Association of microRNA-34a rs2666433 (A/G) Variant with Systemic Lupus Erythematosus in Female Patients: A Case-Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Clinical Assessment
2.3. Blood Sampling and Laboratory Evaluations
2.4. DNA Extraction and Purification
2.5. Genotyping of MIR34A rs2666433 A > G Variant
2.6. Functional Role of miRNA-34a in SLE Disease
2.7. Selection of the Study Genetic Variant of MIR34A Gene
2.8. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Role of miRNA-34a in SLE Disease
3.3. MIR34A rs2666433 Genotype and Allelic Frequencies
3.4. Association of MIR34A rs2666433 Variant with SLE Development
3.5. Association of MIR34A rs2666433 Variant with Clinic-Laboratory Variables
3.6. Impact of MIR34A rs2666433 Variant on the Disease Activity Index
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pan, L.; Lu, M.P.; Wang, J.H.; Xu, M.; Yang, S.R. Immunological pathogenesis and treatment of systemic lupus erythematosus. World J. Pediatr. 2020, 16, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Stojan, G.; Petri, M. Epidemiology of systemic lupus erythematosus: An update. Curr. Opin. Rheumatol. 2018, 30, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Kaul, A.; Gordon, C.; Crow, M.K.; Touma, Z.; Urowitz, M.B.; van Vollenhoven, R.; Ruiz-Irastorza, G.; Hughes, G. Systemic lupus erythematosus. Nat. Rev. Dis. Primers 2016, 2, 16039. [Google Scholar] [CrossRef]
- Phuti, A.; Schneider, M.; Tikly, M.; Hodkinson, B. Living with systemic lupus erythematosus in the developing world. Rheumatol. Int. 2018, 38, 1601–1613. [Google Scholar] [CrossRef] [PubMed]
- Ramos, P.S.; Brown, E.E.; Kimberly, R.P.; Langefeld, C.D. Genetic factors predisposing to systemic lupus erythematosus and lupus nephritis. Semin. Nephrol. 2010, 30, 164–176. [Google Scholar] [CrossRef] [Green Version]
- Tiffin, N.; Adeyemo, A.; Okpechi, I. A diverse array of genetic factors contribute to the pathogenesis of systemic lupus erythematosus. Orphanet J. Rare Dis. 2013, 8, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamen, D.L. Environmental influences on systemic lupus erythematosus expression. Rheum. Dis. Clin. N. Am. 2014, 40, 401–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Hadidi, K.T.; Medhat, B.M.; Abdel Baki, N.M.; Abdel Kafy, H.; Abdelrahaman, W.; Yousri, A.Y.; Attia, D.H.; Eissa, M.; El Dessouki, D.; Elgazzar, I.; et al. Characteristics of systemic lupus erythematosus in a sample of the Egyptian population: A retrospective cohort of 1109 patients from a single center. Lupus 2018, 27, 1030–1038. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C. MicroRNomics: A newly emerging approach for disease biology. Physiol. Genom. 2008, 33, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Pauley, K.M.; Chan, E.K. MicroRNAs and their emerging roles in immunology. Ann. N. Y. Acad. Sci. 2008, 1143, 226–239. [Google Scholar] [CrossRef]
- Tsokos, G.C.; Lo, M.S.; Costa Reis, P.; Sullivan, K.E. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat. Rev. Rheumatol. 2016, 12, 716–730. [Google Scholar] [CrossRef]
- Rao, D.S.; O’Connell, R.M.; Chaudhuri, A.A.; Garcia-Flores, Y.; Geiger, T.L.; Baltimore, D. MicroRNA-34a perturbs B lymphocyte development by repressing the forkhead box transcription factor Foxp1. Immunity 2010, 33, 48–59. [Google Scholar] [CrossRef] [Green Version]
- Taheri, F.; Ebrahimi, S.O.; Shareef, S.; Reiisi, S. Regulatory and immunomodulatory role of miR-34a in T cell immunity. Life Sci. 2020, 262, 118209. [Google Scholar] [CrossRef]
- Shin, J.; Xie, D.; Zhong, X.P. MicroRNA-34a enhances T cell activation by targeting diacylglycerol kinase ζ. PLoS ONE 2013, 8, e77983. [Google Scholar] [CrossRef] [Green Version]
- Hart, M.; Rheinheimer, S.; Leidinger, P.; Backes, C.; Menegatti, J.; Fehlmann, T.; Grässer, F.; Keller, A.; Meese, E. Identification of miR-34a-target interactions by a combined network based and experimental approach. Oncotarget 2016, 7, 34288–34299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hart, M.; Walch-Rückheim, B.; Friedmann, K.S.; Rheinheimer, S.; Tänzer, T.; Glombitza, B.; Sester, M.; Lenhof, H.P.; Hoth, M.; Schwarz, E.C.; et al. miR-34a: A new player in the regulation of T cell function by modulation of NF-κB signaling. Cell Death Dis. 2019, 10, 46. [Google Scholar] [CrossRef] [Green Version]
- Ghadiri, N.; Emamnia, N.; Ganjalikhani-Hakemi, M.; Ghaedi, K.; Etemadifar, M.; Salehi, M.; Shirzad, H.; Nasr-Esfahani, M.H. Analysis of the expression of mir-34a, mir-199a, mir-30c and mir-19a in peripheral blood CD4+T lymphocytes of relapsing-remitting multiple sclerosis patients. Gene 2018, 659, 109–117. [Google Scholar] [CrossRef]
- Kurowska-Stolarska, M.; Alivernini, S.; Melchor, E.G.; Elmesmari, A.; Tolusso, B.; Tange, C.; Petricca, L.; Gilchrist, D.S.; Di Sante, G.; Keijzer, C.; et al. MicroRNA-34a dependent regulation of AXL controls the activation of dendritic cells in inflammatory arthritis. Nat. Commun. 2017, 8, 15877. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Wang, J.; Gong, W.; Xu, H.; Pan, X.; Chen, Y.; Ru, S.; Wang, H.; Chen, X.; Zhao, Y.; et al. NF-κB-driven miR-34a impairs Treg/Th17 balance via targeting Foxp3. J. Autoimmun. 2019, 102, 96–113. [Google Scholar] [CrossRef] [PubMed]
- Chi, M.; Ma, K.; Li, Y.; Quan, M.; Han, Z.; Ding, Z.; Liang, X.; Zhang, Q.; Song, L.; Liu, C. Immunological Involvement of MicroRNAs in the Key Events of Systemic Lupus Erythematosus. Front. Immunol. 2021, 12, 699684. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, R.; Vercelli, D.; Palmer, L.J.; Klimecki, W.J.; Silverman, E.K.; Richter, B.; Riva, A.; Ramoni, M.; Martinez, F.D.; Weiss, S.T.; et al. Single nucleotide polymorphisms in innate immunity genes: Abundant variation and potential role in complex human disease. Immunol. Rev. 2002, 190, 9–25. [Google Scholar] [CrossRef]
- Kim, J.; Choi, G.H.; Ko, K.H.; Kim, J.O.; Oh, S.H.; Park, Y.S.; Kim, O.J.; Kim, N.K. Association of the Single Nucleotide Polymorphisms in microRNAs 130b, 200b, and 495 with Ischemic Stroke Susceptibility and Post-Stroke Mortality. PLoS ONE 2016, 11, e0162519. [Google Scholar] [CrossRef]
- Sun, Y.; Peng, R.; Li, A.; Zhang, L.; Liu, H.; Peng, H.; Zhang, Z. Sequence variation in microRNA-34a is associated with diabetes mellitus susceptibility in a southwest Chinese Han population. Int. J. Clin. Exp. Pathol. 2018, 11, 1637–1644. [Google Scholar] [PubMed]
- Wei, G.J.; Yuan, M.Q.; Jiang, L.H.; Lu, Y.L.; Liu, C.H.; Luo, H.C.; Huang, H.T.; Qi, Z.Q.; Wei, Y.S. A Genetic Variant of miR-34a Contributes to Susceptibility of Ischemic Stroke Among Chinese Population. Front. Physiol. 2019, 10, 432. [Google Scholar] [CrossRef]
- Fawzy, M.S.; Ibrahiem, A.T.; AlSel, B.T.A.; Alghamdi, S.A.; Toraih, E.A. Analysis of microRNA-34a expression profile and rs2666433 variant in colorectal cancer: A pilot study. Sci. Rep. 2020, 10, 16940. [Google Scholar] [CrossRef] [PubMed]
- Aringer, M.; Costenbader, K.; Daikh, D.; Brinks, R.; Mosca, M.; Ramsey-Goldman, R.; Smolen, J.S.; Wofsy, D.; Boumpas, D.T.; Kamen, D.L.; et al. 2019 European League Against Rheumatism/American College of Rheumatology Classification Criteria for Systemic Lupus Erythematosus. Arthritis Rheumatol. 2019, 71, 1400–1412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bombardier, C.; Gladman, D.D.; Urowitz, M.B.; Caron, D.; Chang, C.H. Derivation of the SLEDAI. A disease activity index for lupus patients. The Committee on Prognosis Studies in SLE. Arthritis Rheum. 1992, 35, 630–640. [Google Scholar] [CrossRef] [PubMed]
- Solé, X.; Guinó, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: A web tool for the analysis of association studies. Bioinformatics 2006, 22, 1928–1929. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Maleknia, S.; Salehi, Z.; Rezaei Tabar, V.; Sharifi-Zarchi, A.; Kavousi, K. An integrative Bayesian network approach to highlight key drivers in systemic lupus erythematosus. Arthritis Res. Ther. 2020, 22, 156. [Google Scholar] [CrossRef]
- Abdel-Gawad, A.R.; Shaheen, S.; Babteen, N.A.; Toraih, E.A.; Elshazli, R.M.; Fawzy, M.S.; Gouda, N.S. Association of microRNA 17 host gene variant (rs4284505) with susceptibility and severity of systemic lupus erythematosus. Immun. Inflamm. Dis. 2020, 8, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Rai, R.; Chauhan, S.K.; Singh, V.V.; Rai, M.; Rai, G. RNA-seq Analysis Reveals Unique Transcriptome Signatures in Systemic Lupus Erythematosus Patients with Distinct Autoantibody Specificities. PLoS ONE 2016, 11, e0166312. [Google Scholar] [CrossRef] [Green Version]
- Hung, T.; Pratt, G.A.; Sundararaman, B.; Townsend, M.J.; Chaivorapol, C.; Bhangale, T.; Graham, R.R.; Ortmann, W.; Criswell, L.A.; Yeo, G.W.; et al. The Ro60 autoantigen binds endogenous retroelements and regulates inflammatory gene expression. Science 2015, 350, 455–459. [Google Scholar] [CrossRef] [Green Version]
- Somers, E.C.; Richardson, B.C. Environmental exposures, epigenetic changes and the risk of lupus. Lupus 2014, 23, 568–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Wang, Y.F.; Liu, L.; Bielowka, A.; Ahmed, R.; Zhang, H.; Tombleson, P.; Roberts, A.L.; Odhams, C.A.; Cunninghame Graham, D.S.; et al. Genome-wide assessment of genetic risk for systemic lupus erythematosus and disease severity. Hum. Mol. Genet. 2020, 29, 1745–1756. [Google Scholar] [CrossRef] [Green Version]
- Demirkaya, E.; Sahin, S.; Romano, M.; Zhou, Q.; Aksentijevich, I. New Horizons in the Genetic Etiology of Systemic Lupus Erythematosus and Lupus-Like Disease: Monogenic Lupus and Beyond. J. Clin. Med. 2020, 9, 712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lever, E.; Alves, M.R.; Isenberg, D.A. Towards Precision Medicine in Systemic Lupus Erythematosus. Pharm. Pers. Med. 2020, 13, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Le, X.; Yu, X.; Shen, N. Novel insights of microRNAs in the development of systemic lupus erythematosus. Curr. Opin. Rheumatol. 2017, 29, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Eissa, E.; Morcos, B.; Abdelkawy, R.F.M.; Ahmed, H.H.; Kholoussi, N.M. Association of microRNA-125a with the clinical features, disease activity and inflammatory cytokines of juvenile-onset lupus patients. Lupus 2021, 30, 1180–1187. [Google Scholar] [CrossRef] [PubMed]
- Omidi, F.; Hosseini, S.A.; Ahmadi, A.; Hassanzadeh, K.; Rajaei, S.; Cesaire, H.M.; Hosseini, V. Discovering the signature of a lupus-related microRNA profile in the Gene Expression Omnibus repository. Lupus 2020, 29, 1321–1335. [Google Scholar] [CrossRef]
- Xu, H.; Chen, W.; Zheng, F.; Tang, D.; Liu, D.; Wang, G.; Xu, Y.; Yin, L.; Zhang, X.; Dai, Y. Reconstruction and analysis of the aberrant lncRNA-miRNA-mRNA network in systemic lupus erythematosus. Lupus 2020, 29, 398–406. [Google Scholar] [CrossRef]
- Ward, L.D.; Kellis, M. HaploReg: A resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012, 40, D930–D934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrett-Sinha, L.A.; Kearly, A.; Satterthwaite, A.B. The Role of the Transcription Factor Ets1 in Lupus and Other Autoimmune Diseases. Crit. Rev. Immunol. 2016, 36, 485–510. [Google Scholar] [CrossRef] [Green Version]
- Oxer, D.S.; Godoy, L.C.; Borba, E.; Lima-Salgado, T.; Passos, L.A.; Laurindo, I.; Kubo, S.; Barbeiro, D.F.; Fernandes, D.; Laurindo, F.R.; et al. PPARγ expression is increased in systemic lupus erythematosus patients and represses CD40/CD40L signaling pathway. Lupus 2011, 20, 575–587. [Google Scholar] [CrossRef] [PubMed]
- Jo, W.; Endo, M.; Ishizu, K.; Nakamura, A.; Tajima, T. A novel PAX4 mutation in a Japanese patient with maturity-onset diabetes of the young. Tohoku J. Exp. Med. 2011, 223, 113–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyons, P.A.; McKinney, E.F.; Rayner, T.F.; Hatton, A.; Woffendin, H.B.; Koukoulaki, M.; Freeman, T.C.; Jayne, D.R.; Chaudhry, A.N.; Smith, K.G. Novel expression signatures identified by transcriptional analysis of separated leucocyte subsets in systemic lupus erythematosus and vasculitis. Ann. Rheum. Dis. 2010, 69, 1208–1213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weckerle, C.E.; Niewold, T.B. The unexplained female predominance of systemic lupus erythematosus: Clues from genetic and cytokine studies. Clin. Rev. Allergy Immunol. 2011, 40, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Zan, H.; Tat, C.; Casali, P. MicroRNAs in lupus. Autoimmunity 2014, 47, 272–285. [Google Scholar] [CrossRef] [PubMed]
- Leivonen, S.K.; Mäkelä, R.; Ostling, P.; Kohonen, P.; Haapa-Paananen, S.; Kleivi, K.; Enerly, E.; Aakula, A.; Hellström, K.; Sahlberg, N.; et al. Protein lysate microarray analysis to identify microRNAs regulating estrogen receptor signaling in breast cancer cell lines. Oncogene 2009, 28, 3926–3936. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Liu, M.; Stribinskis, V.; Klinge, C.M.; Ramos, K.S.; Colburn, N.H.; Li, Y. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 2008, 27, 4373–4379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, R.; Phillips, R.A.; Zhang, Y.; Khan, D.; Crasta, O.; Ahmed, S.A. Suppression of LPS-induced Interferon-gamma and nitric oxide in splenic lymphocytes by select estrogen-regulated microRNAs: A novel mechanism of immune modulation. Blood 2008, 112, 4591–4597. [Google Scholar] [CrossRef] [Green Version]
- Luo, C.; Liang, J.S.; Gong, J.; Zhang, H.L.; Feng, Z.J.; Yang, H.T.; Zhang, H.B.; Kong, Q.H. The function of microRNA-34a in osteoarthritis. Bratisl. Lek. Listy 2019, 120, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wu, Y.; Xu, D.; Yan, X. Long Noncoding RNA UFC1 Promotes Proliferation of Chondrocyte in Osteoarthritis by Acting as a Sponge for miR-34a. DNA Cell Biol. 2016, 35, 691–695. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J.; Hu, B.; Wu, X.; Chen, Y.; Li, R.; Yuan, W. MiR-34a promotes Fas-mediated cartilage endplate chondrocyte apoptosis by targeting Bcl-2. Mol. Cell. Biochem. 2015, 406, 21–30. [Google Scholar] [CrossRef] [PubMed]
Characteristics | n = 163 | |
---|---|---|
Demographics | ||
Sex | Male | 16 (9.8) |
Female | 147 (90.2) | |
Family history | Negative | 105 (64.4) |
Positive | 58 (35.6) | |
Clinical manifestations | ||
Organ involvement | Malar rash | 109 (66.9) |
Discoid rash | 77 (47.2) | |
Photosensitivity | 61 (37.4) | |
Hair loss | 129 (79.1) | |
Oral ulcer | 46 (28.2) | |
Arthritis | 81 (49.7) | |
Ecchymosis | 19 (11.7) | |
Fever | 30 (18.4) | |
Infection | 26 (16) | |
Dyspnea | 68 (41.7) | |
Chest pain | 35 (21.5) | |
Cough | 35 (21.5) | |
CNS | 41 (25.2) | |
Peripheral neuropathy | 70 (42.9) | |
Lupus nephritis | 98 (60.1) | |
Hematuria | 56 (34.4) | |
Weight loss * | 76 (46.6) | |
Severity | ||
SLEDAI score | Mean ± SD | 15.97 ± 9.82 |
Grade 1 | 12 (7.4) | |
Grade 2 | 50 (30.7) | |
Grade 3 | 56 (34.4) | |
Grade 4 | 45 (27.6) | |
Markers for severity and kidney damage | Hypocomplementemia | 47 (28.8) |
Elevated inflammatory markers | 67 (41.1) | |
High S. creatinine | 72 (44.2) | |
Casts in urine | 29 (17.8) | |
Proteinuria | 92 (56.4) | |
Thrombocytopenia | 5 (3.1) | |
Laboratory data | ||
Autoantibodies | Positive dsDNA | 147 (90.2) |
Positive ANA titer | 162 (99.4) | |
Biochemical tests | Hemoglobin (g/dL) | 11.66 ± 2.89 |
RBC (×106 per mm3) | 4.09 ± 0.74 | |
HCT (%) | 38.18 ± 6.05 | |
MCV (fl) | 81.42 ± 6.36 | |
Platelet count (×103/mm3) | 264.51 ± 77.59 | |
WBC (×103 /uL) | 6.58 ± 2.22 | |
Neutrophil (%) | 63.30 ± 10.46 | |
Lymphocyte (%) | 30.01 ± 9.66 | |
C3 (mg/dL) | 95.52 ± 47.86 | |
C4 (mg/dL) | 27.94 ± 15.62 | |
CRP (mg/L) | 2.95 ± 2.89 | |
ESR 1st h | 26.84 ± 13.58 | |
ALT (U/L) | 26.61 ± 9.62 | |
AST (U/L) | 26.50 ± 8.48 | |
Serum creatinine (mg/dL) | 1.18 ± 1.19 | |
Blood urea (mg/dL) | 35.11 ± 11.86 |
Characteristics | Grade 1 (n = 12) | Grade 2 (n = 50) | Grade 3 (n = 56) | Grade 4 (n = 45) | p-Value | |
---|---|---|---|---|---|---|
Demographics | ||||||
Age, years | Median (quartiles) | 27.5 (26–38) | 35 (30–43.5) | 36 (29.8–43.3) | 36 (30.3–42.8) | 0.43 |
Sex | Male | 1 (8.3) | 4 (8) | 5 (8.9) | 6 (13.3) | 0.82 |
Female | 11 (91.7) | 46 (92) | 51 (91.1) | 39 (86.7) | ||
Family history | Negative | 6 (50) | 36 (72) | 36 (64.3) | 27 (60) | 0.43 |
Positive | 6 (50) | 14 (28) | 20 (35.7) | 18 (40) | ||
Clinical manifestations | ||||||
Organ involvement | Malar rash | 10 (83.3) | 35 (70) | 38 (67.9) | 26 (57.8) | 0.33 |
Discoid rash | 5 (41.7) | 21 (42) | 28 (50) | 23 (51.1) | 0.77 | |
Photosensitivity | 5 (41.7) | 18 (36) | 20 (35.7) | 18 (40) | 0.95 | |
Hair loss | 11 (91.7) | 39 (78) | 49 (87.5) | 30 (66.7) | 0.05 | |
Oral ulcer | 3 (25) | 11 (22) | 12 (21.4) | 20 (44.4) | 0.043 | |
Arthritis | 5 (41.7) | 23 (46) | 33 (58.9) | 20 (44.4) | 0.39 | |
Ecchymosis | 1 (8.3) | 6 (12) | 10 (17.9) | 2 (4.4) | 0.21 | |
Fever | 1 (8.3) | 15 (30) | 9 (16.1) | 5 (11.1) | 0.07 | |
Infection | 2 (16.7) | 8 (16) | 9 (16.1) | 7 (15.6) | 1.00 | |
Dyspnea | 8 (66.7) | 20 (40) | 22 (39.3) | 18 (40) | 0.34 | |
Chest pain | 2 (16.7) | 7 (14) | 20 (35.7) | 6 (13.3) | 0.016 | |
Cough | 6 (50) | 8 (16) | 16 (28.6) | 5 (11.1) | 0.011 | |
CNS | 4 (33.3) | 13 (26) | 15 (26.8) | 9 (20) | 0.76 | |
Peripheral neuropathy | 7 (58.3) | 20 (40) | 25 (44.6) | 18 (40) | 0.67 | |
Lupus nephritis | 3 (25) | 24 (48) | 34 (60.7) | 37 (82.2) | <0.001 | |
Hematuria | 5 (41.7) | 17 (34) | 20 (35.7) | 14 (31.1) | 0.91 | |
Weight loss * | 6 (50) | 25 (50) | 24 (42.9) | 21 (46.7) | 0.90 | |
Severity | ||||||
Markers for severity and Kidney damge | Hypocomplementemia | 3 (25) | 15 (30) | 13 (23.2) | 16 (35.6) | 0.58 |
Elevated Inflammatory markers | 7 (58.3) | 23 (46) | 21 (37.5) | 16 (35.6) | 0.42 | |
High S. creatinine | 1 (8.3) | 18 (36) | 28 (50) | 25 (55.6) | 0.013 | |
Casts in urine | 1 (8.3) | 1 (2) | 10 (17.9) | 17 (37.8) | <0.001 | |
Proteinuria | 1 (8.3) | 21 (42) | 34 (60.7) | 36 (80) | <0.001 | |
Thrombocytopenia | 1 (8.3) | 1 (2) | 1 (1.8) | 2 (4.4) | 0.59 | |
Laboratory data | ||||||
Autoantibodies | Positive dsDNA | 8 (66.7) | 41 (82) | 54 (96.4) | 44 (97.8) | 0.001 |
Positive ANA titer | 12 (100) | 49 (98) | 56 (100) | 45 (100) | 0.52 | |
Biochemical tests | Hemoglobin (g/dL) | 11.5 (10.6–13.1) | 11.2 (10.4–12.1) | 11.4 (10.7–12.3) | 11.2 (10.4–12.9) | 0.87 |
RBC (×106 per mm3) | 3.9 (3.6–4.3) | 4 (3.6–4.5) | 4.2 (3.8–4.6) | 4.1 (3.7–4.5) | 0.42 | |
HCT (%) | 39 (30.5–41) | 38 (34–41) | 39 (33–42) | 39 (36.3–42) | 0.52 | |
MCV (fl) | 81.8 (77–89.3) | 80 (76–88) | 82 (80.3–87) | 79.5 (77–87) | 0.56 | |
Platelet count (×103 per mm3) | 227 (179.5–261) | 248 (211.5–321) | 239.5 (212–325) | 268.5 (201–320) | 0.50 | |
WBC (x103 /uL) | 6.4 (4.1–7.6) | 6.5 (5.3–7.7) | 7 (5–7.9) | 6.1 (5.3–7.7) | 0.62 | |
Neutrophil (%) | 70.5 (57–71) | 66 (56–71) | 66 (54.8–70) | 65 (59–70.8) | 0.86 | |
Lymphocyte (%) | 27 (23–35) | 29 (22–35.5) | 31.5 (22–39) | 30 (26–34.5) | 0.65 | |
C3 (mg/dL) | 89.5 (83–120.3) | 88 (50–123) | 91.5 (50–123) | 122 (93–138) | 0.003 | |
C4 (mg/dL) | 35 (27–41.5) | 25 (9–37) | 32.5 (8.8–42.3) | 37 (23–43) | 0.028 | |
CRP (mg/L) | 2.9 (1.5–3.9) | 2.1 (1.7–3.4) | 2.8 (1.4–3.7) | 2.5 (1.8–3.2) | 0.81 | |
ESR 1st h | 26 (20.8–33) | 23 (16.5–36) | 23 (19–33) | 21 (15.3–30) | 0.31 | |
ALT (U/L) | 28.5 (22.3–30) | 28 (19.5–33) | 29 (19–33.5) | 27.5 (17.3–33) | 0.99 | |
AST (U/L) | 25 (23.3–33.8) | 28 (22–34) | 27 (19.8–33) | 24 (15.3–33) | 0.26 | |
Serum creatinine (mg/dL) | 1 (0.8–1.2) | 1.1 (0.9–1.2) | 0.9 (0.7–1.1) | 1 (0.8–1.3) | 0.022 | |
Blood urea (mg/dL) | 36 (29–41.8) | 33 (29–39) | 33 (29–42) | 33 (28–40) | 0.80 |
Model | Genotype | Controls (n = 163) | Cases (n = 163) | Adjusted OR (95% CI) | p-Value |
---|---|---|---|---|---|
Codominant | G/G | 47 (28.8%) | 68 (41.7%) | 1.00 | 0.041 |
A/G | 73 (44.8%) | 62 (38%) | 0.57 (0.34–0.95) | ||
A/A | 43 (26.4%) | 33 (20.2%) | 0.52 (0.29–0.94) | ||
Dominant | G/G | 47 (28.8%) | 68 (41.7%) | 1.00 | 0.012 |
A/G-A/A | 116 (71.2%) | 95 (58.3%) | 0.55 (0.35–0.88) | ||
Recessive | G/G-A/G | 120 (73.6%) | 130 (79.8%) | 1.00 | 0.18 |
A/A | 43 (26.4%) | 33 (20.2%) | 0.70 (0.42–1.18) | ||
Over dominant | G/G-A/A | 90 (55.2%) | 101 (62%) | 1.00 | 0.21 |
A/G | 73 (44.8%) | 62 (38%) | 0.75 (0.48–1.17) | ||
Log-additive | --- | --- | --- | 0.71 (0.53–0.95) | 0.02 |
SNP | Females | Males | ||||
---|---|---|---|---|---|---|
Controls n | Cases n | Adjusted OR (95% CI) | Controls n | Cases n | Adjusted OR (95% CI) | |
G/G | 38 | 65 | 1.00 | 9 | 3 | 1.00 |
A/G | 69 | 54 | 0.45 (0.26–0.77) | 4 | 8 | 5.85 (0.99–34.62) |
A/A | 41 | 28 | 0.39 (0.21–0.74) | 2 | 5 | 7.19 (0.88–58.93) |
Total | A/A | A/G | G/G | p-Value | |
---|---|---|---|---|---|
Total number | 163 | 33 | 62 | 68 | |
Early onset | 112 | 20 (60.6) | 41 (66.1) | 51 (75) | 0.29 |
Female | 147 | 28 (84.8) | 54 (87.1) | 65 (95.6) | 0.13 |
Positive FH | 58 | 7 (21.2) | 31 (50) | 20 (29.4) | 0.008 |
Severe stage | 44 | 10 (30.3) | 15 (24.2) | 19 (27.9) | 0.79 |
Organ involvement | |||||
Malar rash | 109 | 18 (54.5) | 41 (66.1) | 50 (73.5) | 0.16 |
Discoid rash | 77 | 12 (36.4) | 26 (41.9) | 39 (57.4) | 0.08 |
Photosensitivity | 61 | 21 (63.6) | 19 (30.6) | 21 (30.9) | 0.002 |
Hair loss | 129 | 27 (81.8) | 48 (77.4) | 54 (79.4) | 0.87 |
Oral ulcer | 46 | 9 (27.3) | 19 (30.6) | 18 (26.5) | 0.86 |
Arthritis | 81 | 9 (27.3) | 37 (59.7) | 35 (51.5) | 0.010 |
Ecchymosis | 19 | 4 (12.1) | 9 (14.5) | 6 (8.8) | 0.59 |
Fever | 30 | 3 (9.1) | 12 (19.4) | 15 (22.1) | 0.28 |
Infection | 26 | 4 (12.1) | 9 (14.5) | 13 (19.1) | 0.61 |
Dyspnea | 68 | 18 (54.5) | 27 (43.5) | 23 (33.8) | 0.13 |
Chest pain | 35 | 7 (21.2) | 15 (24.2) | 13 (19.1) | 0.78 |
Cough | 35 | 4 (12.1) | 15 (24.2) | 16 (23.5) | 0.34 |
CNS | 41 | 12 (36.4) | 12 (19.4) | 17 (25) | 0.19 |
Peripheral neuropathy | 70 | 18 (54.5) | 27 (43.5) | 25 (36.8) | 0.23 |
Hematuria | 56 | 9 (27.3) | 17 (27.4) | 30 (44.1) | 0.08 |
Renal injury | 93 | 22 (66.7) | 32 (51.6) | 39 (57.4) | 0.36 |
Weight loss * | 76 | 23 (69.7) | 24 (38.7) | 29 (42.6) | 0.011 |
Laboratory test | |||||
Hemoglobin (g/dL) | 10.97 ± 2.08 | 12.54 ± 4.03 | 11.08 ± 1.33 | 0.005 | |
RBC (×106/mm3) | 3.81 ± 1.25 | 4.31 ± 0.62 | 3.94 ± 0.60 | 0.004 | |
HCT (%) | 38.21 ± 7.01 | 39.15 ± 5.69 | 37.01 ± 5.76 | 0.13 | |
MCV (fl) | 80.85 ± 6.20 | 82.63 ± 5.82 | 80.78 ± 6.79 | 0.20 | |
Platelet count (×103 per mm3) | 292.21 ± 94.31 | 255.84 ± 69.54 | 257.40 ± 72.93 | 0.06 | |
WBC (×103 /uL) | 6.99 ± 2.06 | 6.35 ± 1.94 | 6.51 ± 2.52 | 0.41 | |
Neutrophil (%) | 66.42 ± 10.49 | 62.35 ± 10.70 | 63.00 ± 9.89 | 0.17 | |
Lymphocyte (%) | 26.61 ± 10.45 | 31.87 ± 10.41 | 30.44 ± 9.03 | 0.048 | |
C3 (mg/dL) | 100.63 ± 56.09 | 94.31 ± 39.65 | 94.69 ± 52.05 | 0.81 | |
C4 (mg/dL) | 24.63 ± 16.29 | 28.22 ± 13.50 | 29.44 ± 16.64 | 0.33 | |
CRP (mg/L) | 2.48 ± 1.14 | 2.56 ± 1.27 | 3.43 ± 4.16 | 0.14 | |
ALT (U/L) | 25.09 ± 10.88 | 28.11 ± 9.83 | 25.93 ± 8.57 | 0.26 | |
AST (U/L) | 24.30 ± 8.60 | 29.02 ± 8.99 | 26.18 ± 8.33 | 0.030 | |
Serum creatinine (mg/dL) | 1.39 ± 1.85 | 1.07 ± 0.73 | 1.15 ± 1.11 | 0.44 | |
Blood urea (mg/dL) | 39.01 ± 19.71 | 35.40 ± 10.30 | 32.58 ± 6.63 | 0.034 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismail, N.M.; Toraih, E.A.; Mohammad, M.H.S.; Alshammari, E.M.; Fawzy, M.S. Association of microRNA-34a rs2666433 (A/G) Variant with Systemic Lupus Erythematosus in Female Patients: A Case-Control Study. J. Clin. Med. 2021, 10, 5095. https://doi.org/10.3390/jcm10215095
Ismail NM, Toraih EA, Mohammad MHS, Alshammari EM, Fawzy MS. Association of microRNA-34a rs2666433 (A/G) Variant with Systemic Lupus Erythematosus in Female Patients: A Case-Control Study. Journal of Clinical Medicine. 2021; 10(21):5095. https://doi.org/10.3390/jcm10215095
Chicago/Turabian StyleIsmail, Nesreen M., Eman A. Toraih, Mai H. S. Mohammad, Eida M. Alshammari, and Manal S. Fawzy. 2021. "Association of microRNA-34a rs2666433 (A/G) Variant with Systemic Lupus Erythematosus in Female Patients: A Case-Control Study" Journal of Clinical Medicine 10, no. 21: 5095. https://doi.org/10.3390/jcm10215095
APA StyleIsmail, N. M., Toraih, E. A., Mohammad, M. H. S., Alshammari, E. M., & Fawzy, M. S. (2021). Association of microRNA-34a rs2666433 (A/G) Variant with Systemic Lupus Erythematosus in Female Patients: A Case-Control Study. Journal of Clinical Medicine, 10(21), 5095. https://doi.org/10.3390/jcm10215095