Early Hypertransaminasemia after Kidney Transplantation: Significance and Evolution According to Donor Type
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Definitions
2.3. Variables
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pratt, D.S.; Kaplan, M.M. Evaluation of abnormal liver-enzyme results in asymptomatic patients. N. Engl. J. Med. 2000, 342, 1266–1271. [Google Scholar] [CrossRef] [PubMed]
- Gheith, O.A.; Saad, M.A.; El Agroudy, A.E.; Sheashaa, H. Hepatic dysfunction in kidney transplant recipients: Prevalence and impact. Clin. Exp. Nephrol. 2007, 11, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Allison, M.C.; Mowat, A.; McCruden, E.A.; McGregor, E.; Burt, A.D.; Briggs, J.D.; Junor, B.J.; Follett, E.A.; MacSween, R.N.; Mills, P.R. The Spectrum of Chronic Liver Disease in renal transplant recipients. Q.J. Med. 1992, 83, 355–367. [Google Scholar] [PubMed]
- Ahsan, N.; Rao, K.V. Hepatobiliary diseases after kidney transplantation unrelated to classic hepatitis virus. Semin. Dial. 2002, 15, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Einollahi, B.; Ghadian, A.; Ghamar-Chehreh, E.; Alavian, S.M. Non-viral related liver enzymes elevation after kidney trans-plantation. Hepat. Mon. 2014, 14, e9036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunderson, A.; Said, A. Liver Disease in Kidney Transplant Recipients. Transplant. Rev. 2015, 29, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Carrion, A.F.; Fabrizi, F.; Martin, P. Liver Disease in Renal Transplant Recipients. In Kidney Transplantation: Practical Guide to Management; Weir, M., Lerma, E.V., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 247–255. [Google Scholar] [CrossRef]
- Médiavilla, C.; Vigouroux, S.; Tabrizi, R.; Pigneux, A.; Duclos, C.; Mohr, C.; Robles, M.; Milpied, N. Transient Grades 3 to 4 Acute Hepatitis Is a Common Complication of Rabbit Antithymocyte Globulin (Thymoglobulin) Administered before Al-logeneic Stem Cell Transplantation. Biol. Blood Marrow Transplant. 2015, 21, 661–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toren, A.; Ilan, Y.; Or, R.; Kapelushnik, J.; Nagler, A. Impaired liver function tests in patients treated with antithymocyte globulin: Implication for liver transplantation. Med. Oncol. 1997, 14, 125–129. [Google Scholar] [CrossRef]
- Chang, A.; Lee-Lam, F.Y.; Wang, J.; Cheng, Y.H. Transient liver function abnormality following treatment with rabbit an-tithymocyte globulin for nonmyeloablative hematopoetic stem cell transplant: Two case reports. J. Oncol. Pharm. Pract. 2015, 21, 67–71. [Google Scholar] [CrossRef]
- Lane, K.; Dixon, J.J.; MacPhee, I.A.M.; Philips, B.J. Renohepatic crosstalk: Does acute kidney injury cause liver dysfunction? Nephrol. Dial. Transplant. 2013, 28, 1634–1647. [Google Scholar] [CrossRef] [Green Version]
- Capalbo, O.; Giuliani, S.; Ferrero-Fernández, A.; Casciato, P.; Musso, C.G. Kidney–liver pathophysiological crosstalk: Its characteristics and importance. Int. Urol. Nephrol. 2019, 51, 2203–2207. [Google Scholar] [CrossRef]
- Doi, K.; Rabb, H. Impact of acute kidney injury on distant organ function: Recent findings and potential therapeutic targets. Kidney Int. 2016, 89, 555–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, K.J. Distant Effects of Experimental Renal Ischemia/Reperfusion Injury. J. Am. Soc. Nephrol. 2003, 14, 1549–1558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.A.; Cozzi, M.; Bush, E.L.; Rabb, H. Distant Organ Dysfunction in Acute Kidney Injury: A Review. Am. J. Kidney Dis. 2018, 72, 846–856. [Google Scholar] [CrossRef]
- White, L.E.; Hassoun, H.T. Inflammatory Mechanisms of Organ Crosstalk during Ischemic Acute Kidney Injury. Int. J. Nephrol. 2012, 2012, 505197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieuwenhuijs-Moeke, G.J.; Pischke, S.E.; Berger, S.P.; Sanders, J.S.F.; Pol, R.A.; Struys, M.R.F.; Ploeg, R.J.; Leuvenink, H.G.D. Ischemia and Reperfusion Injury in Kidney Transplantation: Relevant Mechanisms in Injury and Repair. Clin. Med. 2020, 9, 253. [Google Scholar] [CrossRef] [Green Version]
- Eltzschig, H.; Eckle, T. Ischemia and reperfusion-from mechanism to translation. Nat. Med. 2011, 17, 1391–1401. [Google Scholar] [CrossRef] [Green Version]
- Irish, W.D.; McCollum, D.A.; Tesi, R.J.; Owen, A.B.; Brennan, D.C.; Bailly, J.E.; Schnitzler, M.A. Nomogram for Predicting the Likelihood of Delayed Graft Function in Adult Cadaveric Renal Transplant Recipients. J. Am. Soc. Nephrol. 2003, 14, 2967–2974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebranchu, Y.; Halimi, J.M.; Block, A.; Chapman, J.; Dussol, B.; Fritsche, L.; Kliem, V.; Oppenheimer, F.; Pohanka, E.; Salvadori, M.; et al. Delayed Graft Function: Risk Factors, Consequences and Parameters Affecting Outcome—Results From MOST, A Multinational Observational Study. Transplant. Proc. 2005, 37, 345–347. [Google Scholar] [CrossRef] [PubMed]
- Mikhalski, D.; Wissing, K.M.; Ghisdal, L.; Broeders, N.; Touly, M.; Hoang, A.; Loi, P.; Mboti, F.; Donckier, V.; Vereerstraeten, P.; et al. Cold Ischemia is a Major Determinant of Acute Rejection and Renal Graft Survival in the Modern Era of Immunosup-pression. Transplantation 2008, 85 (Suppl. 7), S3–S9. [Google Scholar] [CrossRef]
- Locke, J.E.; Segev, D.L.; Warren, S.D.; Dominici, F.; Simpkins, C.E.; Montgomery, R.A. Outcomes of Kidneys from Donors After Cardiac Death: Implications for Allocation and Preservation. Am. J. Transplant. 2007, 7, 1797–1807. [Google Scholar] [CrossRef] [PubMed]
- Thuong, M.; Ruiz, A.; Evrard, P.; Kuiper, M.; Boffa, C.; Akhtar, M.Z.; Neuberger, J.; Ploeg, R. New classification of donation after circulatory death donors definitions and terminology. Transpl. Int. 2016, 29, 749–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Huang, H.; Alam, A.; Chen, Q.; Suen, K.C.; Cui, J.; Sun, Q.; Ologunde, R.; Zhang, W.; Lian, Q.; et al. VEGF mitigates histone-induced pyroptosis in the remote liver injury associated with renal allograft ischemia–reperfusion injury in rats. Am. J. Transplant. 2018, 18, 1890–1903. [Google Scholar] [CrossRef] [PubMed]
- Golab, F.; Kadkhodaee, M.; Zahmatkesh, M.; Hedayati, M.; Arab, H.; Schister, R.; Zahedi, K.; Lentsch, A.; Soleimani, M. Ischemic and non-ischemic acute kidney injury cause hepatic damage. Kidney Int. 2009, 75, 783–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.W.; Chen, S.W.; Kim, M.; Brown, K.; Kolls, J.; D’Agati, V.; Lee, H.T. Cytokines induce small intestine and liver injury after renal ischemia or nephrectomy. Lab. Investig. 2011, 91, 63–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krüger, B.; Krick, S.; Dhillon, N.; Lerner, S.M.; Ames, S.; Bromberg, J.S.; Lin, M.; Walsh, L.; Vella, J.; Fischereder, M.; et al. Donor Toll-like receptor 4 contributes to ischemia and reperfusion injury following human kidney transplantation. Proc. Natl. Acad. Sci. USA 2009, 106, 3390–3395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schröppel, B.; Legendre, C. Delayed kidney graft function: From mechanism to translation. Kidney Int. 2014, 86, 251–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
DBD (n = 75) | cDCD (n = 33) | uDCD (n = 43) | Control Group (n = 85) | p-Value | |
---|---|---|---|---|---|
Donor Characteristics | |||||
Age (years, mean ± SD) | 54.1 ± 15.5 | 67.6 ± 11.26 | 49.93 ± 10.96 | 58.6 ± 21.3 | <0.001 |
Sex (male, n, %) | 42 (56.8) | 21 (63.6) | 38 (88.4) | 50 (58.8) | 0.003 |
BMI (Kg/m2, median, IQR) | 26.4 (24.4–29.4) | 25.4 (22.8–29.9) | 26.7 (24.2–29.4) | 26.8 (24.4–30.8) | 0.630 |
Hypertension (n, %) | 37 (52.1) | 18 (56.2) | 13 (31.7) | 45(52.9) | 0.095 |
DM (n, %) | 11 (15.1) | 11 (34.3) | 3 (7.3) | 13 (15.3) | 0.017 |
Recipient Characteristics | |||||
Age (years, mean ± SD) | 56.2 ± 12.6 | 63.5 ± 10.9 | 52.4 ± 10.2 | 58.1 ± 12.9 | 0.002 |
Sex (male, n, %) | 25 (33.3) | 16 (48.5) | 31 (72.1) | 63 (74.1) | <0.001 |
BMI (Kg/m2, median, IQR) | 25.1 (21.6–30.4) | 26.5 (23.7–29.1) | 24.8 (20.6–29.1) | 26.2 (23.6–31.1) | 0.108 |
DM (n, %) | 10 (13.3) | 13 (39.4) | 9 (20.9) | 23 (27.1) | 0.021 |
Hypertension (n, %) | 67 (89.3) | 31 (93.9) | 39 (90.7) | 77 (90.6) | 0.902 |
Retransplantation (n, %) | 44 (58.7) | 11 (33.3) | 2 (4.7) | 3 (3.5) | <0.001 |
Liver alterations detected by image (n, %) | 27 (38) | 10 (30.3) | 12 (27.7) | 23 (27.7) | 0.543 |
Hepatitis B or C (n, %) | 6 (8) | 2 (4.7) | 7 (8.2) | 7 (8.2) | 0.062 |
DBD (n = 75) | cDCD (n = 33) | uDCD (n = 43) | Control Group (n = 85) | p-Value | |
---|---|---|---|---|---|
Intra and Early Post-Transplant Period | |||||
Cold ischemia time (hours, mean ± SD) | 15.6 ± 5 | 12.6 ± 5 | 16.2 ± 5.1 | 15.3 ± 5.4 | 0.018 |
Blood transfusion (yes, n, %) | 41 (54.7) | 20 (60.6) | 25 (58.1) | 22 (25.9) | <0.001 |
Post-KT low BP (yes, n, %) | 16 (23.2) | 10 (30.3) | 6 (15) | 19 (22.4) | 0.482 |
Initial Immunosuppression | |||||
Thymoglobulin (mg/kg, median, IQR) | 4.4 (3.8–5.3) | 4.1 (3–5) | 4.5 (3.1–5.1) | --- | 0.613 |
Tacrolimus total dose at 7 days (mg/kg, median, IQR) | 0.89 (0.68–1.08) | 0.83 (0.71–1.09) | 0.36 (0.25–0.54) | 0.71 (0.62–0.86) | <0.001 |
Tacrolimus levels at 7 days post-KT (ng/mL, median, IQR) | 9.9 (6.5–12.4) | 9.4 (7.75–12.1) | 4.9 (3.3–9.25) | 8.8 (6.7–13.6) | <0.001 |
Tacrolimus levels at 30 days post-KT (ng/mL, median, IQR) | 9.7 (7.5–12.1) | 9.7 (7.8–11.7) | 8.9 (7.25–10.5) | 9.5 (7.9–11.8) | 0.522 |
Renal Function Evolution | |||||
Days to creatinine decline (median, IQR) | 5 (1–10) | 7 (3–14.5) | 16 (8.8–27.3) | 2 (1–7) | <0.001 |
Creatinine at 7 days post-KT (mg/dL, mean ± SD) | 2.6 ± 1.7 | 4.5 ± 3 | 6.2 ± 2.8 | 3.9 ± 3.3 | 0.002 |
Creatinine at 30 days post-KT (mg/dL, mean ± SD) | 1.9 ± 1 | 2.3 ± 1.2 | 3 ± 2.1 | 1.9 ± 1.0 | <0.001 |
Creatinine at 90 days post.KT (mg/dL, mean ± SD) | 1.8 ± 1 | 1.9 ± 0.8 | 2 ± 0.7 | 1.8 ± 0.7 | 0.569 |
AST Elevation 72 h Post-KT Univariable | AST Elevation 72 h Post-KT Multivariable | |||||||
---|---|---|---|---|---|---|---|---|
OR | CI 95% | p | OR | CI 95% | p | |||
Donor age (years) | 1.001 | 0.984 | 1.018 | 0.916 | ||||
Donor sex (ref. male) | 0.657 | 0.341 | 1.226 | 0.209 | ||||
Donor DM | 1.286 | 0.526 | 3.145 | 0.582 | ||||
Donor HTA | 1.348 | 0.726 | 2.504 | 0.345 | ||||
Donor type (ref. DBD) | ||||||||
cDCD | 1.497 | 0.550 | 4.007 | 0.430 | 1.317 | 0.430 | 4.031 | 0.630 |
uDCD | 10.713 | 4.972 | 23.085 | <0.001 | 6.840 | 2.834 | 16.509 | <0.001 |
Recipient age | 1.005 | 0.982 | 1.029 | 0.661 | ||||
Recipient sex (ref. male) | 1.379 | 0.755 | 2.519 | 0.295 | ||||
Recipient DM | 0.738 | 0.373 | 1.458 | 0.381 | ||||
Retransplantation (ref. no) | 0.541 | 0.253 | 1.156 | 0.113 | ||||
Thymoglobulin (ref. no) | 4.610 | 2.057 | 10.328 | <0.001 | 2.086 | 0.793 | 5.484 | 0.136 |
Cold Ischemia Time (hours) | 1.094 | 1.029 | 1.163 | 0.004 | 1.106 | 1.030 | 1.188 | 0.006 |
Post-KT low BP (ref. no) | 1.338 | 0.654 | 2.739 | 0.425 | ||||
Blood transfusion (ref. no) | 1.872 | 1.019 | 3.436 | 0.043 | 1.566 | 0.754 | 3.252 | 0.229 |
Donor age (years) | 0.996 | 0.980 | 1.012 | 0.596 | ||||
Donor sex (ref. male) | 0.443 | 0.235 | 0.834 | 0.012 | 0.653 | 0.310 | 1.372 | 0.260 |
Donor DM | 0.422 | 0.616 | 3.182 | 0.422 | ||||
Donor HTA | 1.530 | 0.862 | 2.716 | 0.146 | ||||
Donor type (ref. DBD) | ||||||||
cDCD | 1.549 | 0.625 | 3.837 | 0.344 | 1.293 | 0.470 | 3.361 | 0.619 |
uDCD | 20.914 | 8.479 | 51.584 | <0.001 | 12.381 | 4.515 | 33.952 | <0.001 |
Recipient age | 0.994 | 0.973 | 1.016 | 0.603 | ||||
Recipient sex (ref. male) | 1.111 | 0.634 | 1.949 | 0.712 | ||||
Recipient DM | 0.791 | 0.417 | 1.500 | 0.473 | ||||
Retransplantation (ref. no) | 0.633 | 0.324 | 1.234 | 0.179 | ||||
Thymoglobulin (ref. no) | 4.749 | 2.320 | 9.724 | <0.001 | 2.179 | 0.938 | 5.062 | 0.070 |
Cold Ischemia Time (hours) | 1.063 | 1.006 | 1.122 | 0.030 | 1.065 | 0.996 | 1.139 | 0.066 |
Post-KT low BP (ref. no) | 0.565 | 0.268 | 1.190 | 0.133 | ||||
Blood transfusion (ref. no) | 1.273 | 0.728 | 2.224 | 0.397 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solà-Porta, E.; Redondo-Pachón, D.; Arias-Cabrales, C.; Navazo, D.; Buxeda, A.; Burballa, C.; Crespo, M.; García-Retortillo, M.; Pascual, J.; Pérez-Sáez, M.J. Early Hypertransaminasemia after Kidney Transplantation: Significance and Evolution According to Donor Type. J. Clin. Med. 2021, 10, 5168. https://doi.org/10.3390/jcm10215168
Solà-Porta E, Redondo-Pachón D, Arias-Cabrales C, Navazo D, Buxeda A, Burballa C, Crespo M, García-Retortillo M, Pascual J, Pérez-Sáez MJ. Early Hypertransaminasemia after Kidney Transplantation: Significance and Evolution According to Donor Type. Journal of Clinical Medicine. 2021; 10(21):5168. https://doi.org/10.3390/jcm10215168
Chicago/Turabian StyleSolà-Porta, Eulàlia, Dolores Redondo-Pachón, Carlos Arias-Cabrales, Diego Navazo, Anna Buxeda, Carla Burballa, Marta Crespo, Montserrat García-Retortillo, Julio Pascual, and María José Pérez-Sáez. 2021. "Early Hypertransaminasemia after Kidney Transplantation: Significance and Evolution According to Donor Type" Journal of Clinical Medicine 10, no. 21: 5168. https://doi.org/10.3390/jcm10215168
APA StyleSolà-Porta, E., Redondo-Pachón, D., Arias-Cabrales, C., Navazo, D., Buxeda, A., Burballa, C., Crespo, M., García-Retortillo, M., Pascual, J., & Pérez-Sáez, M. J. (2021). Early Hypertransaminasemia after Kidney Transplantation: Significance and Evolution According to Donor Type. Journal of Clinical Medicine, 10(21), 5168. https://doi.org/10.3390/jcm10215168