Immunotherapy Monitoring with Immune Checkpoint Inhibitors Based on [18F]FDG PET/CT in Metastatic Melanomas and Lung Cancer
Abstract
:1. Introduction
2. New Concepts in Tumor Response during Immunotherapy
3. Response Assessment in Solid Tumors Treated with Checkpoint Inhibitors
4. Combined Parameters for Outcome Prediction
5. Next Generation Imaging for Immunotherapy in Cancer
6. Endnote Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PERCIST | PET Response Criteria in Solid Tumors |
PECRIT | PET/CT Criteria for Early Prediction of Response to Immune Checkpoint Inhibitor Therapy (combined RECIST 1.1 and PERCIST) |
PERCIMT | PET Response Evaluation Criteria for Immunotherapy |
CMR | complete metabolic response |
PMR | partial metabolic response |
SMD | stable metabolic disease |
PMD | progressive metabolic disease |
SULpeak | lean body mass corrected SUV peak |
UPMD | unconfirmed progressive metabolic disease |
CPMD | confirmed progressive metabolic disease. |
RECIST | Response Evaluation Criteria in Solid Tumors |
irRC | immune-related Response Criteria |
CR | complete response |
PR | partial response |
SD | stable disease |
PD | progressive disease |
iUPD | initially unconfirmed progressive disease |
iCPD | confirmed progressive disease |
CB | clinical benefit |
EORTC | European Organization for Research and Treatment of Cancer (EORTC5, includes the sum of SUVmax) |
MTV | metabolic tumor volume |
wbMTV | whole body MTV |
TMTV | total metabolic tumor volume |
WB-MATV | whole body metabolically active tumor volume |
TLG | total lesions glycolysis |
iDR | immune dissociated-response |
ETD | early treatment discontinuation |
BLR | bone marrow-to-liver SUVmax ratio |
SLR | spleen-to-liver SUVmax ratio |
dNLR | derived neutrophils-to-lymphocytes ratio |
LDH | lactate dehydrogenase |
FD | fractal dimension |
ICI | immune checkpoint inhibitors |
irAEs | immune-related adverse events |
IMPI | immune-metabolic-prognostic index |
ATB | antibiotic |
ADC | apparent diffusion coefficient |
SRE | Small Run Emphasis |
mpRS | multiparametric radiomics signature |
DLS | deeply learned score |
DCB | durable clinical benefit |
PFS | progression-free survival |
OS | overall survival |
DCR | disease control rate |
ORR | overall response rate |
Muc-M | mucosal melanoma |
Cut-M | cutaneous melanoma |
sPD-L1 | soluble PD-L1. |
References
- Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, W.R.; Sosman, A.J.; Haanen, B.J.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, C.J.; et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 2010, 363, 711–723. [Google Scholar] [CrossRef]
- Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef]
- Brahmer, J.; Reckamp, K.L.; Baas, P.; Crinò, L.; Eberhardt, W.E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E.E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 123–135. [Google Scholar] [CrossRef] [Green Version]
- Herbst, R.S.; Baas, P.; Kim, D.W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.Y.; Molina, J.; Kim, J.H.; Arvis, C.D.; Ahn, M.J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef]
- Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; von Pawel, J.; Gadgeel, S.M.; Hida, T.; Kowalski, D.M.; Dols, M.C.; et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet 2017, 389, 255–265. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Wolchok, J.D.; Hoos, A.; O’Day, S.; Weber, J.S.; Hamid, O.; Lebbé, C.; Maio, M.; Binder, M.; Bohnsack, O.; Nichol, G.; et al. Guidelines for the evaluation of immune therapy activity in solid tumors: Immune-related response criteria. Clin. Cancer Res. 2009, 15, 7412–7420. [Google Scholar] [CrossRef] [Green Version]
- Nishino, M.; Gargano, M.; Suda, M.; Ramaiya, N.H.; Hodi, F.S. Optimizing immune-related tumor response assessment: Does reducing the number of lesions impact response assessment in melanoma patients treated with ipilimumab? J. Immunother. Cancer 2014, 2, 17. [Google Scholar] [CrossRef]
- Seymour, L.; Bogaerts, J.; Perrone, A.; Ford, R.; Schwartz, L.H.; Mandrekar, S.; Lin, N.U.; Litière, S.; Dancey, J.; Chen, A.; et al. iRECIST: Guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017, 18, e143–e152. [Google Scholar] [CrossRef] [Green Version]
- Hodi, F.S.; Ballinger, M.; Lyons, B.; Soria, J.C.; Nishino, M.; Tabernero, J.; Powles, T.; Smith, D.; Hoos, A.; McKenna, C.; et al. Immune-Modified Response Evaluation Criteria In Solid Tumors (imRECIST): Refining guidelines to assess the clinical benefit of cancer immunotherapy. J. Clin. Oncol. 2018, 36, 850–858. [Google Scholar] [CrossRef]
- Young, H.; Baum, R.; Cremerius, U.; Herholz, K.; Hoekstra, O.; Lammertsma, A.A.; Pruim, J.; Price, P. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: Review and 1999 EORTC recommendations. Eur. J. Cancer 1999, 35, 1773–1782. [Google Scholar] [CrossRef]
- Wahl, R.L.; Jacene, H.; Kasamon, Y.; Lodge, M.A. From RECIST to PERCIST: Evolving considerations for PET response criteria in solid tumors. J. Nucl. Med. 2009, 50, 122S–150S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anwar, H.; Sachpekidis, C.; Winkler, J.; Kopp-Schneider, A.; Haberkorn, U.; Hassel, J.C.; Dimitrakopoulou-Strauss, A. Absolute number of new lesions on 18F-FDG PET/CT is more predictive of clinical response than SUV changes in metastatic melanoma patients receiving ipilimumab. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 376–383. [Google Scholar] [CrossRef]
- Ito, K.; Teng, R.; Schöder, H.; Humm, J.L.; Ni, A.; Michaud, L.; Nakajima, R.; Yamashita, R.; Wolchok, J.D.; Weber, W.A. 18F-FDG PET/CT for monitoring of ipilimumab therapy in patients with metastatic melanoma. J. Nucl. Med. 2019, 60, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Goldfarb, L.; Duchemann, B.; Chouahnia, K.; Zelek, L.; Soussan, M. Monitoring anti-PD-1-based immunotherapy in non-small cell lung cancer with FDG PET: Introduction of iPERCIST. EJNMMI Res. 2019, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.Y.; Lipson, E.J.; Im, H.J.; Rowe, S.P.; Gonzalez, E.M.; Blackford, A.; Chirindel, A.; Pardoll, D.M.; Topalian, S.L.; Wahl, R.L. Prediction of response to immune checkpoint inhibitor therapy using early time-point (18)F-FDG PET/CT imaging in patients with advanced melanoma. J. Nucl. Med. 2017, 58, 1421–1428. [Google Scholar] [CrossRef] [Green Version]
- Brandsma, D.; Stalpers, L.; Taal, W.; Sminia, P.; van den Bent, M.J. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol. 2008, 9, 453–461. [Google Scholar] [CrossRef]
- Castello, A.; Lopci, E. Update on tumor metabolism and patterns of response to immunotherapy. Q. J. Nucl. Med. Mol. Imaging 2020, 64, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Borcoman, E.; Nandikolla, A.; Long, G.; Goel, S.; Le Tourneau, C. Patterns of Response and Progression to immunotherapy. Am. Soc. Clin. Oncol. Educ. Book 2018, 38, 169–178. [Google Scholar] [CrossRef]
- Onesti, C.E.; Freres, P.; Jerusalem, G. Atypical patterns of response to immune checkpoint inhibitors: Interpreting pseudoprogression and hyperprogression in decision making for patients’ treatment. J. Thorac. Dis. 2019, 11, 35–38. [Google Scholar] [CrossRef]
- Champiat, S.; Dercle, L.; Ammari, S.; Massard, C.; Hollebecque, A.; Postel-Vinay, S.; Chaput, N.; Eggermont, A.; Marabelle, A.; Soria, J.C.; et al. Hyperprogressive Disease Is a New Pattern of Progression in Cancer Patients Treated by Anti-PD-1/PD-L1. Clin. Cancer Res. 2017, 23, 1920–1928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrara, R.; Mezquita, L.; Texier, M.; Lahmar, J.; Audigier-Valette, C.; Tessonnier, L.; Mazieres, J.; Zalcman, G.; Brosseau, S.; Le Moulec, S.; et al. Hyperprogressive Disease in Patients With Advanced Non-Small Cell Lung Cancer Treated With PD-1/PD-L1 Inhibitors or With Single Agent Chemotherapy. JAMA Oncol. 2018, 4, 1543–1552. [Google Scholar] [CrossRef]
- Kato, S.; Goodman, A.; Walavalkar, V.; Barkauskas, D.A.; Sharabi, A.; Kurzrock, R. Hyperprogressors after Immunotherapy: Analysis of Genomic Alterations Associated with Accelerated Growth Rate. Clin. Cancer Res. 2017, 23, 4242–4250. [Google Scholar] [CrossRef] [Green Version]
- Saâda-Bouzid, E.; Defaucheux, C.; Karabajakian, A.; Coloma, V.P.; Servois, V.; Paoletti, X.; Even, C.; Fayette, J.; Guigay, J.; Loirat, D.; et al. Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Ann. Oncol. 2017, 28, 1605–1611. [Google Scholar] [CrossRef]
- Lo Russo, G.; Moro, M.; Sommariva, M.; Cancila, V.; Boeri, M.; Centonze, G.; Ferro, S.; Ganzinelli, M.; Gasparini, P.; Huber, V.; et al. Antibody-Fc/FcR interaction on macrophages as a mechanism for hyperprogressive disease in non-small cell lung cancer subsequent to PD-1/PD-L1 blockade. Clin. Cancer Res. 2019, 25, 989–999. [Google Scholar] [CrossRef] [Green Version]
- Matos, I.; Martin-Liberal, J.; García-Ruiz, A.; Hierro, C.; Ochoa de Olza, M.; Viaplana, C.; Azaro, A.; Vieito, M.; Braña, I.; Mur, G.; et al. Capturing hyperprogressive disease with immune-checkpoint inhibitors using RECIST 1.1 criteria. Clin. Cancer Res. 2020, 26, 1846–1855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caramella, C.; Ferrara, R.; Besse, B. Clarification of Definitions of Hyperprogressive Disease During Immunotherapy-Reply. JAMA Oncol. 2021, 7, 137. [Google Scholar] [CrossRef]
- Castello, A.; Rossi, S.; Toschi, L.; Mazziotti, E.; Lopci, E. Hyperprogressive Disease in Patients With Non-Small Cell Lung Cancer Treated With Checkpoint Inhibitors: The Role of (18)FFDG PET/CT. J. Nucl. Med. 2020, 61, 821–826. [Google Scholar] [CrossRef] [PubMed]
- Tazdait, M.; Mezquita, L.; Lahmar, J.; Ferrara, R.; Bidault, F.; Ammari, S.; Balleyguier, C.; Planchard, D.; Gazzah, A.; Soria, J.C.; et al. Patterns of responses in metastatic NSCLC during PD-1 or PDL-1 inhibitor therapy: Comparison of RECIST 1.1, irRECIST and iRECIST criteria. Eur. J. Cancer 2018, 88, 38–47. [Google Scholar] [CrossRef]
- Humbert, O.; Cadour, N.; Paquet, M.; Schiappa, R.; Poudenx, M.; Chardin, D.; Borchiellini, D.; Benisvy, D.; Ouvrier, M.J.; Zwarthoed, C.; et al. 18FDG PET/CT in the early assessment of non-small cell lung cancer response to immunotherapy: Frequency and clinical significance of atypical evolutive patterns. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 1158–1167. [Google Scholar] [CrossRef]
- Humbert, O.; Chardin, D. Dissociated Response in Metastatic Cancer: An Atypical Pattern Brought into the Spotlight with Immunotherapy. Front. Oncol. 2020, 10, 566297. [Google Scholar] [CrossRef]
- Postow, M.A.; Sidlow, R.; Hellmann, M.D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 2018, 378, 158–168. [Google Scholar] [CrossRef]
- Wang, D.Y.; Salem, J.E.; Cohen, J.V.; Chandra, S.; Menzer, C.; Ye, F.; Zhao, S.; Das, S.; Beckermann, K.E.; Ha, L.; et al. Fatal toxic effects associated with immune checkpoint inhibitors: A systematic review and meta-analysis. JAMA Oncol. 2018, 4, 1721–1728. [Google Scholar] [CrossRef] [Green Version]
- Martins, F.; Sofiya, L.; Sykiotis, G.P.; Lamine, F.; Maillard, M.; Fraga, M.; Shabafrouz, K.; Ribi, C.; Cairoli, A.; Guex-Crosier, Y.; et al. Adverse effects of immune-checkpoint inhibitors: Epidemiology, management and surveillance. Nat. Rev. Clin. Oncol. 2019, 16, 563–580. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Blake, S.J.; Smyth, M.J.; Teng, M.W.I. Improved mouse models to assess tumour immunity and irAEs after combination cancer immunotherapies. Clin. Transl. Immunol. 2014, 3, e22. [Google Scholar] [CrossRef] [PubMed]
- Haratani, K.; Hayashi, H.; Chiba, Y.; Kudo, K.; Yonesaka, K.; Kato, R.; Kaneda, H.; Hasegawa, Y.; Tanaka, K.; Takeda, M.; et al. Association of Immune-Related Adverse Events With Nivolumab Efficacy in Non–Small-Cell Lung Cancer. JAMA Oncol. 2018, 4, 374–378. [Google Scholar] [CrossRef]
- Hussaini, S.; Chehade, R.; Boldt, R.G.; Raphael, J.; Blanchette, P.; Maleki Vareki, S.; Fernandes, R. Association between immune-related side effects and efficacy and benefit of immune checkpoint inhibitors—A systematic review and meta-analysis. Cancer Treat. Rev. 2020, 92, 102134. [Google Scholar] [CrossRef]
- Sachpekidis, C.; Anwar, H.; Winkler, J.; Kopp-Schneider, A.; Larribere, L.; Haberkorn, U.; Hassel, J.C.; Dimitrakopoulou-Strauss, A. The role of interim 18F-FDG PET/CT in prediction of response to ipilimumab treatment in metastatic melanoma. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1289–1296. [Google Scholar] [CrossRef]
- Amrane, K.; Le Goupil, D.; Quere, G.; Delcroix, O.; Gouva, S.; Schick, U.; Salaun, P.Y.; Abgral, R.; Alavi, Z.; Keromnes, N.; et al. Prediction of response to immune checkpoint inhibitor therapy using 18F-FDG PET/CT in patients with melanoma. Medicine 2019, 98, e16417. [Google Scholar] [CrossRef]
- Beer, L.; Hochmair, M.; Haug, A.R.; Schwabel, B.; Kifjak, D.; Wadsak, W.; Fuereder, T.; Fabikan, H.; Fazekas, A.; Schwab, S.; et al. Comparison of RECIST, iRECIST, and PERCIST for the evaluation of response to PD-1/PD-L1 blockade therapy in patients with non-small cell lung cancer. Clin. Nucl. Med. 2019, 44, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Rossi, G.; Bauckneht, M.; Genova, C.; Rijavec, E.; Biello, F.; Mennella, S.; Dal Bello, M.G.; Cittadini, G.; Bruzzi, P.; Piva, R.; et al. Comparison Between 18F-FDG PET-Based and CT-Based Criteria in Non-Small Cell Lung Cancer Patients Treated with Nivolumab. J. Nucl. Med. 2020, 61, 990–998. [Google Scholar] [CrossRef]
- Ayati, N.; Lee, S.T.; Zakavi, S.R.; Cheng, M.; Lau, W.F.E.; Parakh, S.; Pathmaraj, K.; Scott, A.M. Response Evaluation and Survival Prediction After PD-1 Immunotherapy in Patients with Non-Small Cell Lung Cancer: Comparison of Assessment Methods. J. Nucl. Med. 2021, 62, 926–933. [Google Scholar] [CrossRef]
- Castello, A.; Rossi, S.; Toschi, L.; Lopci, E. Comparison of Metabolic and Morphological Response Criteria for Early Prediction of Response and Survival in NSCLC Patients Treated With Anti-PD-1/PD-L1. Front. Oncol. 2020, 10, 1090. [Google Scholar] [CrossRef] [PubMed]
- Kong, B.Y.; Menzies, A.M.; Saunders, C.A.; Liniker, E.; Ramanujam, S.; Guminski, A.; Kefford, R.F.; Long, G.V.; Carlino, M.S. Residual FDG-PET metabolic activity in metastatic melanoma patients with prolonged response to anti-PD-1 therapy. Pigment. Cell Melanoma Res. 2016, 29, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Seith, F.; Forschner, A.; Schmidt, H.; Pfannenberg, C.; Gückel, B.; Nikolaou, K.; la Fougère, C.; Garbe, C.; Schwenzer, N. 18F-FDG-PET detects complete response to PD1-therapy in melanoma patients two weeks after therapy start. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.C.; Emmett, L.; Lo, S.; Liu, V.; Kapoor, R.; Carlino, M.S.; Guminski, A.D.; Long, G.V.; Menzies, A.M. FDG-PET response and outcome from anti-PD-1 therapy in metastatic melanoma. Ann. Oncol. 2018, 29, 2115–2120. [Google Scholar] [CrossRef]
- Ito, K.; Schöder, H.; Teng, R.; Humm, J.L.; Ni, A.; Wolchok, J.D.; Weber, W.A. Prognostic value of baseline metabolic tumor volume measured on 18F-fluorodeoxyglucose positron emission tomography/computed tomography in melanoma patients treated with ipilimumab therapy. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 930–939. [Google Scholar] [CrossRef] [PubMed]
- Boursi, B.; Werner, T.J.; Gholami, S.; Margalit, O.; Baruch, E.; Markel, G.; Eshet, Y.; Houshmand, S.; Shacham-Shmueli, E.; Mitchell, T.C.; et al. Physiologic colonic fluorine-18-fluorodeoxyglucose uptake may predict response to immunotherapy in patients with metastatic melanoma. Melanoma Res. 2019, 29, 318–321. [Google Scholar] [CrossRef]
- Sachpekidis, C.; Larribère, L.; Kopp-Schneider, A.; Hassel, J.C.; Dimitrakopoulou-Strauss, A. Can benign lymphoid tissue changes in 18F-FDG PET/CT predict response to immunotherapy in metastatic melanoma? Cancer Immunol. Immunother. 2019, 68, 297–303. [Google Scholar] [CrossRef]
- Sachpekidis, C.; Kopp-Schneider, A.; Hakim-Meibodi, L.; Dimitrakopoulou-Strauss, A.; Hassel, J.C. 18F-FDG PET/CT longitudinal studies in patients with advanced metastatic melanoma for response evaluation of combination treatment with vemurafenib and ipilimumab. Melanoma Res. 2019, 29, 178–186. [Google Scholar] [CrossRef]
- Seban, R.D.; Nemer, J.S.; Marabelle, A.; Yeh, R.; Deutsch, E.; Ammari, S.; Moya-Plana, A.; Mokrane, F.Z.; Gartrell, R.D.; Finkel, G.; et al. Prognostic and theranostic 18F-FDG PET biomarkers for anti-PD1 immunotherapy in metastatic melanoma: Association with outcome and transcriptomics. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2298–2310. [Google Scholar] [CrossRef]
- Nobashi, T.; Baratto, L.; Reddy, S.A.; Srinivas, S.; Toriihara, A.; Hatami, N.; Yohannan, T.K.; Mittra, E. Predicting Response to Immunotherapy by Evaluating Tumors, Lymphoid Cell-Rich Organs, and Immune-Related Adverse Events Using FDG-PET/CT. Clin. Nucl. Med. 2019, 44, e272–e279. [Google Scholar] [CrossRef] [PubMed]
- Seban, R.D.; Moya-Plana, A.; Antonios, L.; Yeh, R.; Marabelle, A.; Deutsch, E.; Schwartz, L.H.; Gómez, R.G.H.; Saenger, Y.; Robert, C.; et al. Prognostic 18F-FDG PET biomarkers in metastatic mucosal and cutaneous melanoma treated with immune checkpoint inhibitors targeting PD-1 and CTLA-4. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 2301–2312. [Google Scholar] [CrossRef] [PubMed]
- Iravani, A.; Osman, M.M.; Weppler, A.M.; Wallace, R.; Galligan, A.; Lasocki, A.; Hunter, M.O.; Akhurst, T.; Hofman, M.S.; Lau, P.K.H.; et al. FDG PET/CT for tumoral and systemic immune response monitoring of advanced melanoma during first-line combination ipilimumab and nivolumab treatment. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 2776–2786. [Google Scholar] [CrossRef] [PubMed]
- Nakamoto, R.; Zaba, L.C.; Rosenberg, J.; Reddy, S.A.; Nobashi, T.W.; Davidzon, G.; Aparici, C.M.; Nguyen, J.; Moradi, F.; Iagaru, A.; et al. Prognostic value of volumetric PET parameters at early response evaluation in melanoma patients treated with immunotherapy. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 2787–2795. [Google Scholar] [CrossRef]
- Wong, A.; Callahan, J.; Keyaerts, M.; Neyns, B.; Mangana, J.; Aberle, S.; Herschtal, A.; Fullerton, S.; Milne, D.; Iravani, A.; et al. 18 F-FDG PET/CT based spleen to liver ratio associates with clinical outcome to ipilimumab in patients with metastatic melanoma. Cancer Imaging 2020, 20, 36. [Google Scholar] [CrossRef]
- Seith, F.; Forschne, R.A.; Weide, B.; Gückel, B.; Schwartz, M.; Schwenck, J.; Othman, A.E.; Fenchel, M.; Garbe, C.; Nikolaou, K.; et al. Is there a link between very early changes of primary and secondary lymphoid organs in 18F-FDG-PET/MRI and treatment response to checkpoint inhibitor therapy? J. Immunother. Cancer 2020, 8, e000656. [Google Scholar] [CrossRef]
- Annovazzi, A.; Vari, S.; Giannarelli, D.; Pasqualoni, R.; Sciuto, R.; Carpano, S.; Cognetti, F.; Ferraresi, V. Comparison of 18F-FDG PET/CT Criteria for the Prediction of Therapy Response and Clinical Outcome in Patients With Metastatic Melanoma Treated With Ipilimumab and PD-1 Inhibitors. Clin. Nucl. Med. 2020, 45, 187–194. [Google Scholar] [CrossRef]
- Nakamoto, R.; Zaba, L.C.; Rosenberg, J.; Arani Reddy, S.; Nobashi, T.W.; Ferri, V.; Davidzon, G.; Mari Aparici, C.; Nguyen, J.; Moradi, F.; et al. Imaging Characteristics and Diagnostic Performance of 2-deoxy-2-[18F] fluoro-D-Glucose PET/CT for Melanoma Patients Who Demonstrate Hyperprogressive Disease When Treated with Immunotherapy. Mol. Imaging Biol. 2021, 23, 139–147. [Google Scholar] [CrossRef]
- Prigent, K.; Lasnon, C.; Ezine, E.; Janson, M.; Coudrais, N.; Joly, E.; Césaire, L.; Stefan, A.; Depontville, M.; Aide, N. Assessing immune organs on 18F-FDG PET/CT imaging for therapy monitoring of immune checkpoint inhibitors: Inter-observer variability, prognostic value and evolution during the treatment course of melanoma patients. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2573–2585. [Google Scholar] [CrossRef]
- Sachpekidis, C.; Kopp-Schneider, A.; Hassel, J.; Dimitrakopoulou-Strauss, A. Assessment of early metabolic progression in melanoma patients under immunotherapy: An 18F-FDG PET/CT study. EJNMMI Res. 2021, 11, 89. [Google Scholar] [CrossRef] [PubMed]
- Sachpekidis, C.; Hassel, J.C.; Kopp-Schneider, A.; Haberkorn, U.; Dimitrakopoulou-Strauss, A. Quantitative Dynamic 18F-FDG PET/CT in Survival Prediction of Metastatic Melanoma under PD-1 Inhibitors. Cancers 2021, 13, 1019. [Google Scholar] [CrossRef]
- Schank, T.E.; Forschner, A.; Sachse, M.M.; Dimitrakopoulou-Strauss, A.; Sachpekidis, C.; Stenzinger, A.; Volckma, R.A.-L.; Enk, A.; Hassel, J.C. Complete Metabolic Response in FDG-PET-CT Scan before Discontinuation of Immune Checkpoint Inhibitors Correlates with Long Progression-Free Survival. Cancers 2021, 13, 2616. [Google Scholar] [CrossRef] [PubMed]
- Nakamoto, R.; Zaba, L.C.; Liang, T.; Reddy, S.A.; Davidzon, G.; Aparici, C.M.; Nguyen, J.; Moradi, F.; Iagaru, A.; Franc, B.L. Prognostic Value of Bone Marrow Metabolism on Pretreatment 18F-FDG PET/CT in Patients with Metastatic Melanoma Treated with Anti-PD-1 Therapy. J. Nucl. Med. 2021, 62, 1380–1383. [Google Scholar] [CrossRef]
- Kitajima, K.; Watabe, T.; Nakajo, M.; Ishibashi, M.; Daisaki, H.; Soeda, F.; Tanemura, A.; Kanekura, T.; Yamazaki, N.; Ito, K. Tumor response evaluation in patients with malignant melanoma undergoing immune checkpoint inhibitor therapy and prognosis prediction using 18F-FDG PET/CT: Multicenter study for comparison of EORTC, PERCIST, and imPERCIST. Jpn. J. Radiol 2021, in press. [Google Scholar] [CrossRef] [PubMed]
- Grizzi, F.; Castello, A.; Lopci, E. Is it time to change our vision of tumor metabolism prior to immunotherapy? Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Kaira, K.; Higuchi, T.; Naruse, I.; Arisaka, Y.; Tokue, A.; Altan, B.; Suda, S.; Mogi, A.; Shimizu, K.; Sunaga, N.; et al. Metabolic activity by 18F-FDG-PET/CT is predictive of early response after nivolumab in previously treated NSCLC. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Jreige, M.; Letovanec, I.; Chaba, K.; Renaud, S.; Rusakiewicz, S.; Cristina, V.; Peters, S.; Krueger, T.; de Leval, L.; Kandalaft, L.E.; et al. 18F-FDG PET metabolic-to-morphological volume ratio predicts PDL1 tumour expression and response to PD-1 blockade in non-small-cell lung cancer. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1859–1868. [Google Scholar] [CrossRef]
- Evangelista, L.; Cuppari, L.; Menis, J.; Bonanno, L.; Reccia, P.; Frega, S.; Pasello, G. 18F-FDG PET/CT in non-small-cell lung cancer patients: A potential predictive biomarker of response to immunotherapy. Nucl. Med. Commun. 2019, 40, 802–807. [Google Scholar] [CrossRef]
- Takada, K.; Toyokawa, G.; Yoneshima, Y.; Tanaka, K.; Okamoto, I.; Shimokawa, M.; Wakasu, S.; Haro, A.; Osoegawa, A.; Tagawa, T.; et al. (18)F-FDG uptake in PET/CT is a potential predictive biomarker of response to anti-PD-1 antibody therapy in non-small cell lung cancer. Sci. Rep. 2019, 9, 13362. [Google Scholar] [CrossRef] [Green Version]
- Seban, R.D.; Mezquita, L.; Berenbaum, A.; Dercle, L.; Botticella, A.; Le Pechoux, C.; Caramella, C.; Deutsch, E.; Grimaldi, S.; Adam, J.; et al. Baseline metabolic tumor burden on FDG PET/CT scans predicts outcome in advanced NSCLC patients treated with immune checkpoint inhibitors. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Castello, A.; Carbone, F.G.; Rossi, S.; Monterisi, S.; Federico, D.; Toschi, L.; Lopci, E. Circulating Tumor Cells and Metabolic Parameters in NSCLC Patients Treated with Checkpoint Inhibitors. Cancers 2020, 12, 487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seban, R.D.; Assié, J.B.; Giroux-Leprieur, E.; Massiani, M.A.; Soussan, M.; Bonardel, G.; Chouaid, C.; Playe, M.; Goldfarb, L.; Duchemann, B.; et al. Association of the Metabolic Score Using Baseline FDG-PET/CT and dNLR with Immunotherapy Outcomes in Advanced NSCLC Patients Treated with First-Line Pembrolizumab. Cancers 2020, 12, 2234. [Google Scholar] [CrossRef] [PubMed]
- Chardin, D.; Paquet, M.; Schiappa, R.; Darcourt, J.; Bailleux, C.; Poudenx, M.; Sciazza, A.; Ilie, M.; Benzaquen, J.; Martin, N.; et al. Baseline metabolic tumor volume as a strong predictive and prognostic biomarker in patients with non-small cell lung cancer treated with PD1 inhibitors: A prospective study. J. Immunother. Cancer 2020, 8, e000645. [Google Scholar] [CrossRef]
- Castello, A.; Rossi, S.; Toschi, L.; Mansi, L.; Lopci, E. Soluble PD-L1 in NSCLC Patients Treated with Checkpoint Inhibitors and Its Correlation with Metabolic Parameters. Cancers 2020, 12, 1373. [Google Scholar] [CrossRef]
- Castello, A.; Toschi, L.; Rossi, S.; Mazziotti, E.; Lopci, E. The immune-metabolic-prognostic index and clinical outcomes in patients with non-small cell lung carcinoma under checkpoint inhibitors. J. Cancer Res. Clin. Oncol. 2020, 146, 1235–1243. [Google Scholar] [CrossRef]
- Tao, X.; Li, N.; Wu, N.; He, J.; Ying, J.; Gao, S.; Wang, S.; Wang, J.; Wang, Z.; Ling, Y.; et al. The efficiency of 18F-FDG PET-CT for predicting the major pathologic response to the neoadjuvant PD-1 blockade in resectable non-small cell lung cancer. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 1209–1219. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, K.; Kaira, K.; Yamaguchi, O.; Mouri, A.; Shiono, A.; Miura, Y.; Murayama, Y.; Kobayashi, K.; Kagamu, H.; Kuji, I. Potential of FDG-PET as Prognostic Significance after anti-PD-1 Antibody against Patients with Previously Treated Non-Small Cell Lung Cancer. J. Clin. Med. 2020, 9, 725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umeda, Y.; Morikawa, M.; Anzai, M.; Ameshima, S.; Kadowaki, M.; Waseda, Y.; Shigemi, H.; Tsujikawa, T.; Kiyono, Y.; Okazawa, H.; et al. Predictive value of integrated 18F-FDG PET/MRI in the early response to nivolumab in patients with previously treated non-small cell lung cancer. J. Immunother. Cancer 2020, 8, e000349. [Google Scholar] [CrossRef]
- Seban, R.D.; Assie, J.B.; Giroux-Leprieur, E.; Massiani, M.A.; Soussan, M.; Bonardel, G.; Chouaid, C.; Playe, M.; Goldfarb, L.; Duchemann, B.; et al. FDG-PET biomarkers associated with long-term benefit from first-line immunotherapy in patients with advanced non-small cell lung cancer. Ann. Nucl. Med. 2020, 34, 968–974. [Google Scholar] [CrossRef]
- Cvetkovic, L.; Régis, C.; Richard, C.; Derosa, L.; Leblond, A.; Malo, J.; Messaoudene, M.; Desilets, A.; Belkaid, W.; Elkrief, A.; et al. Physiologic colonic uptake of 18F-FDG on PET/CT is associated with clinical response and gut microbiome composition in patients with advanced non-small cell lung cancer treated with immune checkpoint inhibitors. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1550–1559. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Kitajima, K.; Toriihara, A.; Ishibashi, M.; Nakahara, T.; Daisaki, H.; Ohe, Y.; Honda, R.; Kijima, T.; Hasegawa, S.; et al. 18F-FDG PET/CT for monitoring anti-PD-1 therapy in patients with non-small cell lung cancer using SUV harmonization of results obtained with various types of PET/CT scanners used at different centers. Ann. Nucl. Med. 2021, 35, 1253–1263. [Google Scholar] [CrossRef] [PubMed]
- Bauckneht, M.; Genova, C.; Rossi, G.; Rijavec, E.; Dal Bello, M.G.; Ferrarazzo, G.; Tagliamento, M.; Donegani, M.I.; Biello, F.; Chiola, S.; et al. The Role of the Immune Metabolic Prognostic Index in Patients with Non-Small Cell Lung Cancer (NSCLC) in Radiological Progression during Treatment with Nivolumab. Cancers 2021, 13, 3117. [Google Scholar] [CrossRef]
- Ferdinandus, J.; Metzenmacher, M.; Kessler, L.; Umutlu, L.; Aigner, C.; Karl, K.O.; Grünwald, V.; Eberhardt, W.; Fendler, W.P.; Herrmann, K.; et al. Complete metabolic response in patients with advanced non-small cell lung cancer with prolonged response to immune checkpoint inhibitor therapy. J. Immunother. Cancer 2021, 9, e002262. [Google Scholar] [CrossRef]
- Castello, A.; Rossi, S.; Toschi, L.; Lopci, E. Impact of Antibiotic Therapy and Metabolic Parameters in Non-Small Cell Lung Cancer Patients Receiving Checkpoint Inhibitors. J. Clin. Med. 2021, 10, 1251. [Google Scholar] [CrossRef]
- Vekens, K.; Everaert, H.; Neyns, B.; Ilsen, B.; Decoster, L. The Value of 18F-FDG PET/CT in Predicting the Response to PD-1 Blocking Immunotherapy in Advanced NSCLC Patients with High-Level PD-L1 Expression. Clin. Lung Cancer 2021, 22, 432–440. [Google Scholar] [CrossRef]
- Park, S.; Lee, Y.; Kim, T.-S.; Kim, S.-K.; Han, J.-Y. Response evaluation after immunotherapy in NSCLC: Early response assessment using FDG PET/CT. Medicine 2020, 99, e23815. [Google Scholar] [CrossRef] [PubMed]
- Ke, L.; Wang, L.; Yu, J.; Meng, X. Prognostic Significance of SUVmax Combined With Lactate Dehydrogenase in Advanced Lung Cancer Patients Treated With Immune Checkpoint Inhibitor Plus Chemotherapy: A Retrospective Study. Front. Oncol. 2021, 11, 652312. [Google Scholar] [CrossRef]
- Valentinuzzi, D.; Vrankar, M.; Boc, N.; Ahac, V.; Zupancic, Z.; Unk, M.; Skalic, K.; Zagar, I.; Studen, A.; Simoncic, U.; et al. [18F]FDG PET immunotherapy radiomics signature (iRADIOMICS) predicts response of non-small-cell lung cancer patients treated with pembrolizumab. Radiol. Oncol. 2020, 54, 285–294. [Google Scholar] [CrossRef]
- Polverari, G.; Ceci, F.; Bertaglia, V.; Reale, M.L.; Rampado, O.; Gallio, E.; Passera, R.; Liberini, V.; Scapoli, P.; Arena, V.; et al. 18 F-FDG PET Parameters and Radiomics Features Analysis in Advanced Nsclc Treated with Immunotherapy as Predictors of Therapy Response and Survival. Cancers 2020, 12, 1163. [Google Scholar] [CrossRef]
- Mu, W.; Tunali, I.; Gray, J.E.; Qi, J.; Schabath, M.B.; Gillies, R.J. Radiomics of 18F-FDG PET/CT images predicts clinical benefit of advanced NSCLC patients to checkpoint blockade immunotherapy. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 1168–1182. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Na, K.J.; Choi, H.; Ock, C.Y.; Ha, S.; Kim, M.; Park, S.; Keam, B.; Kim, T.M.; Paeng, J.C.; et al. Tumor immune profiles noninvasively estimated by FDG PET with deep learning correlate with immunotherapy response in lung adenocarcinoma. Theranostics 2020, 10, 10838–10848. [Google Scholar] [CrossRef] [PubMed]
- Flaus, A.; Habouzit, V.; De Leiris, N.; Vuillez, J.P.; Leccia, M.T.; Perrot, J.L.; Prevot, N.; Cachin, F. FDG PET biomarkers for prediction of survival in metastatic melanoma prior to anti-PD1 immunotherapy. Sci. Rep. 2021, 11, 18795. [Google Scholar] [CrossRef] [PubMed]
- Mu, W.; Jiang, L.; Shi, Y.; Tunali, I.; Gray, J.E.; Katsoulakis, E.; Tian, J.; Gillies, R.J.; Schabath, M.B. Non-invasive measurement of PD-L1 status and prediction of immunotherapy response using deep learning of PET/CT images. J. Immunother. Cancer 2021, 9, e002118. [Google Scholar] [CrossRef]
- Haghighat Jahromi, A.; Barkauskas, D.A.; Zabel, M.; Goodman, A.M.; Frampton, G.; Nikanjam, M.; Hoh, C.K.; Kurzrock, R. Relationship between tumor mutational burden and maximum standardized uptake value in 2-[18F]FDG PET (positron emission tomography) scan in cancer patients. EJNMMI Res. 2020, 10, 150. [Google Scholar] [CrossRef]
- Lopci, E.; Toschi, L.; Grizzi, F.; Rahal, D.; Olivari, L.; Castino, G.F.; Marchetti, S.; Cortese, N.; Qehajaj, D.; Pistillo, D.; et al. Correlation of metabolic information on FDG-PET with tissue expression of immune markers in patients with non-small cell lung cancer (NSCLC) who are candidates for upfront surgery. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 1954–1961. [Google Scholar] [CrossRef] [PubMed]
- Takada, K.; Toyokawa, G.; Okamoto, T.; Baba, S.; Kozuma, Y.; Matsubara, T.; Haratake, N.; Akamine, T.; Takamori, S.; Katsura, M.; et al. Metabolic characteristics of programmed cell death-ligand 1-expressing lung cancer on 18 F-fluorodeoxyglucose positron emission tomography/computed tomography. Cancer Med. 2017, 6, 2552–2561. [Google Scholar] [CrossRef]
- Takada, K.; Toyokawa, G.; Tagawa, T.; Kohashi, K.; Akamine, T.; Takamori, S.; Hirai, F.; Shoji, F.; Okamoto, T.; Oda, Y.; et al. Association Between PD-L1 Expression and Metabolic Activity on 18 F-FDG PET/CT in Patients with Small-sized Lung Cancer. Anticancer Res. 2017, 37, 7073–7082. [Google Scholar]
- Chen, R.; Zhou, X.; Liu, J.; Huang, G. Relationship between the expression of PD-1/PD-L1 and 18F-FDG uptake in bladder cancer. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 848–854. [Google Scholar] [CrossRef]
- Hirakata, T.; Fujii, T.; Kurozumi, S.; Katayama, A.; Honda, C.; Yanai, K.; Tokuda, S.; Nakazawa, Y.; Obayashi, S.; Yajima, R.; et al. FDG uptake reflects breast cancer immunological features: The PD-L1 expression and degree of TILs in primary breast cancer. Breast Cancer Res. Treat. 2020, 181, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Sun, D.; Guo, Y.; Guo, Y.; Xiao, J.; Wang, L.; Yao, X. Assessing PD-L1 Expression Level by Radiomic Features From PET/CT in Nonsmall Cell Lung Cancer Patients: An Initial Result. Acad. Radiol. 2020, 27, 171–179. [Google Scholar] [CrossRef]
- Higashikawa, K.; Yagi, K.; Watanabe, K.; Kamino, S.; Ueda, M.; Hiromura, M.; Enomoto, S. (64)Cu-DOTA-anti-CTLA-4 mAb enabled PET visualiza-tion of CTLA-4 on the T-cell infiltrating tumor tissues. PLoS ONE 2014, 9, e109866. [Google Scholar] [CrossRef]
- Natarajan, A.; Mayer, A.T.; Xu, L.; Reeves, R.E.; Gano, J.; Gambhir, S.S. Novel Radiotracer for ImmunoPET Imaging of PD-1 Checkpoint Expression on Tumor Infiltrating Lymphocytes. Bioconjug. Chem. 2015, 26, 2062–2069. [Google Scholar] [CrossRef]
- Hettich, M.; Braun, F.; Bartholomä, M.D.; Schirmbeck, R.; Niedermann, G. High-resolution PET imaging with therapeutic antibody-based PD-1/PD-L1 checkpoint tracers. Theranostics 2016, 6, 1629–1640. [Google Scholar] [CrossRef]
- Ehlerding, E.B.; England, C.G.; Majewski, R.L.; Valdovinos, H.F.; Jiang, D.; Liu, G.; McNeel, D.G.; Nickles, R.J.; Cai, W. ImmunoPET Imaging of CTLA-4 Expression in Mouse Models of Non-small Cell Lung Cancer. Mol. Pharm. 2017, 14, 1782–1789. [Google Scholar] [CrossRef] [Green Version]
- Niemeijer, A.N.; Leung, D.; Huisman, M.C.; Bahce, I.; Hoekstra, O.S.; van Dongen, G.A.M.S.; Boellaard, R.; Du, S.; Hayes, W.; Smith, R.; et al. Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer. Nat. Commun. 2018, 9, 4664. [Google Scholar] [CrossRef]
- Tavaré, R.; McCracken, M.N.; Zettlitz, K.A.; Knowles, S.M.; Salazar, F.B.; Olafsen, T.; Witte, O.N.; Wu, A.M. Engineered antibody fragments for immuno-PET imaging of endogenous CD8+ T cells in vivo. Proc. Natl. Acad. Sci. USA 2014, 111, 1108–1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavaré, R.; McCracken, M.N.; Zettlitz, K.A.; Knowles, S.M.; Salazar, F.B.; Olafsen, T.; Witte, O.N.; Wu, A.M. Immuno-PET of Murine T Cell Reconstitution Postadoptive Stem Cell Transplantation Using Anti-CD4 and Anti-CD8 Cys-Diabodies. J. Nucl. Med. 2015, 56, 1258–1264. [Google Scholar] [CrossRef] [Green Version]
- Larimer, B.M.; Wehrenberg-Kee, E.; Caraballo, A.; Mahmood, U. Quantitative CD3 PET Imaging Predicts Tumor Growth Response to Anti-CTLA-4 Therapy. J. Nucl. Med. 2016, 57, 1607–1611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rashidian, M.; Ingram, J.R.; Dougan, M.; Dongre, A.; Whang, K.A.; LeGall, C.; Cragnolini, J.J.; Bierie, B.; Gostissa, M.; Gorman, J.; et al. Predicting the response to CTLA-4 blockade by longitudinal noninvasive monitoring of CD8 T cells. J. Exp. Med. 2017, 214, 2243–2255. [Google Scholar] [CrossRef]
- Di Gialleonardo, V.; Signore, A.; Glaudemans, A.W.J.M.; Dierckx, R.A.J.O.; De Vries, E.F.J. N-(4-18F-fluorobenzoyl)interleukin-2 for PET of human-activated T lymphocytes. J. Nucl. Med. 2012, 53, 679–686. [Google Scholar] [CrossRef] [Green Version]
- Radu, C.G.; Shu, C.J.; Nair-Gill, E.; Shelly, S.M.; Barrio, J.R.; Satyamurthy, N.; Phelps, M.E.; Witte, O.N. Molecular imaging of lymphoid organs and immune activation by positron emission tomography with a new [18F]-labeled 2′-deoxycytidine analog. Nat. Med. 2008, 14, 783–788. [Google Scholar] [CrossRef] [Green Version]
- Larimer, B.M.; Wehrenberg-Klee, E.; Dubois, F.; Mehta, A.; Kalomeris, T.; Flaherty, K.; Boland, G.; Mahmood, U. Granzyme B PET Imaging as a Predictive Biomarker of Immunotherapy Response. Cancer Res. 2017, 77, 2318–2327. [Google Scholar] [CrossRef] [Green Version]
- Ronald, J.A.; Kim, B.S.; Gowrishankar, G.; Namavari, M.; Alam, I.S.; D’Souza, A.; Nishikii, H.; Chuang, H.Y.; Ilovich, O.; Lin, C.F.; et al. A PET imaging strategy to visualize activated T cells in acute graft-versus-host disease elicited by allogenic hematopoietic cell transplant. Cancer Res. 2017, 77, 2893–2902. [Google Scholar] [CrossRef] [Green Version]
- Larimer, B.M.; Bloch, E.; Nesti, S.; Austin, E.E.; Wehrenberg-Klee, E.; Boland, G.; Mahmood, U. The Effectiveness of Checkpoint Inhibitor Combinations and Administration Timing Can Be Measured by Granzyme B PET Imaging. Clin. Cancer Res. 2019, 25, 1196–1205. [Google Scholar] [CrossRef] [Green Version]
- Krekorian, M.; Fruhwirth, G.O.; Srinivas, M.; Figdor, C.G.; Heskamp, S.; Witney, T.H.; Aarntzen, E.H.J.G. Imaging of T-cells and their responses during anti-cancer immunotherapy. Theranostics 2019, 9, 7924–7947. [Google Scholar] [CrossRef]
- England, C.G.; Ehlerding, E.B.; Hernandez, R.; Rekoske, B.T.; Graves, S.A.; Sun, H.; Liu, G.; McNeel, D.G.; Barnhart, T.E.; Cai, W. Preclinical Pharmacokinetics and Biodistribution Studies of 89Zr-Labeled Pembrolizumab. J. Nucl. Med. 2017, 58, 162–168. [Google Scholar] [CrossRef] [Green Version]
- England, C.G.; Jiang, D.; Ehlerding, E.B.; Rekoske, B.T.; Ellison, P.A.; Hernandez, R.; Barnhart, T.E.; McNeel, D.G.; Huang, P.; Cai, W. 89 Zr-labeled nivolumab for imaging of T-cell infiltration in a humanized murine model of lung cancer. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 110–120. [Google Scholar] [CrossRef]
- Bensch, F.; van der Veen, E.L.; Lub-de Hooge, M.N.; Jorritsma-Smit, A.; Boellaard, R.; Kok, I.C.; Oosting, S.F.; Schröder, C.P.; Hiltermann, T.J.N.; van der Wekken, A.J.; et al. 89 Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat. Med. 2018, 24, 1852–1858. [Google Scholar] [CrossRef]
- Goggi, J.L.; Tan, Y.X.; Hartimath, S.V.; Jieu, B.; Hwang, Y.Y.; Jiang, L.; Boominathan, R.; Cheng, P.; Yuen, T.Y.; Chin, X.H.; et al. Granzyme B PET Imaging of Immune Checkpoint Inhibitor Combinations in Colon Cancer Phenotypes. Mol. Imaging Biol. 2020, 22, 1392–1402. [Google Scholar] [CrossRef]
- Nienhuis, P.H.; Antunes, I.F.; Glaudemans, A.W.J.M.; Jalving, M.; Leung, D.; Noordzij, W.; Slart, R.H.J.A.; de Vries, E.F.; Hospers, G.A.P. 18F-BMS986192 PET imaging of PD-L1 in metastatic melanoma patients with brain metastases treated with immune checkpoint inhibitors. A pilot study. J. Nucl. Med. 2021. [Google Scholar] [CrossRef]
- Aide, N.; Hicks, R.J.; Le Tourneau, C.; Lheureux, S.; Fanti, S.; Lopci, E. FDG PET/CT for assessing tumour response to immunotherapy: Report on the EANM symposium on immune modulation and recent review of the literature. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 238–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aide, N.; De Pontdeville, M.; Lopci, E. Evaluating response to immunotherapy with 18F-FDG PET/CT: Where do we stand? Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 1019–1021. [Google Scholar] [CrossRef] [Green Version]
Criteria | |||||
---|---|---|---|---|---|
Morphologic | CR | PR | SD | PD | New Lesions |
RECIST 1.1 (2009) [6] | disappearance of all lesions | ≥30% decrease from baseline | Neither PR nor PD | ≥20% increase, minimum 5 mm | as progressive disease |
irRC (2009) [7] | as RECIST 1.1 | ≥50% decrease from baseline | <50% decrease in tumor burden vs. baseline or <25% increase vs. nadir | ≥25% increase | incorporated into tumor burden; confirmed at least 4 weeks apart |
irRECIST (2013) [8] | as RECIST 1.1 | as RECIST 1.1 | Neither PR nor PD | as RECIST 1.1 | same as irRC |
iRECIST (2017) [9] | as RECIST 1.1 | as RECIST 1.1 | Neither PR nor PD | as RECIST 1.1 | iUPD, not incorporated into tumor burden; confirmed 4–12 weeks apart (iCPD) |
imRECIST (2018) [10] | as RECIST 1.1 | as RECIST 1.1 | Neither PR nor PD | as RECIST 1.1 | same as irRC |
Metabolic | CMR | PMR | SMD | PMD | New lesions |
EORTC (1999) [11] | complete resolution of [18F]FDG uptake | reduction of a minimum of 15% ± 25% in tumor SUV after 1 cycle of chemotherapy, and >25% after more than one treatment cycle | increase in SUV of less than 25% or a decrease of less than 15% | increase in tumor FDG uptake > 25%, increase of the maximum tumor > 20%, new metastases | as progressive disease |
PERCIST (2009) [12] | disappearance of all metabolically active lesions | SULpeak reduction ≥ 30% in the hottest target lesions | neither PMD nor PMR/CMR | SULpeak increase ≥ 30% in the hottest target lesion | as progressive disease |
PERCIMT (2018) [13] | disappearance of all metabolically active lesions | disappearance of some but not all metabolic lesions and no new lesions | neither PMD nor PMR/CMR | 4 or more new lesions (<1 cm in diameter), or 3 or more new lesions (>1 cm in diameter), or 2 or more new lesions (>1.5 cm in diameter) | according to the number and the diameter |
imPERCIST (2019) [14] | same as PERCIST | same as PERCIST | neither PMD nor PMR/CMR | SULpeak increase ≥ 30% in the hottest target lesion | do not configure automatically PMD, incorporate in the sum of SULpeak |
iPERCIST (2019) [15] | same as PERCIST | same as PERCIST | neither PMD nor PMR/CMR | SULpeak increase ≥ 30%, or new [18F]FDG-avid lesions (UPMD) | need to be confirmed after 4–8 weeks (CPMD) |
Combined criteria | Clinical benefit | No clinical benefit | |||
PECRIT (2017) [16] | CR as per RECIST 1.1 (disappearance of all target lesions; reduction in short axis of target lymph nodes to <1 cm; no new lesions) | PR as per RECIST 1.1 (decrease in target lesion diameter sum > 30%) | Does not meet other criteria plus change in SUL peak of the hottest lesion of >15% | Does not meet other criteria plus change in SUL peak of the hottest lesionof ≤15% | PD as per RECIST 1.1 (increase in target lesion diameter sum of >20% and at least 5 mm or new lesions) |
Author | Year | Study | Histology | Number | Treatment | Used Criteria | Key Message | Reference |
---|---|---|---|---|---|---|---|---|
Summary of Studies Investigating Melanoma | ||||||||
Kong et al. | 2016 | prospective | melanoma | 27 | pembrolizumab, nivolumab | irRC, Deauville criteria, SUVmax | Residual metastases after a prolonged period without progression on anti-PD-1 therapy may be metabolically inactive | [44] |
Cho et al. | 2017 | prospective | melanoma | 20 | ipilimumab nivolumab | PECRIT | Combined metabolic and anatomic parameters predict response with 95% accuracy | [16] |
Seith et al. | 2018 | retrospective | melanoma | 10 | ipilimumab | PERCIST | Complete responders identified as early 2 weeks | [45] |
Anwar et al. | 2018 | prospective | melanoma | 41 | ipilimumab | PERCIMT | A threshold of 4 new [18F]FDG-avid lesions led to a sensitivity (correctly predicting CB) of 84% and a specificity (correctly predicting No-CB) of 100% | [13] |
Tan et al. | 2018 | retrospective | melanoma | 104 | anti-PD-1 or plus ipilimumab | RECIST, EORTC | RECIST PFS post 1-year landmark was similar in patients with CR versus PR/SD, but improved in patients with CMR versus non-CMR. Also PFS in patients with PR on CT improved. | [46] |
Sachpekidis et al. | 2018 | prospective | melanoma | 41 | ipilimumab | EORCT, PERCIMT | PERCIMT had a significantly higher sensitivity than EORTC (p = 0.004), while there was no significant difference in specificity (p = 0.5). | [38] |
Amrane et al. | 2019 | retrospective | melanoma | 37 | ipilimumab plus pembrolizumab, nivolumab | RECIST1.1 iRECIST PERCIST PECRIT | RECIST1.1, iRECIST, and PERCIST were predictive for PFS and OS | [39] |
Ito et al. | 2019 | retrospective | melanoma | 60 | ipilimumab | imPERCIST, PERCIST1, PERCIST5 | imPERCIST5 responders had a longer 2-y OS, 66% versus 29% for vs. nonresponders (p = 0.003). imPERCIST remained prognostic at multivariate analysis | [14] |
Ito et al. | 2019 | retrospective | melanoma | 142 | ipilimumab | MTV | Baseline MTV as prognostic factor | [47] |
Boursi et al. | 2019 | retrospective | melanoma | 14 | ipilimumab | colonic SUV | Colonic SUVmax higher for complete responders | [48] |
Sachpekidis et al. | 2019 | retrospective | melanoma | 41 | ipilimumab | lymphoid organs metabolism | The appearance of sarcoid-like lymphadenopathy correlated to clinical benefit of anti-CTLA-4 therapy | [49] |
Sachpekidis et al. | 2019 | retrospective | melanoma | 16 | vemurafenib plus ipilimumab | EORTC, PERCIMT | PERCIMT criteria correctly classified more patients than EORTC criteria. Radiologic signs of irAEs, such as colitis and arthritis, predicted significantly longer PFS than those without irAEs (p = 0.036) | [50] |
Seban et al. | 2019 | retrospective | melanoma | 55 | anti-PD-1 | RECIST1.1, TMTV, TLG, BLR, SLR | Low TMTV and TLG correlated with BOR, while hematopoietic tissue metabolism, i.e., BLR (Bone marrow-to-Liver SUVmax ratio), and SLR (Spleen-to-Liver SUVmax ratio), correlates inversely with survival. | [51] |
Nobashi et al. | 2019 | retrospective | melanoma, lymphoma, renal cell carcinoma | 40 | ipilimumab nivolumab, pembrolizumab | SUVs in tumor and lymphoid organs | PET-detectable irAEs were predictive of a favorable outcome. In particular, early development of thyroiditis. | [52] |
Seban et al. | 2020 | retrospective | mucosal melanoma (Muc-M) or cutaneous melanoma (Cut-M) | 56 | ipilimumab pembrolizumab | RECIST1.1, SUVmax, TMTV, TLG, BLR | For Muc-M, high baseline SUVmax was associated with shorter OS, whereas for Cut-M, baseline increased TMTV and increased BLR were associated with shorter OS, shorter PFS, and lower response (ORR, DCR) | [53] |
Iravani et al. | 2020 | retrospective | melanoma | 31 | nivolumab plus ipilimumab | PERCIST, wbMTV (whole body MTV) | Patients with PMD had significantly higher pre-treatment wbMTV. | [54] |
Nakamoto et al. | 2020 | retrospective | melanoma | 85 | nivolumab, ipilimumab pembrolizumab | MTV | MTVpost and the presence of central nervous system lesions were independent prognostic factors for OS. | [55] |
Wong et al. | 2020 | retrospective | melanoma | 90 | anti-PD-1 and or ipilimumab | SUVmax, MTV, and spleen to liver ratio (SLR) | SLR was associated with poor OS in a multi-variable model independent of stage, LDH, absolute lymphocyte count and MTV. | [56] |
Seith et al. | 2020 | prospective | melanoma | 17 | anti-CTLA-4 and/or anti-PD-1 | iRECIST, PERCIST, ADC, SULmean spleen, SULmean bone marrow | Responder group presents with an increased spleen volume and metabolic activity of bone marrow. | [57] |
Annovazzi et al. | 2020 | retrospective | melanoma | 57 | Ipilimumab nivolumab, pembrolizumab | RECIST 1.1, EORTC, PERCIMT, MTV, TLG (up to 5 target lesions) | Best predictor of therapy response was MTV combined with PERCIMT for ipilimumab; for anti-PD-1 therapy EORTC, MTV, and TLG. | [58] |
Nakamoto et al. | 2020 | retrospective | melanoma | 76 | ipilimumab nivolumab, pembrolizumab, nivolumab plus ipilimumab | irRECIST, MTV, total measured tumor burden (TMTB) | MTVbase of HPD patients was larger than that of non-HPD. HPD patients demonstrated shorter median OS | [59] |
Prigent et al. | 2021 | retrospective | melanoma | 29 | nivolumab, pembrolizumab, nivolumab plus ipilimumab | imPERCIST5, whole-body metabolic active tumor volume (WB-MATV), bone-to-liver (BLR), SLR | Mean spleen-to-liver (SLRmean) increase greater than 25% at 3 months, compared with baseline, was associated with poor outcome | [60] |
Sachpekidis et al. | 2021 | retrospective | melanoma | 31 | ipilimumab, pembrolizumab, nivolumab plus ipilimumab | EORTC, PERCIMT, SLRmean, SLRmax | PET/CT, performed after two ICIs’ cycles, can identify the majority of non-responders | [61] |
Sachpekidis et al. | 2021 | prospective | melanoma | 25 | nivolumab, pembrolizumab, nivolumab plus ipilimumab | SUVmean, SUVmax and quantitative on dynamic PET (K1, k3, influx, FD, fractal dimension) | SUVmean, SUVmax and FD adversely affected PFS | [62] |
Schank et al. | 2021 | retrospective | melanoma | 45 | nivolumab, pembrolizumab, ipilimumab, nivolumab plus ipilimumab | EORTC, PERCIMT | Two-year PFS was 94% among CMR patients and 62% among non-CMR patients | [63] |
Nakamoto et al. | 2021 | retrospective | melanoma | 92 | pembrolizumab, nivolumab, nivolumab and ipilimumab, nivolumab and relatlimab (anti-LAG-3 antibody) | iRECIST, SUVmax, MTV, BLR | High BLR were associated with poor PFS and OS | [64] |
Kitajima et al. | 2021 | retrospective | melanoma | 27 | Nivolumab, pembrolizumab | EORTC, PERCIST, and imPERCIST | Responders (CMR/PMR) showed significantly longer PFS and OS than non-responders (SMD/PMD) | [65] |
Summary of studies investigating lung cancer | ||||||||
Grizzi et al. | 2018 | prospective | NSCLC | 17 | nivolumab, pembrolizumab | SUVmax, SUVmean | Antithetical correlation between baseline parameters and response | [66] |
Kaira et al. | 2018 | prospective | NSCLC | 24 | nivolumab | SUVmax, MTV, TLG | TLG at 1 months was predictive for worse PFS and OS | [67] |
Jreige et al. | 2019 | retrospective | NSCLC | 49 | pembrolizumab, nivolumab, durvalumab, atezolizumab | SUVmax, SUVmean, MTV, TLG, MMVR | MMVR (metabolic-to-morphological volume ratio) was predictive for clinical benefit | [68] |
Goldfard et al. | 2019 | retrospective | NSCLC | 28 | nivolumab | iRECIST, iPERCIST | In comparison with iRECIST, iPERCIST showed reclassification in 39% of patients. | [15] |
Rossi et al. | 2019 | prospective | NSCLC | 72 | nivolumab | RECIST1.1 irRC PERCIST imPERCIST | Added prognostic value for PERCIST imPERCIST in patients with PD according irRC | [41] |
Evangelista et al. | 2019 | retrospective | NSCLC | 32 | nivolumab | SUVmax, MTV, TLG | SUVmax higher in non-responders women than men | [69] |
Takada et al. | 2019 | retrospective | NSCLC | 89 | nivolumab, pembrolizumab | RECIST 1.1 SUVmax | The response rate of patients with SUVmax value ≥ 11.16 (41.3%) was significantly higher than that of patients with SUVmax < 11.16 (11.6%, p = 0.0012) | [70] |
Beer et al. | 2019 | prospective | NSCLC | 42 | nivolumab, pembrolizumab, durvalumab | RECIST 1.1, iRECIST, and PERCIST | There was only a slight agreement between RECIST 1.1 and PERCIST 1.0 and PERCIST 1.0 and iRECIST. Median PFS and OS, as were significantly longer for responders for all criteria, with no significant difference between them. | [40] |
Seban et al. | 2020 | retrospective | NSCLC | 80 | nivolumab, pembrolizumab, atezolizumab | RECIST1.1, TMTV | Baseline TMTV and dNLR were associated with poor OS and absence of DCB (disease clinical benefit) | [71] |
Humbert et al. | 2020 | prospective | NSCLC | 50 | nivolumab, ipilimumab | PERCIST | Pseudoprogression and iDR (immune dissociated-response) associated with clinical benefit | [30] |
Castello et al. | 2020 | prospective | NSCLC | 46 | nivolumab, ipilimumab pembrolizumab | SUVmax, SUVmean, MTV, TLG | Baseline MTV and dNLR predictors for hyperprogression | [28] |
Castello et al. | 2020 | prospective | NSCLC | 35 | nivolumab, nivolumab plus ipilumimab pembrolizumab | RECIST 1.1, EORTC, SUVmax, MTV, TLG | CTC count variation (ΔCTC) was significantly associated with tumor metabolic response. CTC count at 8 weeks was an independent predictor for PFS and OS, whereas ΔMTV and ΔSUVmax were predictive for PFS and OS, respectively. | [72] |
Seban et al. | 2020 | retrospective | NSCLC | 63 | pembrolizumab | RECIST1.1, TMTV | Metabolic score combining TMTV on the baseline and pretreatment dNLR (derived neutrophils-to-lymphocytes ratio) was associated with the survival and response | [73] |
Chardin et al. | 2020 | prospective | NSCLC | 75 | nivolumab, pembrolizumab | SUVmax, SUVpeak, MTV and TLG | A high MTV and TLG were significantly associated with a lower OS. MTV and TLG could reliably predict ETD (early treatment discontinuation) | [74] |
Castello et al. | 2020 | prospective | NSCLC | 20 | nivolumab, nivolumab plus ipilumimab pembrolizumab | iRECIST, imPERCIST | Association of elevated sPD-L1 (soluble PD-L1), and high MTV. | [75] |
Castello et al. | 2020 | prospective | NSCLC | 35 | nivolumab, pembrolizumab | RECIST 1.1, imRECIST, EORTC, PERCIST, imPERCIST, and PERCIMT | Low agreement between imRECIST and imPERCIST. Performance status, imRECIST and imPERCIST were predictive for PFS, while only performance status and imPERCIST were predictive for OS | [43] |
Castello et al. | 2020 | prospective | NSCLC | 33 | nivolumab, pembrolizumab | iRECIST, EORTC, SUVmax, SUVmean, MTV, TLG | An immune-metabolic-prognostic index (IMPI), based on post-NLR and post-TLG was developed, resulting predictive for both PFS and OS. | [76] |
Tao et al. | 2020 | prospective | NSCLC | 36 | neoadjuvant sintilimab | PERCIST, SULmax, SULpeak, MTV, TLG, ΔSULmax%, ΔSULpeak%, ΔMTV%, ΔTLG% | All PMR tumors showed MPR (major pathologic response). The degree of pathological regression was positively correlated with SULmax of scan-1, and negatively correlated with all metabolic parameters of scan-2. | [77] |
Hashimoto et al. | 2020 | retrospective | NSCLC | 85 | nivolumab, pembrolizumab | RECIST1.1, SUVmax, SUVmean, MTV, TLG | TLG and MTV are independent prognostic factors for outcome after anti-PD-1 antibody. | [78] |
Umeda et al. | 2020 | prospective | NSCLC | 25 | nivolumab | RECIST1.1, ΔTLG, ΔADCmean | A cut-off of 16.5 for ΔTLG + ΔADCmean had the highest accuracy (92%) for distinguishing PD, and was an independent predictor of shorter PFS and OS. | [79] |
Seban et al. | 2020 | retrospective | NSCLC | 63 | upfront pembrolizumab | SUVmax, SUVmean, TMTV and TLG | Baseline low TMTV and high tumor SUVmean correlate with survival and LTB (long-term benefit) | [80] |
Cvetkovic et al. | 2021 | retrospective | NSCLC | 71 | anti-PD-1/PD-L1 monotherapy or in combination with chemotherapy | average colon SUVmax | Lower colon physiologic [18F]FDG uptake prior to ICI was associated with better clinical outcomes and higher gut microbiome diversity | [81] |
Ito et al. | 2021 | retrospective | NSCLC | 58 | PD-1 or PD-L1 inhibitor therapy | EORTC5, PERCIST5, imPERCIST5 | After SUV harmonization with dedicated software packages “RAVAT” and “RC Tool for Harmonization, response criteria was associated with OS. | [82] |
Bauckneht et al. | 2021 | prospective | NSCLC | 45 | nivolumab, pembrolizumab | RECIST 1.1, NLR, dNLR, lymphocyte-to-monocyte ratio (LMR), platelets-to-lymphocyte ratio (PLR), systemic inflammation index (SII), SUVmax, MTV, TLG | The combined parameters into the IMPI (immune metabolic prognostic index) significantly differentiated OS in NSCLC (p < 0.0001) | [83] |
Ferdinandus et al. | 2021 | retrospective | NSCLC | 45 | Atezolizumab, Nivolumab, pembrolizumab, ipilimumab/nivolumab | RECIST 1.1, background level (using mediastinum as reference) for CMR. | CMR after 24 months allows for a safe discontinuation of ICI | [84] |
Castello et al. | 2021 | prospective | NSCLC | 50 | nivolumab, pembrolizumab, atezolizumab | iRECIST, EORTC, MTV, TLG and their variations | ATB therapy is associated with a worse response, PFS, and higher metabolic tumor burden in NSCLC | [85] |
Ayati et al. | 2021 | retrospective | NSCLC | 72 | nivolumab, pembrolizumab | RECIST, iRECIST, PERCIST, imPERCIST | Most FDG-avid lesions based on PERCIST and imPERCIST reflect the overall metabolic response | [42] |
Vekens et al. | 2021 | retrospective | NSCLC | 30 | pembrolizumab | RECIST 1.1, SUVmax, TMTV, TLG | TMTV and TLG were associated with PFS and OS, while RECIST 1.1 were not | [86] |
Park et al. | 2021 | retrospective | NSCLC | 24 | nivolumab, pembrolizumab | EORCT, PERCIST, RECIST 1.1 | metabolic parameters were independent factors for predicting progression | [87] |
Ke et al. | 2021 | retrospective | Lung cancer (SCLC; NSCLC) | 120 | PD-1/PD-L1 blockade plus chemotherapy | iRECIST, SUVmax, SUVmean, SUVpeak, MTV, TLG, lactate dehydrogenase (LDH), dNLR | The combination of SUVmax plus LDH was an independent predictor of OS | [88] |
Summary of studies investigating Radiomics and AI | ||||||||
Valentinuzzi et al. | 2020 | prospective | NSCLC | 30 | pembrolizumab | iRECIST, iRADIOMICS | Multivariate iRADIOMICS, in particular Small Run Emphasis (SRE), showed a more predictive power compared to PD-L1 and iRECIST. | [89] |
Polverani et al. | 2020 | Retrospective | NSCLC | 57 | anti-PD-1 or anti-PD-L1 | RECIST1.1, SUVmax, MTV, TLG, radiomics feature | Patients with high MTV, TLG and heterogeneity expressed by “skewness” and “kurtosis” had a higher probability of failing immunotherapy. | [90] |
Mu et al. | 2020 | Retrospective/prospective | NSCLC | 99 and 48 | anti-PD-L1 | RECIST1.1, mpRS (multiparametric radiomics signature) | mpRS could predict patients who will receive DCB (durable clinical benefit) | [91] |
Park et al. | 2020 | Retrospective | Lung adenocarcinoma | 59 | immune checkpoint blockade in monotherapy | RECIST 1.1, cytolytic activity score (CytAct) | Higher minimum predicted CytAct in associated with significantly prolonged PFS and OS | [92] |
Flaus et al. | 2021 | retrospective | melanoma | 56 | Nivolumab or Pembrolizumab | MTV and forty-one IBSI compliant parameters | MTV and long zone emphasis (LZE) correlated with shorter OS and defined three risk categories for the prognostic score | [93] |
Mu et al. | 2021 | Retrospective/prospective | NSCLC | 697 | ICI | RECIST 1.1, deeply learned score (DLS) | PD-L1 DLS significantly discriminated PD-L1 positive and negative patients; combining DLS with clinical characteristics accurately predicts DCB, PFS, and OS | [94] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopci, E. Immunotherapy Monitoring with Immune Checkpoint Inhibitors Based on [18F]FDG PET/CT in Metastatic Melanomas and Lung Cancer. J. Clin. Med. 2021, 10, 5160. https://doi.org/10.3390/jcm10215160
Lopci E. Immunotherapy Monitoring with Immune Checkpoint Inhibitors Based on [18F]FDG PET/CT in Metastatic Melanomas and Lung Cancer. Journal of Clinical Medicine. 2021; 10(21):5160. https://doi.org/10.3390/jcm10215160
Chicago/Turabian StyleLopci, Egesta. 2021. "Immunotherapy Monitoring with Immune Checkpoint Inhibitors Based on [18F]FDG PET/CT in Metastatic Melanomas and Lung Cancer" Journal of Clinical Medicine 10, no. 21: 5160. https://doi.org/10.3390/jcm10215160
APA StyleLopci, E. (2021). Immunotherapy Monitoring with Immune Checkpoint Inhibitors Based on [18F]FDG PET/CT in Metastatic Melanomas and Lung Cancer. Journal of Clinical Medicine, 10(21), 5160. https://doi.org/10.3390/jcm10215160