome: Different Tools to Freeze the Evolution of the Disease. J. Clin. Med. 2021, 10, 4946. https://doi.org/10.3390/jcm10214946
Mastrangelo A, Brambilla M, Romano G, Serafinelli J, Puccio G, Giani M, Montini G. Single, Double and Triple Blockade of RAAS in Alport Syndrome: Different Tools to Freeze the Evolution of the Disease. Journal of Clinical Medicine. 2021; 10(21):4946. https://doi.org/10.3390/jcm10214946
Chicago/Turabian StyleMastrangelo, Antonio, Marta Brambilla, Giorgia Romano, Jessica Serafinelli, Giuseppe Puccio, Marisa Giani, and Giovanni Montini. 2021. "Single, Double and Triple Blockade of RAAS in Alport Syndrome: Different Tools to Freeze the Evolution of the Disease" Journal of Clinical Medicine 10, no. 21: 4946. https://doi.org/10.3390/jcm10214946
APA StyleMastrangelo, A., Brambilla, M., Romano, G., Serafinelli, J., Puccio, G., Giani, M., & Montini, G. (2021). Single, Double and Triple Blockade of RAAS in Alport Syndrome: Different Tools to Freeze the Evolution of the Disease. Journal of Clinical Medicine, 10(21), 4946. https://doi.org/10.3390/jcm10214946