COVID-19 Clinical Profile in Latin American Migrants Living in Spain: Does the Geographical Origin Matter?
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization—Weekly Operational Update on COVID-19-7 (2021). Available online: https://reliefweb.int/report/world/weekly-operational-update-COVID-19-7-june-2021 (accessed on 8 June 2021).
- Pericàs, J.M.; Hernandez-Meneses, M.; Sheahan, T.P.; Quintana, E.; Ambrosioni, J.; Sandoval, E.; Falces, C.; Marcos, M.A.; Tuset, M.; Vilella, A.; et al. COVID-19: From epidemiology to treatment. Eur. Heart J. 2020, 41, 2092–2112. [Google Scholar] [CrossRef]
- Goyal, P.; Choi, J.J.; Pinheiro, L.C.; Schenck, E.J.; Chen, R.; Jabri, A.; Satlin, M.J.; Campion, T.R.; Nahid, M.; Ringel, J.B.; et al. Clinical Characteristics of COVID-19 in New York City. N. Engl. J. Med. 2020, 382, 2372–2374. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med. 2020, 8, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Bialek, S.; Boundy, E.; Bowen, V.; Chow, N.; Cohn, A.; Dowling, N.; Ellington, S.; Gierke, R.; Hall, A.; MacNeil, J.; et al. Severe outcomes among patients with coronavirus disease 2019 (COVID-19)—United States, February 12–March 16, 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 343–346. [Google Scholar] [CrossRef]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Onder, G.; Rezza, G.; Brusaferro, S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA 2020, 323, 1775–1776. [Google Scholar] [CrossRef]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; Cohen, S.L.; et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef]
- Clarification of mortality rate and data in abstract, results, and table 2. JAMA 2020, 323, 2098. [CrossRef] [Green Version]
- Quinn, S.C.; Kumar, S.; Freimuth, V.S.; Musa, D.; Casteneda-Angarita, N.; Kidwell, K. Racial disparities in exposure, susceptibility, and access to health care in the US H1N1 influenza pandemic. Am. J. Public Health 2011, 101, 285–293. [Google Scholar] [CrossRef]
- Placzek, H.; Madoff, L.C. Effect of race/ethnicity and socioeconomic status on pandemic H1N1-related outcomes in Massachusetts. Am. J. Public Health 2014, 104, e31–e38. [Google Scholar] [CrossRef] [PubMed]
- Qeadan, F.; VanSant-Webb, E.; Tingey, B.; Rogers, T.N.; Brooks, E.; Mensah, N.A.; Winkfield, K.M.; Saeed, A.I.; English, K.; Rogers, C.R. Racial disparities in COVID-19 outcomes exist despite comparable Elixhauser comorbidity indices between Blacks, Hispanics, Native Americans, and Whites. Sci. Rep. 2021, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Saini, G.; Swahn, M.H.; Aneja, R. Disentangling the Coronavirus Disease 2019 Health Disparities in African Americans: Biological, environmental, and social factors. Open Forum Infect. Dis. 2021, 8, ofab064. [Google Scholar] [CrossRef]
- Nana-Sinkam, P.; Kraschnewski, J.; Sacco, R.; Chavez, J.; Fouad, M.; Gal, T.; AuYoung, M.; Namoos, A.; Winn, R.; Sheppard, V.; et al. Health disparities and equity in the era of COVID-19. J. Clin. Transl. Sci. 2021, 5, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Bilal, U.; Tabb, L.P.; Barber, S.S.; Roux, A.V.D. Spatial inequities in COVID-19 testing, positivity, confirmed cases, and mortality in 3 U.S. cities. Ann. Intern. Med. 2021, 174, 936–944. [Google Scholar] [CrossRef]
- Sterling, M.R.; Tseng, E.; Poon, A.; Cho, J.; Avgar, A.C.; Kern, L.M.; Ankuda, C.K.; Dell, N. Experiences of home health care workers in New York City during the Coronavirus Disease 2019 Pandemic. JAMA Intern. Med. 2020, 180, 1453–1459. [Google Scholar] [CrossRef]
- Price-Haywood, E.G.; Burton, J.; Fort, D.; Seoane, L. Hospitalization and mortality among black patients and white patients with COVID-19. N. Engl. J. Med. 2020, 382, 2534–2543. [Google Scholar] [CrossRef]
- Mccarty, T.R.; Hathorn, K.E.; Redd, W.D.; Rodriguez, N.J.; Zhou, J.C.; Bazarbashi, A.N.; Njie, C.; Wong, D.; Trinh, Q.-D.; Shen, L.; et al. How do presenting symptoms and outcomes differ by race/ethnicity among hospitalized patients with Coronavirus Disease 2019 infection? Experience in Massachusetts. Clin. Infect. Dis. 2020, ciaa1245. [Google Scholar] [CrossRef] [PubMed]
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020, 584, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.E.; Ashe, E.M.; Silverstein, M.; Hofman, M.; Lange, S.J.; Razzaghi, H.; Mishuris, R.G.; Davidoff, R.; Parker, E.M.; Penman-Aguilar, A.; et al. Race/Ethnicity, underlying medical conditions, homelessness, and hospitalization status of adult patients with COVID-19 at an urban safety-net medical center—Boston, Massachusetts, 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 864–869. [Google Scholar] [CrossRef]
- Knight, M.; Bunch, K.; Vousden, N.; Morris, E.; Simpson, N.; Gale, C.; O’Brien, P.; Quigley, M.; Brocklehurst, P.; Kurinczuk, J.J. Characteristics and outcomes of pregnant women admitted to hospital with confirmed SARS-CoV-2 infection in UK: National population based cohort study. BMJ 2020, 369, m2107. [Google Scholar] [CrossRef] [PubMed]
- Eurostat Statistics Explained. Migration and Migrant Population. 2021. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Migration_and_migrant_population_statistics (accessed on 1 June 2021).
- Instituto Nacional de Estadística. Cifras de Población. Últimos Datos. 2021. Available online: https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736176951&menu=ultiDatos&idp=1254735572981 (accessed on 1 June 2021).
- Instituto de Estadística de Cataluña. 2021. Available online: https://www.idescat.cat/pub/?id=pmh&n=679&geo=mun:080193&lang=es (accessed on 1 June 2021).
- Guijarro, C.; Pérez-Fernández, E.; González-Piñeiro, B.; Meléndez, V.; Goyanes, M.; Renilla, M.E.; Casas, M.; Sastre, I.; Velasco, M.; Algora, A.; et al. Riesgo de COVID-19 en españoles y migrantes de distintas zonas del mundo residentes en España en la primera oleada de la enfermedad. Rev. Clin. Esp. 2020, 221, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Norman, F.F.; Crespillo-Andújar, C.; Pérez-Molina, J.A.; Comeche, B.; Chamorro, S.; Monge-Maillo, B.; Moreno-Guillén, S.; López-Vélez, R.; Vizcarra, P.; Crespillo, C.; et al. COVID-19 and geographical area of origin. Clin. Microbiol. Infect. 2020, 27, 632.e1–632.e5. [Google Scholar] [CrossRef] [PubMed]
- Velasco, M.; Castilla, V.; Guijarro, C.; Moreno, L.; Barba, R.; Losa, J.E. Differences in the use of health resources by Spanish and immigrant HIV-infected patients. Enfermedades infecciosas y microbiologia clinica 2012, 30, 458–462. [Google Scholar] [CrossRef] [PubMed]
- Rentsch, C.T.; Kidwai-Khan, F.; Tate, J.P.; Park, L.S.; King, J.T.; Skanderson, M.; Hauser, R.G.; Schultze, A.; Jarvis, C.I.; Holodniy, M.; et al. COVID-19 by race and ethnicity: A national cohort study of 6 million United States veterans. medRxiv 2020. [Google Scholar] [CrossRef]
- Cainzos-Achirica, M.; Vela, E.; Cleries, M.; Bilal, U.; Mauri, J.; Pueyo, M.J.; Rosas, A.; Enjuanes, C.; Blaha, M.J.; Kanaya, A.M.; et al. Cardiovascular risk factors and disease among non-European immigrants living in Catalonia. Heart 2019, 105, 1168–1174. [Google Scholar] [CrossRef] [PubMed]
- Helgesson, M.; Johansson, B.; Nordquist, T.; Vingård, E.; Svartengren, M. Healthy migrant effect in the Swedish context: A register-based, longitudinal cohort study. BMJ Open 2019, 9, e026972. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Available online: https://www.who.int/features/factfiles/obesity/facts/es/ (accessed on 12 April 2021).
- Piazza, G.; Goldhaber, S.Z. Venous thromboembolism and atherothrombosis an integrated approach. Circulation 2010, 121, 2146–2150. [Google Scholar] [CrossRef] [PubMed]
- Lighter, J.; Phillips, M.; Hochman, S.; Sterling, S.; Johnson, D.; Francois, F.; Stachel, A. Obesity in patients younger than 60 years is a risk factor for COVID-19 hospital admission. Clin. Infect. Dis. 2020, 71, 896–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tartof, S.Y.; Qian, L.; Hong, M.V.; Wei, M.R.; Nadjafi, R.F.; Fischer, H.; Li, M.Z.; Shaw, D.S.F.; Caparosa, M.S.L.; Nau, C.L.; et al. Obesity and mortality among patients diagnosed with COVID-19: Results from an Integrated Health Care Organization. Ann. Intern. Med. 2020, 173, 773–781. [Google Scholar] [CrossRef]
- Kompaniyets, L.; Goodman, A.B.; Belay, B.; Freedman, D.S.; Sucosky, M.S.; Lange, S.J.; Gundlapalli, A.V.; Boehmer, T.K.; Blanck, H.M. Body mass index and risk for COVID-19-related hospitalization, intensive care unit admission, invasive mechanical ventilation, and death—United States, March–December 2020. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 355–361. [Google Scholar] [CrossRef]
- Steffen, L.M.; Cushman, M.; Peacock, J.M.; Heckbert, S.R.; Jacobs, D.R., Jr.; Rosamond, W.D.; Folsom, A.R. Metabolic syndrome and risk of venous thromboembolism: Longitudinal Investigation of Thromboembolism Etiology. J. Thromb. Haemost. 2009, 7, 746–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maiese, A.; Manetti, A.C.; La Russa, R.; Di Paolo, M.; Turillazzi, E.; Frati, P.; Fineschi, V. Autopsy findings in COVID-19-related deaths: A literature review. Forensic Sci. Med. Pathol. 2020, 17, 279–296. [Google Scholar] [CrossRef] [PubMed]
- Arrossi, A.V.; Farver, C. The pulmonary pathology of COVID-19. Clevel. Clin. J. Med. 2020, 478, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Malas, M.B.; Naazie, I.N.; Elsayed, N.; Mathlouthi, A.; Marmor, R.; Clary, B. Thromboembolism risk of COVID-19 is high and associated with a higher risk of mortality: A systematic review and meta-analysis. EClinicalMedicine 2020, 29–30, 100639. [Google Scholar] [CrossRef]
- Chi, G.; Lee, J.J.; Jamil, A.; Gunnam, V.; Najafi, H.; Montazerin, S.M.; Shojaei, F.; Marszalek, J. Venous thromboembolism among hospitalized patients with COVID-19 undergoing thromboprophylaxis: A systematic review and meta-analysis. J. Clin. Med. 2020, 9, 2489. [Google Scholar] [CrossRef]
- Zubair, A.S.; McAlpine, L.S.; Gardin, T.; Farhadian, S.; Kuruvilla, D.E.; Spudich, S. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019. JAMA Neurol. 2020, 77, 1018–1027. [Google Scholar] [CrossRef]
- Politi, L.S.; Salsano, E.; Grimaldi, M. Magnetic resonance imaging alteration of the brain in a patient with Coronavirus Disease 2019 (COVID-19) and Anosmia. JAMA Neurol. 2020, 77, 1028. [Google Scholar] [CrossRef]
- Caronna, E.; Ballvé, A.; Llauradó, A.; Gallardo, V.J.; Ariton, D.M.; Lallana, S.; Maza, S.L.; Gadea, M.O.; Quibus, L.; Restrepo, J.L.; et al. Headache: A striking prodromal and persistent symptom, predictive of COVID-19 clinical evolution. Cephalalgia 2020, 40, 1410–1421. [Google Scholar] [CrossRef]
- Riveiro-Barciela, M.; Labrador-Horrillo, M.; Camps-Relats, L.; González-Sans, D.; Ventura-Cots, M.; Terrones-Peinador, M.; Nuñez-Conde, A.; Martínez-Gallo, M.; Hernández, M.; Antón, A.; et al. Simple predictive models identify patients with COVID-19 pneumonia and poor prognosis. PLoS ONE 2020, 15, e0244627. [Google Scholar] [CrossRef]
- Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med. 2020, 180, 934. [Google Scholar] [CrossRef] [Green Version]
- Liao, D.; Zhou, F.; Luo, L.; Xu, M.; Wang, H.; Xia, J.; Gao, Y.; Cai, L.; Wang, Z.; Yin, P.; et al. Haematological characteristics and risk factors in the classification and prognosis evaluation of COVID-19: A retrospective cohort study. Lancet Haematol. 2020, 7, e671–e678. [Google Scholar] [CrossRef]
- Ellinghaus, D.; Degenhardt, F.; Bujanda, L. Severe, and the COVID-19 GWAS Group. Genomewide association study of severe COVID-19 with respiratory failure. N. Engl. J. Med. 2020, 383, 1522. [Google Scholar] [CrossRef] [PubMed]
- Van Der Made, C.I.; Simons, A.; Schuurs-Hoeijmakers, J.; Heuvel, G.V.D.; Mantere, T.; Kersten, S.; Van Deuren, R.C.; Steehouwer, M.; Van Reijmersdal, S.V.; Jaeger, M.; et al. Presence of genetic variants among young men with severe COVID-19. JAMA 2020, 324, 663. [Google Scholar] [CrossRef]
- Tilli, M.; Olliaro, P.; Gobbi, F.; Bisoffi, Z.; Bartoloni, A.; Zammarchi, L. Neglected tropical diseases in non-endemic countries in the era of COVID-19 pandemic: The great forgotten. J. Travel Med. 2020, 28, taaa179. [Google Scholar] [CrossRef] [PubMed]
- Marchese, V.; Crosato, V.; Gulletta, M.; Castelnuovo, F.; Cristini, G.; Matteelli, A.; Castelli, F. Strongyloides infection manifested during immunosuppressive therapy for SARS-CoV-2 pneumonia. Infection 2020, 49, 539–542. [Google Scholar] [CrossRef]
Epidemiology and Comorbidities | Study Population (n = 700) | Spanish Controls (n = 558) | Latin American (n = 142) | Univariate Analysis (p-Value) |
---|---|---|---|---|
Age, years | 47.67 (SD 12.66) | 47.81 (SD 12.61) | 47.12 (SD 12.87) | - |
Gender, male | 382 (54.6%) | 304 (54.5%) | 78 (54.9%) | - |
Smoking | 48 (6.9%) | 43 (7.8%) | 5 (3.5%) | p = 0.080 |
Alcohol consumption | 28 (4.1%) | 21 (3.8%) | 7 (4.9%) | p = 0.514 |
BMI | 29.53 (SD 5.22) | 29.30 (SD 5.13) | 30.49 (SD 5.52) | p = 0.259 |
Arterial hypertension | 147 (21.1%) | 122 (21.9%) | 25 (17.7%) | p = 0.292 |
Chronic heart diseases | 8 (1.1%) | 7 (1.3%) | 1 (0.7%) | p = 0.697 |
Diabetes mellitus | 65 (9.4%) | 49 (8.9%) | 16 (11.4%) | p = 0.273 |
Chronic lung diseases | 84 (12.0%) | 71 (12.7%) | 13 (9.2%) | p = 0.264 |
Asthma | 44 (6.3%) | 40 (7.2%) | 4 (2.8%) | p = 0.065 |
COPD | 15 (2.1%) | 14 (2.4%) | 1 (0.7%) | p = 0.211 |
Interstitial pneumopathy | 3 (0.4%) | 3 (0.5%) | 0 (0%) | p = 1 |
Bronchial hyperresponsiveness | 2 (0.3%) | 0 (0%) | 2 (1.4%) | p = 1 |
Other pneumopathies | 13 (1.9%) | 9 (1.6%) | 4 (2.8%) | p = 0.3383 |
Clinical Symptoms | Study Population (n = 700) | Spanish Controls (n = 558) | Latin American (n = 142) | Univariate Analysis (p-Value) |
---|---|---|---|---|
Fever | 636 (90.9%) | 507 (90.9%) | 129 (90.8%) | p = 0.960 |
Cough | 554 (79.1%) | 437 (78.3%) | 117 (82.4%) | p = 0.301 |
Dyspnea | 369 (52.7%) | 291 (52.2%) | 78 (54.9%) | p = 0.481 |
Malaise | 276 (39.4%) | 211 (37.8%) | 65 (45.8%) | p = 0.106 |
Arthromyalgia | 223 (31.9%) | 170 (30.5%) | 53 (37.3%) | p = 0.121 |
Diarrhea | 201 (28.7%) | 165 (29.6%) | 36 (25.4%) | p = 0.362 |
Expectoration | 126 (18.0%) | 99 (17.7%) | 27 (19%) | p = 0.686 |
Anosmia | 59 (8.4%) | 38 (6.8%) | 21 (14.8%) | p = 0.002 |
Pleuritic chest pain | 138 (19.7%) | 117 (21%) | 21 (14.8%) | p = 0.068 |
Vomits | 57 (8.1%) | 43 (7.7%) | 14 (9.9%) | p = 0.402 |
Nausea | 49 (7.0%) | 38 (6.8%) | 11 (7.7%) | p = 0.706 |
Rhinorrhea | 25 (3.6%) | 15 (2.7%) | 10 (7%) | p = 0.014 |
Odynophagia | 42 (6.0%) | 28 (5.0%) | 14 (9.9%) | p = 0.031 |
Nasal congestion | 16 (2.3%) | 13 (2.3%) | 3 (2.1%) | p = 0.900 |
Hemoptysis | 10 (1.4%) | 8 (1.4%) | 2 (1.4%) | p = 1 |
Weight loss | 5 (0.7%) | 4 (0.7%) | 1 (0.7%) | p = 1 |
Night sweats | 5 (0.7%) | 3 (0.5%) | 2 (1.4%) | p = 0.282 |
Cacosmia | 2 (0.3%) | 1 (0.2%) | 1 (0.7%) | p = 0.327 |
Analytical Parameters | Study Population (n = 700) | Spanish Controls (n = 558) | Latin American (n = 142) | Univariate Analysis (p-Value) |
---|---|---|---|---|
Hemoglobin (g/dL) | 13.49 (SD 1.76) | 13.51 (SD 1.75) | 13.42 (SD 1.80) | p = 0.631 |
Leukocytes (×109/L) | 8.52 (SD 18.66) | 8.46 (SD 20.33) | 8.74 (SD 10.48) | p = 0.823 |
Lymphocytes (%) | 18.75 (SD 10.22) | 18.92 (SD 10.53) | 18.13 (SD 9.00) | p = 0.307 |
Platelets (×109/L) | 217.78 (SD 94.71) | 211.36 (SD 91.88) | 241.41(SD 101.35) | p = 0.002 |
D-dimer (ng/mL) | 1342.95 (SD 16005.72) | 1511.67 (SD 18042.90) | 758.71 (SD 4033.36) | p = 0.700 |
Creatinine (mg/dL) | 0.88 (SD 0.57) | 0.89 (SD 0.58) | 0.85 (SD 0.53) | p = 0.401 |
AST (UI/L) | 51.55 (SD 39.26) | 52.48 (SD 41.50) | 48.11 (SD 29.43) | p = 0.260 |
ALT (UI/L) | 44.25 (SD 44.45) | 43.27 (SD 46.50) | 47.86 (SD 35.92) | p = 0.307 |
LDH (UI/L) | 369.17 (SD 133.26) | 374.53 (SD 132.16) | 349.5 (SD 136.12) | p = 0.171 |
CRP (mg/dL) | 11.16 (SD 10.40) | 11.18 (SD 10.72) | 11.10 (SD 9.22) | p = 0.721 |
Ferritin (ng/mL) | 742.15 (SD 949.53) | 795.6 (SD 1038.57) | 550.46 (SD 474.39) | p = 0.038 |
IL-6 (pg/mL) | 141.53 (SD 1115.43) | 152.79 (SD 1261.51) | 103.5 (SD 270.99) | p = 0.607 |
Outcomes | Study Population (n = 700) | Spanish Controls (n = 558) | Latin American (n = 142) | Univariate Analysis (p-Value) |
---|---|---|---|---|
ICU admission | 150 (21.7%) | 110 (20.2%) | 40 (28.2%) | p = 0.031 |
Oxygen requirement | ||||
No oxygen requirement | 310 (44.3%) | 254 (45.5%) | 56 (39.4%) | p = 0.490 |
Low-flow oxygen a | 239 (34.1%) | 188 (33.7%) | 51 (35.9%) | |
High-flow oxygen b | 43 (6.1%) | 33 (5.9%) | 10 (7%) | |
IMV | 108 (15.4%) | 83 (14.9%) | 25 (17.6%) | |
Outcome at 28 days | ||||
Discharge | 576 (82.3%) | 453 (81.2%) | 123 (86.6%) | p = 0.726 |
Hospitalization c | 102 (14.6%) | 83 (14.9%) | 19 (13.4%) | |
Death | 22 (3.1%) | 22 (3.9%) | 0 (0%) | |
Readmission | 8 (2.1%) | 7 (2.2%) | 1 (1.5%) | p = 0.771 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sempere-González, A.; Salvador, F.; Monforte, A.; Sampol, J.; Espinosa-Pereiro, J.; Miarons, M.; Bosch-Nicolau, P.; Guillén-del-Castillo, A.; Aznar, M.L.; Campos-Varela, I.; et al. COVID-19 Clinical Profile in Latin American Migrants Living in Spain: Does the Geographical Origin Matter? J. Clin. Med. 2021, 10, 5213. https://doi.org/10.3390/jcm10225213
Sempere-González A, Salvador F, Monforte A, Sampol J, Espinosa-Pereiro J, Miarons M, Bosch-Nicolau P, Guillén-del-Castillo A, Aznar ML, Campos-Varela I, et al. COVID-19 Clinical Profile in Latin American Migrants Living in Spain: Does the Geographical Origin Matter? Journal of Clinical Medicine. 2021; 10(22):5213. https://doi.org/10.3390/jcm10225213
Chicago/Turabian StyleSempere-González, Abiu, Fernando Salvador, Arnau Monforte, Júlia Sampol, Juan Espinosa-Pereiro, Marta Miarons, Pau Bosch-Nicolau, Alfredo Guillén-del-Castillo, Maria Luisa Aznar, Isabel Campos-Varela, and et al. 2021. "COVID-19 Clinical Profile in Latin American Migrants Living in Spain: Does the Geographical Origin Matter?" Journal of Clinical Medicine 10, no. 22: 5213. https://doi.org/10.3390/jcm10225213
APA StyleSempere-González, A., Salvador, F., Monforte, A., Sampol, J., Espinosa-Pereiro, J., Miarons, M., Bosch-Nicolau, P., Guillén-del-Castillo, A., Aznar, M. L., Campos-Varela, I., Sánchez-Montalvá, A., Leguízamo-Martínez, L. M., Oliveira, I., Antón, A., & Almirante, B. (2021). COVID-19 Clinical Profile in Latin American Migrants Living in Spain: Does the Geographical Origin Matter? Journal of Clinical Medicine, 10(22), 5213. https://doi.org/10.3390/jcm10225213