Dynamic Changes and Temporal Association with Ambient Temperatures: Nonlinear Analyses of Stroke Events from a National Health Insurance Database
Abstract
:1. Introduction
2. Methods
2.1. Data Source and Definition of Stroke Onset
2.2. Meteorological and Geographic Background of the Study Design
2.3. Ensemble Empirical Mode Decomposition of Daily Stroke Incidence and Ambient Temperature
- (1)
- Add a white noise series to the targeted data;
- (2)
- Decompose the data with added white noise into IMFs;
- (3)
- Repeat step 1 and step 2 again and again, but with different white noise series each time;
- (4)
- Obtain the (ensemble) means of corresponding IMFs of the decompositions as the final result.
2.4. Statistical Analysis
3. Results
3.1. Stroke Events and Ambient Temperatures in the Studied Areas
3.2. Monthly Changes of Stroke Events
3.3. Association between Mean Ambient Temperature and Monthly Stroke Events
3.4. Decompositions of the Daily Mean Temperatures and Stroke Events
3.5. Temporal Association between the Relevant IMFs of Daily Mean Temperatures and Stroke Events
Kaohsiung | Taipei | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Ischemic Stroke | Intracerebral Hemorrhage | Ischemic Stroke | Intracerebral Hemorrhage | |||||||
Temp | Middle-Aged | Elderly | Middle-Aged | Elderly | Temp | Middle-Aged | Elderly | Middle-aged | Elderly | |
IMF4 | 29.22 ± 8.66 | 23.84 ± 6.63 | 23.16 ± 6.14 | 22.14 ± 6.62 | 22.39 ± 5.77 | 28.01 ± 7.69 | 24.52 ± 6.59 | 23.67 ± 6.36 | 22.74 ± 5.25 | 24.09 ± 7.93 |
(29.64) | (27.81) | (26.51) | (29.90) | (25.77) | (27.45) | (26.88) | (26.87) | (23.09) | (32.92) | |
IMF5 | 56.92 ± 12.93 | 49.77 ± 14.96 | 46.04 ± 11.68 | 43.47 ± 12.29 | 46.80 ± 13.32 | 60.29 ± 13.92 | 45.94 ± 12.06 | 42.43 ± 11.83 | 46.26 ± 14.13 | 48.30 ± 13.27 |
(22.72) | (30.06) | (25.37) | (28.27) | (28.46) | (23.09) | (27.62) | (27.88) | (30.54) | (27.47) | |
IMF6 | 195.00 ± 127.45 | 87.00 ± 34.27 | 94.95 ± 18.48 | 89.35 ± 21.57 | 85.71 ± 27.13 | 365.80 ± 10.76 | 97.70 ± 26.13 | 90.30 ± 24.22 | 90.73 ± 22.31 | 95.67 ± 25.76 |
(65.36) | (39.39) | (19.46) | (24.14) | (31.65) | (2.94) | (26.75) | (26.82) | (24.59) | (26.93) | |
IMF7 | 386.40 ± 32.75 | 189.20 ± 56.92 | 171.22 ± 38.98 | 195.78 ± 47.61 | 258.57 ± 94.79 | 361.50 ± 4.37 | 190.3 ± 33.50 | 200.80 ± 65.12 | 219.75 ± 84.36 | 300.83 ± 81.09 |
(8.48) | (30.08) | (22.77) | (24.32) | (36.66) | (1.21) | (17.60) | (32.43) | (38.39) | (26.96) | |
IMF8 | 808.00 ± 623.67 | 357.20 ± 50.34 | 392.00 ± 19.22 | 400.75 ± 46.67 | 383.00 ± 48.05 | 1425 * | 305.83 ± 185.09 | 375.5 ± 37.74 | 367.49 ± 5.89 | 678.00 ± 120.21 |
(77.19) | (14.09) | (4.90) | (11.65) | (12.55) | (60.52) | (10.05) | (1.60) | (17.73) |
Ischemic Stroke | Intracerebral Hemorrhage | ||||
---|---|---|---|---|---|
Temp | Middle-Aged | Elderly | Middle-Aged | Elderly | |
Kaohsiung City | IMF4/IMF4 | 0.098 * | 0.024 | −0.085 * | 0.116 * |
IMF5/IMF5 | 0.026 | 0.087 * | −0.080 * | 0.070 * | |
IMF6/IMF7 | −0.246 * | −0.353 * | −0.351 * | −0.792 * | |
IMF7/IMF8 | −0.076 * | −0.634 * | −0.661 * | −0.705 * | |
Taipei Area | IMF4/IMF4 | −0.204 * | −0.137 * | −0.051 * | −0.085 * |
IMF5/IMF5 | −0.101 * | −0.149 * | −0.079 * | −0.068 * | |
IMF6/IMF8 | 0.063 * | −0.585 * | −0.784 * | −0.883 §* | |
IMF7/IMF8 | −0.126 * | −0.552 * | −0.444 * | −0.544 §* |
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Levi, C.; Attia, J.; D’Este, C.A.; Spratt, N.; Fisher, J. Seasonal Variation in Stroke in the Hunter Region, Australia. Stroke 2003, 34, 1144–1150. [Google Scholar] [CrossRef] [Green Version]
- Yang, A.C.; Tsai, S.-J.; Huang, N.E.; Peng, C.-K. Association of Internet search trends with suicide death in Taipei City, Taiwan, 2004–2009. J. Affect. Disord. 2011, 132, 179–184. [Google Scholar] [CrossRef]
- Deaton, C.; Froelicher, E.S.; Wu, L.H.; Ho, C.; Shishani, K.; Jaarsma, T. The global burden of cardiovascular disease. Eur. J. Cardiovasc. Nurs. 2011, 10, S5–S13. [Google Scholar] [CrossRef]
- Roth, G.A.; Johnson, C.; Abajobir, A.; Abd-Allah, F.; Abera, S.F.; Abyu, G.; Ahmed, M.; Aksut, B.; Alam, T.; Alam, K.; et al. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J. Am. Coll. Cardiol. 2017, 70, 1–25. [Google Scholar] [CrossRef]
- Carnethon, M.; Pu, J.; Howard, G.; Albert, M.A.; Anderson, C.A.; Bertoni, A.G.; Mujahid, M.S.; Palaniappan, L.; Taylor, H.A.; Willis, M.; et al. Cardiovascular Health in African Americans: A Scientific Statement From the American Heart Association. Circulation 2017, 136, e393–e423. [Google Scholar] [CrossRef] [PubMed]
- Rothwell, P.M.; Algra, A.; Amarenco, P. Medical treatment in acute and long-term secondary prevention after transient is-chaemic attack and ischaemic stroke. Lancet 2011, 377, 1681–1692. [Google Scholar] [CrossRef]
- Schwalm, J.-D.; McKee, M.; Huffman, M.; Yusuf, S. Resource Effective Strategies to Prevent and Treat Cardiovascular Disease. Circulation 2016, 133, 742–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hori, A.; Hashizume, M.; Tsuda, Y.; Tsukahara, T.; Nomiyama, T. Effects of weather variability and air pollutants on emer-gency admissions for cardiovascular and cerebrovascular diseases. Int. J. Environ. Health Res. 2012, 22, 416–430. [Google Scholar] [CrossRef]
- Lim, J.-S.; Kwon, H.-M.; Kim, S.-E.; Lee, J.; Lee, Y.-S.; Yoon, B.-W. Effects of Temperature and Pressure on Acute Stroke Incidence Assessed Using a Korean Nationwide Insurance Database. J. Stroke 2017, 19, 295–303. [Google Scholar] [CrossRef] [Green Version]
- Turin, T.C.; Kita, Y.; Murakami, Y.; Rumana, N.; Sugihara, H.; Morita, Y.; Tomioka, N.; Okayama, A.; Nakamura, Y.; Abbott, R.D.; et al. Higher stroke incidence in the spring season regardless of conventional risk factors: Takashima Stroke Registry, Japan, 1988-2001. Stroke 2008, 39, 745–752. [Google Scholar] [CrossRef]
- Kysely, J.; Pokorna, L.; Kyncl, J.; Kriz, B. Excess cardiovascular mortality associated with cold spells in the Czech Republic. BMC Public Health 2009, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Lavados, P.M.; Olavarría, V.V.; Hoffmeister, L. Ambient Temperature and Stroke Risk: Evidence Supporting a Short-Term Effect at a Population Level from Acute Environmental Exposures. Stroke 2018, 49, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yavar, Z.; Sun, Q. Cardiovascular response to thermoregulatory challenges. Am. J. Physiol. Circ. Physiol. 2015, 309, H1793–H1812. [Google Scholar] [CrossRef] [Green Version]
- Piver, W.T.; Ando, M.; Ye, F.; Portier, C.J. Temperature and air pollution as risk factors for heat stroke in Tokyo, July and August 1980-1995. Environ. Health Perspect. 1999, 107, 911–916. [Google Scholar] [CrossRef]
- Wang, X.; Cao, Y.; Hong, D.; Zheng, D.; Richtering, S.; Sandset, E.C.; Leong, T.H.; Arima, H.; Islam, S.; Salam, A.; et al. Ambient Temperature and Stroke Occurrence: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2016, 13, 698. [Google Scholar] [CrossRef] [Green Version]
- Zorrilla-Vaca, A.; Healy, R.J.; Silva-Medina, M.M. Revealing the association between cerebrovascular accidents and ambient temperature: A meta-analysis. Int. J. Biometeorol. 2016, 61, 821–832. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.-Y.; Su, C.-C.; Shao, S.-C.; Sung, S.-F.; Lin, S.-J.; Kao, Y.-H.Y.; Lai, E.C.-C. Taiwan’s National Health Insurance Research Database: Past and future. Clin. Epidemiol. 2019, 11, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Chu, M.-L.; Shih, C.-Y.; Hsieh, T.-C.; Chen, H.-L.; Lee, C.-W.; Hsieh, J.-C. Acute Myocardial Infarction Hospitalizations between Cold and Hot Seasons in an Island across Tropical and Subtropical Climate Zones-A Population-Based Study. Int. J. Environ. Res. Public Health 2019, 16, 2769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.-J.; Chen, Y.-T.; Ou, S.-M.; Li, S.-Y.; Yang, A.C.; Tang, C.-H.; Wang, S.-J. Temperature variation and the incidence of cluster headache periods: A nationwide population study. Cephalalgia 2014, 34, 656–663. [Google Scholar] [CrossRef]
- Han, J.; Mao, W.; Ni, J.; Wu, Y.; Liu, J.; Bai, L.; Shi, M.; Tu, J.; Ning, X.; Wang, J. Rate and Determinants of Recurrence at 1 Year and 5 Years After Stroke in a Low-Income Population in Rural China. Front. Neurol. 2020, 11, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.; Wu, Y.-L.; Ovbiagele, B. Trends in Incident and Recurrent Rates of First-Ever Ischemic Stroke in Taiwan between 2000 and 2011. J. Stroke 2016, 18, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.-Y.; Chen, C.-H.; Li, C.-Y.; Lai, M.-L. Validating the diagnosis of acute ischemic stroke in a National Health Insurance claims database. J. Formos. Med. Assoc. 2015, 114, 254–259. [Google Scholar] [CrossRef]
- Yip, P.K.; Jeng, J.-S.; Lu, C.J. Hospital arrival time after onset of different types of stroke in greater Taipei. J. Formos. Med Assoc. 2000, 99, 532–537. [Google Scholar] [PubMed]
- Chen, C.H.; Huang, P.; Yang, Y.H.; Liu, C.K.; Lin, T.J.; Lin, R.T. Pre-hospital and in-hospital delays after onset of acute ischemic stroke: A hospital-based study in southern Taiwan Kaohsiung. J. Med. Sci. 2007, 23, 552–559. [Google Scholar] [CrossRef] [Green Version]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Wu, H.T.; Jiang, Y.H.; Liu, A.B.; Liu, C.W.; Ou, Y.N.; Kuo, H.C.; Sun, C.K. Multiscale Entropy Analysis of Surface Elec-tromyographic Signals from the Urethral Sphincter as a Prognostic Indicator for Surgical Candidates with Primary Bladder Neck Obstruction. Entropy 2015, 17, 8089–8098. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.-T.; Lee, C.-Y.; Liu, C.-C.; Liu, A.-B. Multiscale Cross-Approximate Entropy Analysis as a Measurement of Complexity between ECG R-R Interval and PPG Pulse Amplitude Series among the Normal and Diabetic Subjects. Comput. Math. Methods Med. 2013, 2013, 231762. [Google Scholar] [CrossRef] [PubMed]
- McCormick, N.; Bhole, V.; Lacaille, D.; Avina-Zubieta, J.A. Validity of Diagnostic Codes for Acute Stroke in Administrative Databases: A Systematic Review. PLoS ONE 2015, 10, e0135834. [Google Scholar] [CrossRef] [Green Version]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.-T.; Liu, C.-C.; Sun, C.-K.; Liu, A.-B.; Chen, C.-S.; Yang, C.-C.; Wang, C.-H. Simultaneous assessment of autonomic nervous and vascular endothelial functions in a rat model. Biomed. Tech. Eng. 2013, 58, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Hu, H.H.; Sheng, W.Y.; Chu, F.L.; Lan, C.F.; Chiang, B.N. Incidence of stroke in Taiwan. Stroke 1992, 23, 1237–1241. [Google Scholar] [CrossRef] [Green Version]
- Tsai, C.-F.; Thomas, B.; Sudlow, C.L. Epidemiology of stroke and its subtypes in Chinese vs white populations: A systematic review. Neurology 2013, 81, 264–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.-C.; Hu, C.; Chen, C.; Lin, H. Seasonal Variation in Ischemic Stroke Incidence and Association with Climate: A Six-Year Population-Based Study. Chronobio. Int. 2008, 25, 938–949. [Google Scholar] [CrossRef]
- Yang, A.C.-C.; Fuh, J.-L.; Huang, N.E.; Shia, B.-C.; Peng, C.-K.; Wang, S.-J. Temporal Associations between Weather and Headache: Analysis by Empirical Mode Decomposition. PLoS ONE 2011, 6, e14612. [Google Scholar] [CrossRef] [Green Version]
- Hasan, N. A Methodological Approach for Predicting COVID-19 Epidemic Using EEMD-ANN Hybrid Model. Internet Things 2020, 11, 100228. [Google Scholar] [CrossRef]
- Miot, H.A. Correlation analysis in clinical and experimental studies. J. Vasc. Bras. 2018, 17, 275–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, Y.; Wang, X.; He, L.; Wang, W.; Moran, W. Spatial-Temporal Analysis of Environmental Data of North Beijing District Using Hilbert-Huang Transform. PLoS ONE 2016, 11, e0167662. [Google Scholar] [CrossRef] [PubMed]
Kaohsiung | Taipei | |
---|---|---|
Daily mean temperatures (°C) | 25.38 ± 3.98 | 23.26 ± 5.55 * |
Daily temperature differences (°C) | 5.59 ± 1.62 | 5.85 ± 2.67 * |
Ischemic stroke(events/1000/year) | 3.09 ± 0.09 | 2.25 ± 0.04 * |
Middle-aged | 0.87 ± 0.06 | 0.63 ± 0.02 * |
Elderly | 12.86 ± 0.51 | 10.18 ± 0.17 * |
Intracerebral hemorrhage (events/1000/year) | 2.30 ± 0.12 | 1.66 ± 0.08 * |
Middle-aged | 1.25 ± 0.08 | 0.84 ± 0.03 * |
Elderly | 6.93 ± 0.80 | 5.65 ± 0.41 * |
Stoke Events | Kaohsiung | Taipei |
---|---|---|
Ischemic Stroke | ||
Middle-aged | −0.037 | 0.019 |
Elderly | −0.185 | −0.485 * |
Intracerebral hemorrhage | ||
Middle-aged | −0.294 * | −0.464 * |
Elderly | −0.367 * | −0.571 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-W.; Chen, P.-W.; Liu, W.-M.; Hsu, J.-Y.; Huang, Y.-L.; Cheng, Y.; Liu, A.-B. Dynamic Changes and Temporal Association with Ambient Temperatures: Nonlinear Analyses of Stroke Events from a National Health Insurance Database. J. Clin. Med. 2021, 10, 5041. https://doi.org/10.3390/jcm10215041
Lin C-W, Chen P-W, Liu W-M, Hsu J-Y, Huang Y-L, Cheng Y, Liu A-B. Dynamic Changes and Temporal Association with Ambient Temperatures: Nonlinear Analyses of Stroke Events from a National Health Insurance Database. Journal of Clinical Medicine. 2021; 10(21):5041. https://doi.org/10.3390/jcm10215041
Chicago/Turabian StyleLin, Che-Wei, Po-Wei Chen, Wei-Min Liu, Jin-Yi Hsu, Yu-Lun Huang, Yu Cheng, and An-Bang Liu. 2021. "Dynamic Changes and Temporal Association with Ambient Temperatures: Nonlinear Analyses of Stroke Events from a National Health Insurance Database" Journal of Clinical Medicine 10, no. 21: 5041. https://doi.org/10.3390/jcm10215041
APA StyleLin, C. -W., Chen, P. -W., Liu, W. -M., Hsu, J. -Y., Huang, Y. -L., Cheng, Y., & Liu, A. -B. (2021). Dynamic Changes and Temporal Association with Ambient Temperatures: Nonlinear Analyses of Stroke Events from a National Health Insurance Database. Journal of Clinical Medicine, 10(21), 5041. https://doi.org/10.3390/jcm10215041