Similarities in Quantitative Computed Tomography Imaging of the Lung in Severe Asthma with Persistent Airflow Limitation and Chronic Obstructive Pulmonary Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients Characteristics
2.2. Computed Tomography Scanning
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mannino, D.M.; Higuchi, K.; Yu, T.C.; Zhou, H.; Li, Y.; Tian, H.; Suh, K. Economic burden of COPD in the presence of comorbidities. Chest 2015, 148, 138–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halbert, R.J.; Natoli, J.L.; Gano, A.; Badamgarav, E.; Buist, A.S.; Mannino, D.M. Global burden of COPD: Systematic review and meta-analysis. Eur. Respir. J. 2006, 28, 523–532. [Google Scholar] [CrossRef]
- Nizankowska-Mogilnicka, E.; Mejza, F.; Buist, A.S.; Vollmer, W.M.; Skucha, W.; Harat, R.; Pajak, A.; Gasowski, J.; Frey, J.; Nastalek, P.; et al. Prevalence of COPD and tobacco smoking in Malopolska region—Results from the BOLD study in Poland. Pol. Arch. Intern. Med. 2007, 117, 402–410. [Google Scholar] [CrossRef] [Green Version]
- Samolinski, B.; Raciborski, F.; Lipiec, A.; Tomaszewska, A.; Krzych-Falta, E.; Samel-Kowalik, P.; Walkiewicz, A.; Lusawa, A.; Borowicz, J.; Komorowski, J.; et al. Epidemiology of allergic diseases in Poland. [Polish] Epidemiologia Chorob Alergicznych w Polsce (ECAP). Alergol. Pol.-Pol. J. Allergol. 2014, 1, 10–18. [Google Scholar] [CrossRef]
- Trivedi, A.; Hall, C.; Hoffman, E.A.; Woods, J.C.; Gierada, D.S.; Castro, M. Using imaging as a biomarker for asthma. J. Allergy Clin. Immunol. 2017, 139, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Slats, A.; Taube, C. Asthma and chronic obstructive pulmonary disease overlap: Asthmatic chronic obstructive pulmonary disease or chronic obstructive asthma? Ther. Adv. Respir. Dis. 2016, 10, 57–71. [Google Scholar] [CrossRef] [Green Version]
- Hackx, M.; Bankier, A.A.; Gevenois, P.A. Chronic obstructive pulmonary disease: CT quantification of airways disease. Radiology 2012, 265, 34–48. [Google Scholar] [CrossRef]
- Yanagisawa, S.; Ichinose, M. Definition and diagnosis of asthma–COPD overlap (ACO). Allergol. Int. 2018, 67, 172–178. [Google Scholar] [CrossRef]
- Hartley, R.A.; Barker, B.L.; Newby, C.; Pakkal, M.; Baldi, S.; Kajekar, R.; Kay, R.; Laurencin, M.; Marshall, R.P.; Sousa, A.R.; et al. Relationship between lung function and quantitative computed tomographic parameters of airway remodeling, air trapping, and emphysema in patients with asthma and chronic obstructive pulmonary disease: A single-center study. J. Allergy Clin. Immunol. 2016, 137, 1413–1422.e12. [Google Scholar] [CrossRef] [Green Version]
- Berair, R.; Hartley, R.; Mistry, V.; Sheshadri, A.; Gupta, S.; Singapuri, A.; Gonem, S.; Marshall, R.P.; Sousa, A.R.; Shikotra, A.; et al. Associations in asthma between quantitative computed tomography and bronchial biopsy-derived airway remodelling. Eur. Respir. J. 2017, 49, 1601507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoshino, M.; Matsuoka, S.; Handa, H.; Miyazawa, T.; Yagihashi, K. Correlation between airflow limitation and airway dimensions assessed by multidetector CT in asthma. Respir. Med. 2010, 104, 794–800. [Google Scholar] [CrossRef] [Green Version]
- Grenier, P.A.; Fetita, C.I.; Brillet, P. Quantitative computed tomography imaging of airway remodeling in severe asthma. Quant. Imaging Med. Surg. 2016, 6, 76–83. [Google Scholar] [CrossRef]
- de Marco, R.; Pesce, G.; Marcon, A.; Accordini, S.; Antonicelli, L.; Bugiani, M.; Casali, L.; Ferrari, M.; Nicolini, G.; Panico, M.G.; et al. The Coexistence of Asthma and Chronic Obstructive Pulmonary Disease (COPD): Prevalence and Risk Factors in Young, Middle-aged and Elderly People from the General Population. PLoS ONE 2013, 8, e62985. [Google Scholar] [CrossRef] [Green Version]
- Ostridge, K.; Wilkinson, T.M.A. Present and future utility of computed tomography scanning in the assessment and management of COPD. Eur. Respir. J. 2016, 48, 216–228. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Hoffman, E.A.; Wenzel, S.E.; Castro, M.; Fain, S.; Jarjour, N.; Schiebler, M.L.; Chen, K.; Lin, C.L. Quantitative computed tomographic imaging–based clustering differentiates asthmatic subgroups with distinctive clinical phenotypes. J. Allergy Clin. Immunol. 2017, 140, 690–700.e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.M.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [Green Version]
- Marsh, S.; Aldington, S.; Williams, M.V.; Nowitz, M.R.; Kingzett-Taylor, A.; Weatherall, M.; Shirtcliffe, P.M.; McNaughton, A.A.; Pritchard, A.; Beasley, R. Utility of lung density measurements in the diagnosis of emphysema. Respir. Med. 2007, 101, 1512–1520. [Google Scholar] [CrossRef] [Green Version]
- Sato, S.; Nakamura, M.; Shimizu, Y.; Goto, T.; Koike, T.; Ishikawa, H.; Tsuchida, M. The impact of emphysema on surgical outcomes of early-stage lung cancer: A retrospective study. BMC Pulm. Med. 2019, 19, 1–10. [Google Scholar] [CrossRef]
- Wilson, D.O.; Weissfeld, J.L.; Balkan, A.; Schragin, J.G.; Fuhrman, C.R.; Fisher, S.N.; Wilson, J.; Leader, J.K.; Siegfried, J.M.; Shapiro, S.D.; et al. Association of radiographic emphysema and airflow obstruction with lung cancer. Am. J. Respir. Crit. Care Med. 2008, 178, 738–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patyk, M.; Obojski, A.; Sokołowska-Dąbek, D.; Parkitna-Patyk, M.; Zaleska-Dorobisz, U. Airway wall thickness and airflow limitations in asthma assessed in quantitative computed tomography. Ther. Adv. Respir. Dis. 2020, 14, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Wang, W.; Dou, S.; Cui, L.; Xiao, W. Quantitative computed tomography measurements of emphysema for diagnosing asthma-chronic obstructive pulmonary disease overlap syndrome. Int. J. COPD 2016, 11, 953–961. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Cao, Y.; Liao, M.; Lu, Z. Sagittal-lung CT measurements in the evaluation of asthma-COPD overlap syndrome: A distinctive phenotype from COPD alone. Radiol. Med. 2017, 122, 487–494. [Google Scholar] [CrossRef]
- García-García, M.D.C.; Hernández-Borge, J.; Barrecheguren, M.; Miravitlles, M. The challenge of diagnosing a mixed asthma-COPD phenotype (ACOS) in clinical practice. Ther. Adv. Respir. Dis. 2016, 10, 175–178. [Google Scholar] [CrossRef] [Green Version]
- Milne, S.; King, G.G. Advanced imaging in COPD: Insights into pulmonary pathophysiology. J. Thorac. Dis. 2014, 6, 1570–1585. [Google Scholar] [CrossRef]
- Tashkin, D.P.; Kim, H.J.; Zeidler, M.; Kleerup, E.; Goldin, J. Evaluating small-airways disease in asthmatic patients: The utility of quantitative computed tomography. J. Allergy Clin. Immunol. 2017, 139, 49–51.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Den Berge, M.; Ten Hacken, N.H.T.; Cohen, J.; Douma, W.R.; Postma, D.S. Small airway disease in asthma and COPD: Clinical implications. Chest 2011, 139, 412–423. [Google Scholar] [CrossRef] [PubMed]
- Bonini, M.; Usmani, O.S. The role of the small airways in the pathophysiology of asthma and chronic obstructive pulmonary disease. Ther. Adv. Respir. Dis. 2015, 9, 281–293. [Google Scholar] [CrossRef]
- Grydeland, T.B.; Thorsen, E.; Dirksen, A.; Jensen, R.; Coxson, H.O.; Pillai, S.G.; Sharma, S.; Eide, G.E.; Gulsvik, A.; Bakke, P.S. Quantitative CT measures of emphysema and airway wall thickness are related to DLCO. Respir. Med. 2011, 105, 343–351. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Dai, Y.-L.; Yu, N.; Guo, Y.-M. Sex-related differences in bronchial parameters and pulmonary function test results in patients with chronic obstructive pulmonary disease based on three-dimensional quantitative computed tomography. J. Int. Med. Res. 2018, 46, 135–142. [Google Scholar] [CrossRef]
- Hogg, J.C.; Chu, F.; Utokaparch, S.; Woods, R.; Elliott, W.M.; Buzatu, L.; Cherniack, R.M.; Rogers, R.M.; Sciurba, F.C.; Coxson, H.O.; et al. The Nature of Small-Airway Obstruction in Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 2004, 350, 2645–2653. [Google Scholar] [CrossRef] [PubMed]
- Górska, K.; Krenke, R.; Kosciuch, J.; Korczynski, P.; Zukowska, M.; Domagala-Kulawik, J.; Maskey-Warzechowska, M.; Chazan, R. Relationship between airway inflammation and remodeling in patients with asthma and chronic obstructive pulmonary disease. Eur. J. Med. Res. 2009, 14, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Lynch, D.A.; Austin, J.H.M.; Hogg, J.C.; Grenier, P.A.; Kauczor, H.U.; Bankier, A.A.; Barr, R.G.; Colby, T.V.; Galvin, J.R.; Gevenois, P.A.; et al. CT-definable subtypes of chronic obstructive pulmonary disease: A statement of the fleischner society. Radiology 2015, 277, 192–205. [Google Scholar] [CrossRef] [Green Version]
- Lynch, D.A.; Moore, C.M.; Wilson, C.; Nevrekar, D.; Jennermann, T.; Humphries, S.M.; Austin, J.H.M.; Grenier, P.A.; Kauczor, H.U.; Han, M.L.K.; et al. CT-based visual classification of emphysema: Association with mortality in the COPDGene study. Radiology 2018, 288, 859–866. [Google Scholar] [CrossRef] [Green Version]
- Mets, O.M.; De Jong, P.A.; Van Ginneken, B.; Gietema, H.A.; Lammers, J.W.J. Quantitative computed tomography in COPD: Possibilities and limitations. Lung 2012, 190, 133–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Occhipinti, M.; Paoletti, M.; Bartholmai, B.J.; Rajagopalan, S.; Karwoski, R.A.; Nardi, C.; Inchingolo, R.; Larici, A.R.; Camiciottoli, G.; Lavorini, F.; et al. Spirometric assessment of emphysema presence and severity as measured by quantitative CT and CT-based radiomics in COPD. Respir. Res. 2019, 20, 1–11. [Google Scholar] [CrossRef] [Green Version]
- de Boer, E.; Nijholt, I.M.; Jansen, S.; Edens, M.A.; Walen, S.; van den Berg, J.W.K.; Boomsma, M.F. Optimization of pulmonary emphysema quantification on CT scans of COPD patients using hybrid iterative and post processing techniques: Correlation with pulmonary function tests. Insights Imaging 2019, 10, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, J.D.; McKenzie, A.S.; Zach, J.A.; Wilson, C.G.; Curran-Everett, D.; Stinson, D.S.; Newell, J.D.; Lynch, D.A. Relationships between airflow obstruction and quantitative CT measurements of emphysema, air trapping, and airways in subjects with and without chronic obstructive pulmonary disease. Am. J. Roentgenol. 2013, 201, 460–470. [Google Scholar] [CrossRef] [Green Version]
- Gelb, A.F.; Yamamoto, A.; Mauad, T.; Kollin, J.; Schein, M.J.; Nadel, J.A. Unsuspected mild emphysema in nonsmoking patients with chronic asthma with persistent airway obstruction. J. Allergy Clin. Immunol. 2014, 133, 263. [Google Scholar] [CrossRef] [PubMed]
- Gelb, A.F.; Yamamoto, A.; Verbeken, E.K.; Nadel, J.A. Unraveling the pathophysiology of the asthma-COPD overlap syndrome: Unsuspected mild centrilobular emphysema is responsible for loss of lung elastic recoil in never smokers with asthma with persistent expiratory airflow limitation. Chest 2015, 148, 313–320. [Google Scholar] [CrossRef] [Green Version]
- Gelb, A.F.; Yamamoto, A.; Verbeken, E.K.; Schein, M.J.; Moridzadeh, R.; Tran, D.; Fraser, C.; Barbers, R.; Elatre, W.; Koss, M.N.; et al. Further Studies of Unsuspected Emphysema in Nonsmoking Patients with Asthma With Persistent Expiratory Airflow Obstruction. Chest 2018, 153, 618–629. [Google Scholar] [CrossRef] [PubMed]
SA-PAL (n = 10) | COPD (n = 11) | HV (n = 10) | SA-PAL vs. HV 1 | SA-PAL vs. COPD 1 | COPD vs. HV 1 | Kruskal-Wallis Test | |
---|---|---|---|---|---|---|---|
M (25Q ÷ 75Q) | M (25Q ÷ 75Q) | M (25Q ÷ 75Q) | p-Value | p-Value | p-Value | p-Value | |
Age | 53.5 (45.5 ÷ 53.5) | 64.0 (60.0 ÷ 68.0) | 52.0 (50.0 ÷ 58.3) | 0.52 | 0.0002 | 0.0003 | 0.0004 |
Height, cm | 167 (161 ÷ 177) | 170 (158 ÷ 180) | 173 (169 ÷ 178) | 0.28 | 0.88 | 0.31 | 0.45 |
BMI | 28.99 (23.29 ÷ 30.46) | 29.01 (24.15 ÷ 33.9) | 27.5 (23.7 ÷ 32.4) | 0.91 | 0.61 | 0.71 | 0.83 |
FEV1, L | 1.67 (1.23 ÷ 1.94) | 1.12 (0.78 ÷ 1.58) | 3.44 (2.84 ÷ 4.08) | <0.0001 | 0.04 | <0.0001 | <0.0001 |
FEV1% | 56.25 (43.75 ÷ 65.63) | 43.5 (31.25 ÷ 63.25) | 110.1 (98.08 ÷ 127.50) | <0.0001 | 0.19 | <0.0001 | <0.0001 |
FVC, L | 3 (2.65 ÷ 3.57) | 2.57 (1.94 ÷ 3.47) | 4.24 (3.62 ÷ 5.68) | 0.003 | 0.20 | 0.0005 | 0.001 |
FVC% | 91.25 (77.23 ÷ 110.50) | 84.5 (74.75 ÷ 89.00) | 119.4 (106.10 ÷ 131.90) | 0.01 | 0.31 | 0.0001 | 0.001 |
FEV1/FVC% | 51.88 (44.43 ÷ 62.30) | 41 (35.25 ÷ 53.00) | 76.68 (71.88 ÷ 83.36) | 0.0001 | 0.06 | <0.0001 | <0.0001 |
SA-PAL | COPD | HV | SA-PAL vs. HV 1 | SA-PAL vs. COPD 1 | COPD vs. HV 1 | Kruskal–Wallis Test | ||||
---|---|---|---|---|---|---|---|---|---|---|
n | M (25Q ÷ 75Q) | n | M (25Q ÷ 75Q) | n | M (25Q ÷ 75Q) | p-Value | p-Value | p-Value | p-Value | |
WT3, mm | 10 | 2.19 (1.96 ÷ 2.59) | 11 | 1.68 (1.51 ÷ 2.03) | 10 | 1.76 (1.64 ÷ 2.02) | 0.005 | 0.006 | 0.88 | 0.008 |
WT4, mm | 10 | 2.03 (1.87 ÷ 2.32) | 11 | 1.84 (1.39 ÷ 2.00) | 10 | 1.62 (1.53 ÷ 1.82) | 0.009 | 0.049 | 0.48 | 0.02 |
WT5, mm | 10 | 1.84 (1.66 ÷ 2.09) | 11 | 1.86 (1.56 ÷ 1.91) | 10 | 1.57 (1.29 ÷ 1.75) | 0.01 | 0.37 | 0.04 | 0.03 |
WT6, mm | 10 | 1.63 (1.57 ÷ 1.83) | 11 | 1.63 (1.42 ÷ 1.73) | 10 | 1.4 (1.24 ÷ 1.53) | 0.0002 | 0.39 | 0.003 | 0.001 |
WT7, mm | 8 | 1.67 (1.58 ÷ 1.71) | 11 | 1.36 (1.33 ÷ 1.62) | 10 | 1.27 (1.14 ÷ 1.36) | <0.0001 | 0.03 | 0.01 | 0.0005 |
WT8, mm | 8 | 1.57 (1.40 ÷ 1.67) | 9 | 1.42 (1.22 ÷ 1.56) | 10 | 1.21 (1.08 ÷ 1.31) | 0.0003 | 0.02 | 0.04 | 0.009 |
WT9, mm | 5 | 1.36 (1.27 ÷ 1.52) | 6 | 1.32 (1.29 ÷ 1.40) | 7 | 1.2 (1.04 ÷ 1.24) | 0.003 | 0.63 | 0.006 | 0.007 |
SA-PAL | COPD | HV | SA-PAL vs. HV 1 | SA-PAL vs. COPD 1 | COPD vs. HV 1 | Kruskal–Wallis Test | ||||
---|---|---|---|---|---|---|---|---|---|---|
n | M (25Q ÷ 75Q) | n | M (25Q ÷ 75Q) | n | M (25Q ÷ 75Q) | p-Value | p-Value | p-Value | p-Value | |
Lung Volume | 10 | 4826 (4567 ÷ 6191) | 11 | 5908 (4507 ÷ 7089) | 10 | 4577 (4258 ÷ 6970) | 0.67 | 0.56 | 0.54 | 0.69 |
MLD, HU | 10 | −846 (−862 ÷ −815) | 11 | −836 (−860 ÷ −806) | 10 | −808 (−830 ÷ −791) | 0.02 | 0.67 | 0.085 | 0.06 |
SD, HU | 10 | 170 (164 ÷ 175) | 11 | 165 (154 ÷ 183) | 10 | 175 (167 ÷ 183) | 0.18 | 0.67 | 0.17 | 0.27 |
LAV, % | 10 | 15.8 (7.58 ÷ 19.50) | 11 | 10.4 (5.50 ÷ 19.50) | 10 | 7 (4.00 ÷ 8.60) | 0.03 | 0.02 | 0.03 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obojski, A.; Patyk, M.; Zaleska-Dorobisz, U. Similarities in Quantitative Computed Tomography Imaging of the Lung in Severe Asthma with Persistent Airflow Limitation and Chronic Obstructive Pulmonary Disease. J. Clin. Med. 2021, 10, 5058. https://doi.org/10.3390/jcm10215058
Obojski A, Patyk M, Zaleska-Dorobisz U. Similarities in Quantitative Computed Tomography Imaging of the Lung in Severe Asthma with Persistent Airflow Limitation and Chronic Obstructive Pulmonary Disease. Journal of Clinical Medicine. 2021; 10(21):5058. https://doi.org/10.3390/jcm10215058
Chicago/Turabian StyleObojski, Andrzej, Mateusz Patyk, and Urszula Zaleska-Dorobisz. 2021. "Similarities in Quantitative Computed Tomography Imaging of the Lung in Severe Asthma with Persistent Airflow Limitation and Chronic Obstructive Pulmonary Disease" Journal of Clinical Medicine 10, no. 21: 5058. https://doi.org/10.3390/jcm10215058
APA StyleObojski, A., Patyk, M., & Zaleska-Dorobisz, U. (2021). Similarities in Quantitative Computed Tomography Imaging of the Lung in Severe Asthma with Persistent Airflow Limitation and Chronic Obstructive Pulmonary Disease. Journal of Clinical Medicine, 10(21), 5058. https://doi.org/10.3390/jcm10215058