Fusarium Keratitis—Review of Current Treatment Possibilities
Abstract
:1. Introduction
2. Search Strategy
3. Antifungals
3.1. Mechanisms of Action
3.2. Topical Use
3.2.1. Natamycin
3.2.2. Natamycin vs. Amphotericin B
3.2.3. Natamycin vs. Voriconazole
3.2.4. Natamycin vs. Econazole
3.2.5. Combination Therapy
3.3. Oral Antifungals
3.4. Intrastromal Use
3.5. Intracameral Injections
3.6. Topical, Systemic, and Targeted Therapy Protocol
3.7. New Antifungals
3.8. New Drug Delivery Possibilities
4. Antiseptics
4.1. Chlorhexidine—An Old Novel Cure
4.2. Povidone Iodine
4.3. Ophthalmic Preservatives
5. Crosslinking
6. Argon Laser
7. Therapeutic Keratoplasty
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, L.; Leck, A.K.; Gichangi, M.; Burton, M.J.; Denning, D.W. The global incidence and diagnosis of fungal keratitis. Lancet Infect. Dis. 2020, 21, e49–e57. [Google Scholar] [CrossRef]
- Hoffman, J.; Burton, M.; Leck, A. Mycotic Keratitis—A Global Threat from the Filamentous Fungi. J. Fungi 2021, 7, 273. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.A.; Leck, A.K.; Myatt, M. Characteristic clinical features as an aid to the diagnosis of suppurative keratitis caused by filamentous fungi. Br. J. Ophthalmol. 2005, 89, 1554–1558. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Chandra, J.; Mukherjee, P.; Szczotka-Flynn, L.; Ghannoum, M.A.; Pearlman, E. A Murine Model of Contact Lens–Associated Fusarium Keratitis. Investig. Opthalmol. Vis. Sci. 2010, 51, 1511–1516. [Google Scholar] [CrossRef] [Green Version]
- Calvillo-Medina, R.P.; Reyes, J.P.; Barba-Escoto, L.; Bautista-Hernandez, L.A.; Campos-Guillén, J.; Jones, G.H.; de Lucio, V.M.B. Proteome analysis of biofilm produced by a Fusarium falciforme keratitis infectious agent. Microb. Pathog. 2019, 130, 232–241. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Chandra, J.; Yu, C.; Sun, Y.; Pearlman, E.; Ghannoum, M.A. Characterization of Fusarium Keratitis Outbreak Isolates: Contribution of Biofilms to Antimicrobial Resistance and Pathogenesis. Investig. Opthalmol. Vis. Sci. 2012, 53, 4450–4457. [Google Scholar] [CrossRef] [Green Version]
- Ponce-Angulo, D.G.; Bautista-Hernández, L.A.; Calvillo-Medina, R.P.; Castro-Tecorral, F.I.; Aparicio-Ozores, G.; Villegas, E.O.L.; Ribas-Aparicio, R.M.; de Lucio, V.M.B. Microscopic characterization of biofilm in mixed keratitis in a novel murine model. Microb. Pathog. 2020, 140, 103953. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, X.; Wang, Z.; Zhang, Y.; Hou, W. Keratitis-Associated Fungi Form Biofilms with Reduced Antifungal Drug Susceptibility. Investig. Opthalmol. Vis. Sci. 2012, 53, 7774–7778. [Google Scholar] [CrossRef] [Green Version]
- Córdova-Alcántara, I.M.; Venegas-Cortés, D.L.; Martínez-Rivera, M.; Pérez, N.O.; Rodriguez-Tovar, A.V. Biofilm characterization of Fusarium solani keratitis isolate: Increased resistance to antifungals and UV light. J. Microbiol. 2019, 57, 485–497. [Google Scholar] [CrossRef]
- Madhu, S.; Gajjar, D.; Sharma, S. Identification of Proteases: Carboxypeptidase and Aminopeptidase as Putative Virulence Factors of Fusarium solani Species Complex. Open Microbiol. J. 2020, 14, 266. [Google Scholar] [CrossRef]
- Naiker, S.; Odhav, B. Mycotic keratitis: Profile of Fusarium species and their mycotoxins. Mykotische Keratitis: Profil von Fusarium-Arten und ihren Mykotoxinen. Mycoses 2004, 47, 50–56. [Google Scholar] [CrossRef]
- Hu, J.; Hu, Y.; Chen, S.; Dong, C.; Zhang, J.; Li, Y.; Yang, J.; Han, X.; Zhu, X.; Xu, G. Role of activated macrophages in experimental Fusarium solani keratitis. Exp. Eye Res. 2014, 129, 57–65. [Google Scholar] [CrossRef]
- Karthikeyan, R.S.G.; Leal, S.; Prajna, N.V.; Dharmalingam, K.; Geiser, D.M.; Pearlman, E.; Lalitha, P. Expression of Innate and Adaptive Immune Mediators in Human Corneal Tissue Infected with Aspergillus or Fusarium. J. Infect. Dis. 2011, 204, 942–950. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Gao, X.-R.; Cui, H.-P.; Lang, L.-L.; Xie, X.-W.; Chen, Q. Time-dependent matrix metalloproteinases and tissue inhibitor of metalloproteinases expression change in Fusarium solani keratitis. Int. J. Ophthalmol. 2016, 9, 512–518. [Google Scholar] [CrossRef]
- Mitchell, B.M.; Wu, T.G.; Chong, E.-M.; Pate, J.C.; Wilhelmus, K.R. Expression of Matrix Metalloproteinases 2 and 9 in Experimental Corneal Injury and Fungal Keratitis. Cornea 2007, 26, 589–593. [Google Scholar] [CrossRef]
- Cong, L.; Xia, Y.-P.; Zhao, G.-Q.; Lin, J.; Xu, Q.; Hu, L.-T.; Qu, J.-Q.; Peng, X.-D. Expression of vitamin D receptor and cathelicidin in human corneal epithelium cells during Fusarium solani infection. Int. J. Ophthalmol. 2015, 8, 866–871. [Google Scholar] [CrossRef]
- Jin, X.; Qin, Q.; Tu, L.; Zhou, X.; Lin, Y.; Qu, J. Toll-like receptors (TLRs) expression and function in response to inactivate hyphae of Fusarium solani in immortalized human corneal epithelial cells. Mol. Vis. 2007, 13, 1953–1961. [Google Scholar]
- Ananthi, S.; Prajna, N.V.; Lalitha, P.; Valarnila, M.; Dharmalingam, K. Pathogen Induced Changes in the Protein Profile of Human Tears from Fusarium Keratitis Patients. PLoS ONE 2013, 8, e53018. [Google Scholar] [CrossRef] [Green Version]
- Chidambaram, J.D.; Prajna, N.V.; Srikanthi, P.; Lanjewar, S.; Shah, M.; Elakkiya, S.; Lalitha, P.; Burton, M.J. Epidemiology, risk factors, and clinical outcomes in severe microbial keratitis in South India. Ophthalmic Epidemiol. 2018, 25, 297–305. [Google Scholar] [CrossRef] [Green Version]
- E Oldenburg, C.; Prajna, V.N.; Prajna, L.; Krishnan, T.; Mascarenhas, J.; Vaitilingam, C.M.; Srinivasan, M.; See, C.W.; Cevallos, V.; E Zegans, M.; et al. Clinical signs in dematiaceous and hyaline fungal keratitis. Br. J. Ophthalmol. 2011, 95, 750–751. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S. Diagnosis of infectious diseases of the eye. Eye 2011, 26, 177–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chidambaram, J.D.; Prajna, N.V.; Larke, N.L.; Palepu, S.; Lanjewar, S.; Shah, M.; Elakkiya, S.; Lalitha, P.; Carnt, N.; Vesaluoma, M.H.; et al. Prospective Study of the Diagnostic Accuracy of the In Vivo Laser Scanning Confocal Microscope for Severe Microbial Keratitis. Ophthalmology 2016, 123, 2285–2293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Rosa, P.D.; Nunes, A.; Borges, R.; Batista, B.; Fuentefria, A.M.; Goldani, L. In vitro susceptibility and multilocus sequence typing of Fusarium isolates causing keratitis. J. Mycol. Med. 2018, 28, 482–485. [Google Scholar] [CrossRef] [PubMed]
- Azor, M.; Gené, J.; Cano, J.; Guarro, J. Universal In Vitro Antifungal Resistance of Genetic Clades of the Fusarium solani Species Complex. Antimicrob. Agents Chemother. 2007, 51, 1500–1503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manikandan, P.; Abdel-Hadi, A.; Randhir Babu Singh, Y.; Revathi, R.; Anita, R.; Banawas, S.; Bin Dukhyil, A.A.; Alshehri, B.; Shobana, C.S.; Panneer Selvam, K.; et al. Fungal Keratitis: Epidemiology, Rapid Detection, and Antifungal Susceptibilities of Fusarium and Aspergillus Isolates from Corneal Scrapings. BioMed Res. Int. 2019, 2019, 6395840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Q.-F.; Jin, X.-Y.; Wang, X.-L.; Sun, X.-G. Effect of topical application of terbinafine on fungal keratitis. Chin. Med. J. 2009, 122, 1884–1888. [Google Scholar] [PubMed]
- Xie, L.; Zhai, H.; Zhao, J.; Sun, S.; Shi, W.; Dong, X. Antifungal Susceptibility for Common Pathogens of Fungal Keratitis in Shandong Province, China. Am. J. Ophthalmol. 2008, 146, 260–265. [Google Scholar] [CrossRef]
- Lemke, A.; Kiderlen, A.F.; Kayser, O. Amphotericin B. Appl. Microbiol. Biotechnol. 2005, 68, 151–162. [Google Scholar] [CrossRef]
- Te Welscher, Y.M.; Napel, H.H.T.; Balagué, M.M.; Souza, C.M.; Riezman, H.; de Kruijff, B.; Breukink, E. Natamycin Blocks Fungal Growth by Binding Specifically to Ergosterol without Permeabilizing the Membrane. J. Biol. Chem. 2008, 283, 6393–6401. [Google Scholar] [CrossRef] [Green Version]
- Te Welscher, Y.M.; van Leeuwen, M.R.; de Kruijff, B.; Dijksterhuis, J.; Breukink, E. Polyene antibiotic that inhibits membrane transport proteins. Proc. Natl. Acad. Sci. USA 2012, 109, 11156–11159. [Google Scholar] [CrossRef] [Green Version]
- Sanati, H.; Belanger, P.; Fratti, R.; Ghannoum, M. A new triazole, voriconazole (UK-109,496), blocks sterol biosynthesis in Candida albicans and Candida krusei. Antimicrob. Agents Chemother. 1997, 41, 2492–2496. [Google Scholar] [CrossRef] [Green Version]
- O’Day, D.M.; Head, W.S.; Robinson, R.D.; Clanton, J.A. Corneal penetration of topical amphotericin B and natamycin. Curr. Eye Res. 1986, 5, 877–882. [Google Scholar] [CrossRef]
- Müller, G.G.; Kara-José, N.; de Castro, R.S. Antifungals in eye infections: Drugs and routes of administration. Rev. Bras. Oftalmol. 2013, 72, 132–141. [Google Scholar] [CrossRef] [Green Version]
- Patil, A.; Lakhani, P.; Majumdar, S. Current perspectives on natamycin in ocular fungal infections. J. Drug Deliv. Sci. Technol. 2017, 41, 206–212. [Google Scholar] [CrossRef]
- Qiu, S.; Zhao, G.-Q.; Lin, J.; Wang, X.; Hu, L.-T.; Du, Z.-D.; Wang, Q.; Zhu, C.-C. Natamycin in the treatment of fungal keratitis: A systematic review and Meta-analysis. Int. J. Ophthalmol. 2015, 8, 597–602. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Han, L.; Yin, W. Study of Pathogens of Fungal Keratitis and the Sensitivity of Pathogenic Fungi to Therapeutic Agents with the Disk Diffusion Method. Curr. Eye Res. 2015, 40, 1095–1101. [Google Scholar] [CrossRef]
- Sharma, S.; Sahu, S.K.; Garg, P.; Pradhan, L.; Nalamada, S.; Das, S. Natamycin in the treatment of keratomycosis: Correlation of treatment outcome and in vitro susceptibility of fungal isolates. Indian J. Ophthalmol. 2011, 59, 512–514. [Google Scholar] [CrossRef]
- Prajna, N.V.; Krishnan, T.; Mascarenhas, J.; Rajaraman, R.; Prajna, L.; Srinivasan, M.; Raghavan, A.; Oldenburg, C.E.; Ray, K.J.; Zegans, M.E.; et al. The Mycotic Ulcer Treatment Trial: A randomized trial comparing natamycin vs. voriconazole. JAMA Ophthalmol. 2013, 131, 422–429. [Google Scholar] [CrossRef]
- FlorCruz, N.V.; Evans, J.R. Medical interventions for fungal keratitis. Cochrane Database Syst. Rev. 2015, 4, CD004241. [Google Scholar] [CrossRef]
- Walther, G.; Stasch, S.; Kaerger, K.; Hamprecht, A.; Roth, M.; Cornely, O.A.; Geerling, G.; MacKenzie, C.; Kurzai, O.; von Lilienfeld-Toal, M. Fusarium Keratitis in Germany. J. Clin. Microbiol. 2017, 55, 2983–2995. [Google Scholar] [CrossRef] [Green Version]
- Burton, M.J.; Pithuwa, J.; Okello, E.; Afwamba, I.; Onyango, J.J.; Oates, F.; Chevallier, C.; Hall, A.B. Microbial Keratitis in East Africa: Why are the Outcomes so Poor? Ophthalmic Epidemiol. 2011, 18, 158–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO Model List of Essential Medicines—22nd List. 2021. Available online: https://www.who.int/publications-detail-redirect/WHO-MHP-HPS-EML-2021.02 (accessed on 6 November 2021).
- Kaur, I.P.; Kakkar, S. Topical delivery of antifungal agents. Expert Opin. Drug Deliv. 2010, 7, 1303–1327. [Google Scholar] [CrossRef] [PubMed]
- Oechsler, R.A.; Yamanaka, T.M.; Bispo, P.J.; Sartori, J.; Yu, M.C.Z.; A Melo, A.S.; Miller, D.; Hofling-Lima, A.L. Fusarium keratitis in Brazil: Genotyping, in vitro susceptibilities, and clinical outcomes. Clin. Ophthalmol. 2013, 7, 1693–1701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gajjar, D.U.; Pal, A.K.; Ghodadra, B.K.; Vasavada, A.R. Microscopic Evaluation, Molecular Identification, Antifungal Susceptibility, and Clinical Outcomes in Fusarium, Aspergillus and, Dematiaceous Keratitis. BioMed Res. Int. 2013, 2013, 605308. [Google Scholar] [CrossRef] [Green Version]
- Kawakami, H.; Inuzuka, H.; Hori, N.; Takahashi, N.; Ishida, K.; Mochizuki, K.; Ohkusu, K.; Muraosa, Y.; Watanabe, A.; Kamei, K. Inhibitory effects of antimicrobial agents against Fusarium species. Med. Mycol. 2015, 53, 603–611. [Google Scholar] [CrossRef] [Green Version]
- Lalitha, P.; Shapiro, B.L.; Srinivasan, M.; Prajna, N.V.; Acharya, N.R.; Fothergill, A.W.; Ruiz, J.; Chidambaram, J.; Maxey, K.J.; Hong, K.C.; et al. Antimicrobial Susceptibility of Fusarium, Aspergillus, and Other Filamentous Fungi Isolated from Keratitis. Arch. Ophthalmol. 2007, 125, 789–793. [Google Scholar] [CrossRef]
- Prajna, N.V.; Radhakrishnan, N.; Lalitha, P.; Austin, A.; Ray, K.J.; Keenan, J.D.; Porco, T.C.; Lietman, T.M.; Rose-Nussbaumer, J. Cross-Linking–Assisted Infection Reduction: A Randomized Clinical Trial Evaluating the Effect of Adjuvant Cross-Linking on Outcomes in Fungal Keratitis. Ophthalmology 2020, 127, 159–166. [Google Scholar] [CrossRef]
- Kimakura, M.; Usui, T.; Yokoo, S.; Nakagawa, S.; Yamagami, S.; Amano, S. Toxicity of Topical Antifungal Agents to Stratified Human Cultivated Corneal Epithelial Sheets. J. Ocul. Pharmacol. Ther. 2014, 30, 810–814. [Google Scholar] [CrossRef] [Green Version]
- Foster, C.S.; Lass, J.H.; Moran-Wallace, K.; Giovanoni, R. Ocular Toxicity of Topical Antifungal Agents. Arch. Ophthalmol. 1981, 99, 1081–1084. [Google Scholar] [CrossRef]
- Dos Santos, C.O.; Kolwijck, E.; Van Rooij, J.; Stoutenbeek, R.; Visser, N.; Cheng, Y.Y.; Santana, N.T.Y.; Verweij, P.E.; Eggink, C.A. Epidemiology and Clinical Management of Fusarium keratitis in the Netherlands, 2005–2016. Front. Cell. Infect. Microbiol. 2020, 10, 133. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Tong, Y.; Wang, X.; Zhang, X.; Chen, S.; Lu, H. Comparison of the Ocular Penetration and Pharmacokinetics Between Natamycin and Voriconazole After Topical Instillation in Rabbits. J. Ocul. Pharmacol. Ther. 2018, 34, 460–467. [Google Scholar] [CrossRef]
- Vorwerk, C.K.; Streit, F.; Binder, L.; Tuchen, S.; Knop, C.; Behrens-Baumann, W. Aqueous humor concentration of voriconazole after topical administration in rabbits. Graefe’s Arch. Clin. Exp. Ophthalmol. 2008, 246, 1179–1183. [Google Scholar] [CrossRef]
- Prajna, V.N.; Lalitha, P.S.; Mascarenhas, J.; Krishnan, T.; Srinivasan, M.; Vaitilingam, C.M.; E Oldenburg, C.; Sy, A.; Keenan, J.D.; Porco, T.C.; et al. Natamycin and voriconazole in Fusarium and Aspergillus keratitis: Subgroup analysis of a randomised controlled trial: Table 1. Br. J. Ophthalmol. 2012, 96, 1440.1–1441. [Google Scholar] [CrossRef] [Green Version]
- Lalitha, P.; Vijaykumar, R.; Prajna, N.V.; Fothergill, A.W. In Vitro Natamycin Susceptibility of Ocular Isolates of Fusarium and Aspergillus Species: Comparison of Commercially Formulated Natamycin Eye Drops to Pharmaceutical-Grade Powder. J. Clin. Microbiol. 2008, 46, 3477–3478. [Google Scholar] [CrossRef] [Green Version]
- Ray, K.J.; Lalitha, P.; Prajna, N.V.; Rajaraman, R.; Krishnan, T.; Srinivasan, M.; Ryg, P.; McLeod, S.; Acharya, N.R.; Lietman, T.M.; et al. The Utility of Repeat Culture in Fungal Corneal Ulcer Management: A Secondary Analysis of the MUTT-I Randomized Clinical Trial. Am. J. Ophthalmol. 2017, 178, 157–162. [Google Scholar] [CrossRef]
- Ray, K.J.; Prajna, N.V.; Lalitha, P.; Rajaraman, R.; Krishnan, T.; Patel, S.; Das, M.; Shah, R.; Dhakhwa, K.; McLeod, S.D.; et al. The Significance of Repeat Cultures in the Treatment of Severe Fungal Keratitis. Am. J. Ophthalmol. 2018, 189, 41–46. [Google Scholar] [CrossRef]
- Arora, R.; Goyal, J.; Gupta, D.; Kaur, R. Voriconazole versus natamycin as primary treatment in fungal corneal ulcers. Clin. Exp. Ophthalmol. 2011, 39, 434–440. [Google Scholar] [CrossRef]
- Prajna, N.V.; Prajna, N.V.; Mascarenhas, J.; Krishnan, T.; Reddy, P.R.; Prajna, L.; Srinivasan, M.; Vaitilingam, C.M.; Hong, K.C.; Lee, A.M.; et al. Comparison of Natamycin and Voriconazole for the Treatment of Fungal Keratitis. Arch. Ophthalmol. 2010, 128, 672–678. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Das, S.; Virdi, A.; Fernandes, M.; Sahu, S.K.; Kumar Koday, N.; Ali, M.H.; Garg, P.; Motukupally, S.R. Re-appraisal of topical 1% voriconazole and 5% natamycin in the treatment of fungal keratitis in a randomised trial. Br. J. Ophthalmol. 2015, 99, 1190–1195. [Google Scholar] [CrossRef]
- Oechsler, R.A.; Feilmeier, M.R.; Miller, D.; Shi, W.; Hofling-Lima, A.L.; Alfonso, E.C. Fusarium Keratitis: Genotyping, in vitro susceptibility and clinical outcomes. Cornea 2013, 32, 667–673. [Google Scholar] [CrossRef] [Green Version]
- Aung, T.T.; Chor, W.H.J.; Lynn, M.N.; Chan, A.S.Y.; Tan, D.T.; Beuerman, R.W. Rabbit Fungal Keratitis Model of Fusarium solani Tested Against Three Commercially Available Antifungal Drugs. Eye Contact 2020, 46, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Mahashabde, S.; Nahata, M.C.; Shrivastava, U. A comparative study of anti-fungal drugs in mycotic corneal ulcer. Indian J. Ophthalmol. 1987, 35, 149–152. [Google Scholar] [PubMed]
- Arora, I.; Kulshrestha, O.P.; Upadhaya, S. Treatment of fungal corneal ulcers with econazole. Indian J. Ophthalmol. 1983, 31, 1019. [Google Scholar] [PubMed]
- Prajna, N.V.; John, R.K.; Nirmalan, P.K.; Lalitha, P.; Srinivasan, M. A randomised clinical trial comparing 2% econazole and 5% natamycin for the treatment of fungal keratitis. Br. J. Ophthalmol. 2003, 87, 1235–1237. [Google Scholar] [CrossRef] [Green Version]
- Lalitha, P.; Shapiro, B.L.; Loh, A.R.; Fothergill, A.W.; Prajna, N.V.; Srinivasan, M.; Oldenburg, C.E.; Quigley, D.A.; Chidambaram, J.D.; McLeod, S.D.; et al. Amphotericin B and natamycin are not synergistic in vitro against Fusarium and Aspergillus spp. isolated from keratitis. Br. J. Ophthalmol. 2011, 95, 744–745. [Google Scholar] [CrossRef] [PubMed]
- Sradhanjali, S.; Yein, B.; Sharma, S.; Das, S. In vitro synergy of natamycin and voriconazole against clinical isolates of Fusarium, Candida, Aspergillus and Curvularia spp. Br. J. Ophthalmol. 2018, 102, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Al-Hatmi, A.M.S.; Meletiadis, J.; Curfs-Breuker, I.; Bonifaz, A.; Meis, J.F.; De Hoog, G.S. In vitro combinations of natamycin with voriconazole, itraconazole and micafungin against clinical Fusarium strains causing keratitis. J. Antimicrob. Chemother. 2016, 71, 953–955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Zhou, L.; Gao, C.; Han, L.; Xu, Y. Rifampin Enhances the Activity of Amphotericin B against Fusarium solani Species Complex and Aspergillus flavus Species Complex Isolates from Keratitis Patients. Antimicrob. Agents Chemother. 2017, 61, e02069-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prajna, N.V.; Krishnan, T.; Rajaraman, R.; Patel, S.; Srinivasan, M.; Das, M.; Ray, K.J.; O’Brien, K.S.; Oldenburg, C.E.; McLeod, S.D.; et al. Effect of Oral Voriconazole on Fungal Keratitis in the Mycotic Ulcer Treatment Trial II (MUTT II): A Randomized Clinical Trial. JAMA Ophthalmol. 2016, 134, 1365–1372. [Google Scholar] [CrossRef]
- Prajna, N.V.; Krishnan, T.; Rajaraman, R.; Patel, S.; Shah, R.; Srinivasan, M.; Devi, L.; Das, M.; Ray, K.J.; O’Brien, K.S.; et al. Adjunctive Oral Voriconazole Treatment of Fusarium Keratitis: A Secondary Analysis From the Mycotic Ulcer Treatment Trial II. JAMA Ophthalmol. 2017, 135, 520–525. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.; Singhal, D.; Maharana, P.K.; Sinha, R.; Agarwal, T.; Upadhyay, A.D.; Velpandian, T.; Satpathy, G.; Titiyal, J.S. Comparison of Oral Voriconazole Versus Oral Ketoconazole as an Adjunct to Topical Natamycin in Severe Fungal Keratitis: A Randomized Controlled Trial. Cornea 2017, 36, 1521–1527. [Google Scholar] [CrossRef]
- Ravuri, S.; Mittal, R.; Bagga, B. Topical 5% Natamycin with Oral Ketoconazole in Filamentous Fungal Keratitis: A Randomized Controlled Trial. Asia-Pac. J. Ophthalmol. 2015, 4, 146–150. [Google Scholar] [CrossRef]
- Nejabat, M.; Yaqubi, N.; Khosravi, A.; Zomorodian, K.; Ashraf, M.J.; Salouti, R. Therapeutic Effect of Intrastromal Voriconazole, Topical Voriconazole, and Topical Natamycin on Fusarium Keratitis in Rabbit. J. Ophthalmol. 2016, 2016, e8692830. [Google Scholar] [CrossRef] [Green Version]
- Kalaiselvi, G.; Narayana, S.; Krishnan, T.; Sengupta, S. Intrastromal voriconazole for deep recalcitrant fungal keratitis: A case series. Br. J. Ophthalmol. 2015, 99, 195–198. [Google Scholar] [CrossRef]
- Siatiri, H.; Daneshgar, F.; Siatiri, N.; Khodabande, A. The Effects of Intrastromal Voriconazole Injection and Topical Voriconazole in the Treatment of Recalcitrant Fusarium Keratitis. Cornea 2011, 30, 872–875. [Google Scholar] [CrossRef]
- Sharma, N.; Agarwal, P.; Sinha, R.; Titiyal, J.S.; Velpandian, T.; Vajpayee, R.B. Evaluation of intrastromal voriconazole injection in recalcitrant deep fungal keratitis: Case series. Br. J. Ophthalmol. 2011, 95, 1735–1737. [Google Scholar] [CrossRef]
- Eguchi, H.; Hayashi, Y.; Miyamoto, T.; Hotta, F.; Mitamura, Y.; Niki, M. Ineffectiveness of intrastromal voriconazole for filamentous fungal keratitis. Clin. Ophthalmol. 2014, 8, 1075–1079. [Google Scholar] [CrossRef] [Green Version]
- Narayana, S.; Krishnan, T.; Ramakrishnan, S.; Samantaray, P.P.; Austin, A.; Pickel, J.; Porco, T.; Lietman, T.; Rose-Nussbaumer, J. Mycotic Antimicrobial Localized Injection: A Randomized Clinical Trial Evaluating Intrastromal Injection of Voriconazole. Ophthalmology 2019, 126, 1084–1089. [Google Scholar] [CrossRef]
- Sharma, N.; Chacko, J.; Velpandian, T.; Titiyal, J.S.; Sinha, R.; Satpathy, G.; Tandon, R.; Vajpayee, R.B. Comparative Evaluation of Topical versus Intrastromal Voriconazole as an Adjunct to Natamycin in Recalcitrant Fungal Keratitis. Ophthalmology 2013, 120, 677–681. [Google Scholar] [CrossRef]
- Saluja, G.; Sharma, N.; Agarwal, R.; Sharma, H.P.; Singhal, D.; Kumar Maharana, P.; Sinha, R.; Agarwal, T.; Velpandian, T.; Titiyal, J.S.; et al. Comparison of Safety and Efficacy of Intrastromal Injections of Voriconazole, Amphotericin B and Natamycin in Cases of Recalcitrant Fungal Keratitis: A Randomized Controlled Trial. Clin. Ophthalmol. 2021, 15, 2437–2446. [Google Scholar] [CrossRef]
- Yilmaz, S.; Ture, M.; Maden, A. Efficacy of Intracameral Amphotericin B Injection in the Management of Refractory Keratomycosis and Endophthalmitis. Cornea 2007, 26, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhang, J.; Li, Y.; Han, X.; Zheng, W.; Yang, J.; Xu, G. A Combination of Intrastromal and Intracameral Injections of Amphotericin B in the Treatment of Severe Fungal Keratitis. J. Ophthalmol. 2016, 2016, 3436415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, N.; Sankaran, P.; Agarwal, T.; Arora, T.; Chawla, B.; Titiyal, J.S.; Tandon, R.; Satapathy, G.; Vajpayee, R.B. Evaluation of Intracameral Amphotericin B in the Management of Fungal Keratitis: Randomized Controlled Trial. Ocul. Immunol. Inflamm. 2016, 24, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Killani, S.P.; Atti, S.; Gupta, A.; Pujala, S.R.; Goli, S.; Mahendra, S.; Adapala, A.; Budamakayala, K. Intracameral and Intracorneal Voriconazole in Deep Keratomycosis with Endothelial Plaque. J. Evol. Med. Dent. Sci. 2015, 4, 16476–16480. [Google Scholar] [CrossRef]
- Shen, Y.-C.; Wang, C.-Y.; Tsai, H.-Y.; Lee, H.-N. Intracameral Voriconazole Injection in the Treatment of Fungal Endophthalmitis Resulting from Keratitis. Am. J. Ophthalmol. 2010, 149, 916–921. [Google Scholar] [CrossRef]
- Sharma, N.; Sahay, P.; Maharana, P.K.; Singhal, D.; Saluja, G.; Bandivadekar, P.; Chako, J.; Agarwal, T.; Sinha, R.; Titiyal, J.S.; et al. Management Algorithm for Fungal Keratitis: The TST (Topical, Systemic, and Targeted Therapy) Protocol. Cornea 2019, 38, 141–145. [Google Scholar] [CrossRef]
- Sponsel, W.E.; Graybill, J.R.; Nevarez, H.L.; Dang, D. Ocular and systemic posaconazole (SCH-56592) treatment of invasive Fusarium solani keratitis and endophthalmitis. Br. J. Ophthalmol. 2002, 86, 829–830. [Google Scholar] [CrossRef] [Green Version]
- Tu, E.Y.; McCartney, D.L.; Beatty, R.F.; Springer, K.L.; Levy, J.; Edward, D. Successful Treatment of Resistant Ocular Fusariosis With Posaconazole (SCH-56592). Am. J. Ophthalmol. 2007, 143, 222–227. [Google Scholar] [CrossRef]
- Altun, A.; Kurna, S.A.; Sengor, T.; Altun, G.; Olcaysu, O.O.; Aki, S.F.; Simsek, M.H. Effectiveness of Posaconazole in Recalcitrant Fungal Keratitis Resistant to Conventional Antifungal Drugs. Case Rep. Ophthalmol. Med. 2014, 2014, 701653. [Google Scholar] [CrossRef] [Green Version]
- Soleimani, M.; Salehi, Z.; Fattahi, A.; Lotfali, E.; Yassin, Z.; Ghasemi, R.; Abedinifar, Z.; Kouhsari, E.; Ahmadkhani, F.; Mirkalantari, S. Ocular Fungi: Molecular Identification and Antifungal Susceptibility Pattern to Azoles. Jundishapur J. Microbiol. 2020, 13, e99922. [Google Scholar] [CrossRef] [Green Version]
- Todokoro, D.; Suzuki, T.; Tamura, T.; Makimura, K.; Yamaguchi, H.; Inagaki, K.; Akiyama, H. Efficacy of Luliconazole Against Broad-Range Filamentous Fungi Including Fusarium solani Species Complex Causing Fungal Keratitis. Cornea 2019, 38, 238–242. [Google Scholar] [CrossRef]
- Neoh, C.F.; Daniell, M.; Chen, S.C.-A.; Stewart, K.; Kong, D.C.M. Clinical utility of caspofungin eye drops in fungal keratitis. Int. J. Antimicrob. Agents 2014, 44, 96–104. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Liang, Z.; Han, L.; Feng, H.; He, S.; Zhang, J. Fabrication of a drug delivery system that enhances antifungal drug corneal penetration. Drug Deliv. 2018, 25, 938–949. [Google Scholar] [CrossRef]
- Wang, F.; Zhao, L.; Song, F.; Wu, J.; Zhou, Q.; Xie, L. Hybrid natural hydrogels integrated with voriconazole-loaded microspheres for ocular antifungal applications. J. Mater. Chem. B 2021, 9, 3377–3388. [Google Scholar] [CrossRef]
- Jain, A.; Shah, S.G.; Chugh, A. Cell Penetrating Peptides as Efficient Nanocarriers for Delivery of Antifungal Compound, Natamycin for the Treatment of Fungal Keratitis. Pharm. Res. 2015, 32, 1920–1930. [Google Scholar] [CrossRef]
- Rohira, H.; Shankar, S.; Yadav, S.; Shah, S.G.; Chugh, A. Enhanced in vivo antifungal activity of novel cell penetrating peptide natamycin conjugate for efficient fungal keratitis management. Int. J. Pharm. 2021, 600, 120484. [Google Scholar] [CrossRef]
- Jansook, P.; Maw, P.D.; Soe, H.M.S.H.; Chuangchunsong, R.; Saiborisuth, K.; Payonitikarn, N.; Autthateinchai, R.; Pruksakorn, P. Development of amphotericin B nanosuspensions for fungal keratitis therapy: Effect of self-assembled γ-cyclodextrin. J. Pharm. Investig. 2020, 50, 1–13. [Google Scholar] [CrossRef]
- Rahman, M.R.; Minassian, D.C.; Srinivasan, M.; Martin, M.J.; Johnson, G.J. Trial of chlorhexidine gluconate for fungal corneal ulcers. Ophthalmic Epidemiol. 1997, 4, 141–149. [Google Scholar] [CrossRef]
- Rahman, M.R.; Johnson, G.J.; Husain, R.; Howlader, S.A.; Minassian, D.C. Randomised trial of 0.2% chlorhexidine gluconate and 2.5% natamycin for fungal keratitis in Bangladesh. Br. J. Ophthalmol. 1998, 82, 919–925. [Google Scholar] [CrossRef]
- Dos Santos, C.O.; Kolwijck, E.; van der Lee, H.A.; Tehupeiory-Kooreman, M.C.; Al-Hatmi, A.M.S.; Matayan, E.; Burton, M.J.; Eggink, C.A.; Verweij, P. In Vitro Activity of Chlorhexidine Compared with Seven Antifungal Agents against 98 Fusarium Isolates Recovered from Fungal Keratitis Patients. Antimicrob. Agents Chemother. 2019, 63, e02669-18. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, C.O.; Hanemaaijer, N.; Ye, J.; van der Lee, H.; Verweij, P.; Eggink, C. Chlorhexidine for the Treatment of Fusarium Keratitis: A Case Series and Mini Review. J. Fungi 2021, 7, 255. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Tang, J.; Wu, Z.; Sun, Y.; Tan, J.; Yang, L. The combined utilization of Chlorhexidine and Voriconazole or Natamycin to combat Fusarium infections. BMC Microbiol. 2020, 20, 275. [Google Scholar] [CrossRef] [PubMed]
- Arunga, S.; Mbarak, T.; Ebong, A.; Mwesigye, J.; Kuguminkiriza, D.; Mohamed, A.; Hoffman, J.J.; Leck, A.; Hu, V.; Burton, M. Chlorhexidine gluconate 0.2% as a treatment for recalcitrant fungal keratitis in Uganda: A pilot study. BMJ Open Ophthalmol. 2021, 6, e000698. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Ferreiro, A.; Santiago-Varela, M.; Gil-Martínez, M.; González-Barcia, M.; Luaces-Rodríguez, A.; Díaz-Tome, V.; Pardo, M.; Méndez, J.B.; Piñeiro-Ces, A.; Rodríguez-Ares, M.T.; et al. In Vitro Evaluation of the Ophthalmic Toxicity Profile of Chlorhexidine and Propamidine Isethionate Eye Drops. J. Ocul. Pharmacol. Ther. 2017, 33, 202–209. [Google Scholar] [CrossRef]
- Steinsapir, K.D.; Woodward, J.A. Chlorhexidine Keratitis: Safety of Chlorhexidine as a Facial Antiseptic. Dermatol. Surg. 2017, 43, 1–6. [Google Scholar] [CrossRef]
- Hamed, L.M.; Ellis, F.D.; Boudreault, G.; Ii, F.M.W.; Helveston, E.M. Hibiclens Keratitis. Am. J. Ophthalmol. 1987, 104, 50–56. [Google Scholar] [CrossRef]
- Merani, R.; McPherson, Z.E.; Luckie, A.P.; Gilhotra, J.S.; Runciman, J.; Durkin, S.; Muecke, J.; Donaldson, M.; Aralar, A.; Rao, A.; et al. Aqueous Chlorhexidine for Intravitreal Injection Antisepsis: A Case Series and Review of the Literature. Ophthalmology 2016, 123, 2588–2594. [Google Scholar] [CrossRef] [Green Version]
- Ali, F.S.; Jenkins, T.L.; Boparai, R.S.; Obeid, A.; Ryan, M.E.; Wibblesman, T.D.; Chiang, A.; Garg, S.J.; Levin, H.J.; Xu, D.; et al. Aqueous Chlorhexidine Compared with Povidone-Iodine as Ocular Antisepsis before Intravitreal Injection: A Randomized Clinical Trial. Ophthalmol. Retin. 2021, 5, 788–796. [Google Scholar] [CrossRef]
- Murthy, S.; Hawksworth, N.R.; Cree, I. Progressive Ulcerative Keratitis Related to the Use of Topical Chlorhexidine Gluconate (0.02%). Cornea 2002, 21, 237–239. [Google Scholar] [CrossRef]
- Okuda, T.; Funasaka, M.; Arimitsu, M.; Umeda, T.; Wakita, K.; Koga, Y. Anaphylactic shock by ophthalmic wash solution containing chlorhexidine. Masui 1994, 43, 1352–1355. [Google Scholar]
- Hoffman, J.J.; Yadav, R.; Das Sanyam, S.; Chaudhary, P.; Roshan, A.; Singh, S.K.; Arunga, S.; Matayan, E.; MacLeod, D.; Weiss, H.A.; et al. Topical chlorhexidine 0.2% versus topical natamycin 5% for fungal keratitis in Nepal: Rationale and design of a randomised controlled non-inferiority trial. BMJ Open 2020, 10, e038066. [Google Scholar] [CrossRef]
- ISRCTN—ISRCTN87195453: A Comparison of Two Treatment Regimes for the Treatment of Fungal Eye Infections in East Africa. Available online: https://www.isrctn.com/ISRCTN87195453?q=chlorhexidine%20natamycin&filters=&sort=&offset=1&totalResults=2&page=1&pageSize=10&searchType=basic-search (accessed on 7 November 2021).
- Diongue, K.; Sow, A.; Nguer, M.; Seck, M.; Ndiaye, M.; Badiane, A.; Ndoye, N.; Diallo, M.; Diop, A.; Ndiaye, Y.; et al. Kératomycose à Fusarium oxysporum traitée par l’association de la povidone iodée en collyre et du fluconazole per os. J. Mycol. Méd. 2015, 25, e134–e137. [Google Scholar] [CrossRef]
- De Oliveira, L.A.; Takata, T.T.; Shiguematsu, A.; Júnior, L.A.S.M.; Gompertz, O.F.; De Sousa, L.B.; Mannis, M.J. Effect of topical 0.5% povidone-iodine compared to 5% natamycin in fungal keratitis caused by Fusarium solani in a rabbit model: A pilot study. Arq. Bras. Oftalmol. 2008, 71, 860–864. [Google Scholar] [CrossRef]
- Martin, M.J.; Rahman, M.R.; Johnson, G.J.; Srinivasan, M.; Clayton, Y.M. Mycotic keratitis: Susceptibility to antiseptic agents. Int. Ophthalmol. 1995, 19, 299–302. [Google Scholar] [CrossRef]
- Panda, A.; Ahuja, R.; Biswas, N.R.; Satpathy, G.; Khokhar, S. Role of 0.02% Polyhexamethylene Biguanide and 1% Povidone Iodine in Experimental Aspergillus Keratitis. Cornea 2003, 22, 138–141. [Google Scholar] [CrossRef]
- Behrens-Baumann, W.; Seibold, M.; Hofmüller, W.; Walter, S.; Haeberle, H.; Wecke, T.; Tammer, I.; Tintelnot, K. Benefit of Polyhexamethylene Biguanide in Fusarium Keratitis. Ophthalmic Res. 2012, 48, 171–176. [Google Scholar] [CrossRef]
- Gulias-Cañizo, R.; Benatti, A.; De Wit-Carter, G.; Hernández-Quintela, E.; Sánchez-Huerta, V. Photoactivated Chromophore for Keratitis-Corneal Collagen Cross-Linking (PACK-CXL) Improves Outcomes of Treatment-Resistant Infectious Keratitis. Clin. Ophthalmol. 2020, 14, 4451–4457. [Google Scholar] [CrossRef]
- Said, D.G.; Elalfy, M.S.; Gatzioufas, Z.; El-Zakzouk, E.S.; Hassan, M.A.; Saif, M.Y.; Zaki, A.A.; Dua, H.S.; Hafezi, F. Collagen Cross-Linking with Photoactivated Riboflavin (PACK-CXL) for the Treatment of Advanced Infectious Keratitis with Corneal Melting. Ophthalmology 2014, 121, 1377–1382. [Google Scholar] [CrossRef]
- Tabibian, D.; Mazzotta, C.; Hafezi, F. PACK-CXL: Corneal cross-linking in infectious keratitis. Eye Vis. 2016, 3, 1–5. [Google Scholar] [CrossRef] [Green Version]
- AlShehri, J.M.; Caballero-Lima, D.; Hillarby, M.C.; Shawcross, S.G.; Brahma, A.; Carley, F.; Read, N.D.; Radhakrishnan, H. Evaluation of Corneal Cross-Linking for Treatment of Fungal Keratitis: Using Confocal Laser Scanning Microscopy on an Ex Vivo Human Corneal Model. Investig. Opthalmol. Vis. Sci. 2016, 57, 6367. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Zhang, H.; Yue, J.; Liu, S.; Li, Z.; Wang, L. Antimicrobial efficacy of corneal cross-linking in vitro and in vivo for Fusarium solani: A potential new treatment for fungal keratitis. BMC Ophthalmol. 2018, 18, 65. [Google Scholar] [CrossRef] [PubMed]
- Kalkanci, A.; Bilgihan, K.; Ozdemir, H.B.; Saglam, A.S.Y.; Karakurt, F.; Erdogan, M. Corneal Cross-Linking Has No Effect on Matrix Metalloproteinase 9 and 13 Levels During Fungal Keratitis on the Early Stage. Mycopathologia 2018, 183, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Li, Z.-W.; Yu, H.-Q.; Tao, X.-C.; Zhang, Y.; Mu, G.-Y. Evaluation of the in vitro antimicrobial properties of ultraviolet A/riboflavin mediated crosslinking on Candida albicans and Fusarium solani. Int. J. Ophthalmol. 2014, 7, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Kashiwabuchi, R.T.; Carvalho, F.R.S.; Khan, Y.A.; Hirai, F.; Campos, M.S.; McDonnell, P.J. Assessment of fungal viability after long-wave ultraviolet light irradiation combined with riboflavin administration. Graefe Arch. Clin. Exp. Ophthalmol. 2013, 251, 521–527. [Google Scholar] [CrossRef]
- Uddaraju, M.; Mascarenhas, J.; Das, M.R.; Radhakrishnan, N.; Keenan, J.D.; Prajna, L.; Prajna, V.N. Corneal Cross-linking as an Adjuvant Therapy in the Management of Recalcitrant Deep Stromal Fungal Keratitis: A Randomized Trial. Am. J. Ophthalmol. 2015, 160, 131–134. [Google Scholar] [CrossRef]
- Ting, D.S.J.; Henein, C.; Said, D.G.; Dua, H.S. Re: Prajna et al.: Cross-Linking-Assisted Infection Reduction (CLAIR): A randomized clinical trial evaluating the effect of adjuvant cross-linking on outcomes in fungal keratitis (Ophthalmology. 2020;127:159–166). Ophthalmology 2020, 127, e55–e56. [Google Scholar] [CrossRef]
- Hafezi, F.; Torres-Netto, E.; Hillen, M.J. Re: Prajna et al.: Cross-Linking—Assisted Infection Reduction: A randomized clinical trial evaluating the effect of adjuvant cross-linking on outcomes in fungal keratitis (Ophthalmology. 2020;127:159–166). Ophthalmology 2020, 128, e6. [Google Scholar] [CrossRef]
- Wei, A.; Wang, K.; Wang, Y.; Gong, L.; Xu, J.; Shao, T. Evaluation of corneal cross-linking as adjuvant therapy for the management of fungal keratitis. Graefe Arch. Clin. Exp. Ophthalmol. 2019, 257, 1443–1452. [Google Scholar] [CrossRef]
- Balparda, K.; Mejia-Turizo, J.C.; Herrera-Chalarca, T. Simultaneous Noncentered Photoactivated Chromophore for Keratitis-Corneal Collagen Cross-Linking and Penetrating Keratoplasty for Treatment of Severe Marginal Fusarium spp. Keratitis: A Description of a New Surgical Technique. Case Rep. Ophthalmol. Med. 2017, 2017, e6987896. [Google Scholar] [CrossRef] [Green Version]
- Arboleda, A.; Miller, D.; Cabot, F.; Taneja, M.; Aguilar, M.C.; Alawa, K.; Amescua, G.; Yoo, S.H.; Parel, J.-M. Assessment of Rose Bengal Versus Riboflavin Photodynamic Therapy for Inhibition of Fungal Keratitis Isolates. Am. J. Ophthalmol. 2014, 158, 64–70. [Google Scholar] [CrossRef] [Green Version]
- Martinez, J.D.; Arrieta, E.; Naranjo, A.; Monsalve, P.; Mintz, K.J.; Peterson, J.; Arboleda, A.; Durkee, H.; Aguilar, M.C.; Pelaez, D.; et al. Rose Bengal Photodynamic Antimicrobial Therapy: A Pilot Safety Study. Cornea 2021, 40, 1036–1043. [Google Scholar] [CrossRef]
- Amescua, G.; Arboleda, A.; Nikpoor, N.; Durkee, H.; Relhan, N.; Aguilar, M.C.; Flynn, H.W., Jr.; Miller, D.; Parel, J.-M. Rose Bengal Photodynamic Antimicrobial Therapy: A Novel Treatment for Resistant Fusarium Keratitis. Cornea 2017, 36, 1141–1144. [Google Scholar] [CrossRef]
- Pellegrino, F.; Carrasco, M.A. Argon Laser Phototherapy in the Treatment of Refractory Fungal Keratitis. Cornea 2013, 32, 95–97. [Google Scholar] [CrossRef]
- Chaurasia, S.; Mundra, J.; Dhakal, R.; Mohamed, A.; Jha, G.; Joseph, J.; Murthy, S. Outcomes of therapeutic penetrating keratoplasty in 198 eyes with fungal keratitis. Indian J. Ophthalmol. 2019, 67, 1599–1605. [Google Scholar] [CrossRef]
- Shi, W.; Wang, T.; Xie, L.; Li, S.; Gao, H.; Liu, J.; Li, H. Risk Factors, Clinical Features, and Outcomes of Recurrent Fungal Keratitis after Corneal Transplantation. Ophthalmology 2010, 117, 890–896. [Google Scholar] [CrossRef]
- Gong, Y.; Xin, M. Incidence of recurrent fungal keratitis after primary keratoplasty and visual outcome and prognosis after intervention for the recurrence. Medicine 2019, 98, e15910. [Google Scholar] [CrossRef]
- Lin, H.-C.; Lin, J.-L.; Lin-Tan, D.-T.; Ma, H.-K.; Chen, H.-C. Early Keratectomy in the Treatment of Moderate Fusarium Keratitis. PLoS ONE 2012, 7, e42126. [Google Scholar] [CrossRef] [Green Version]
- Perry, H.D.; Doshi, S.J.; Donnenfeld, E.D.; Bai, G.S. Topical Cyclosporin A in the Management of Therapeutic Keratoplasty for Mycotic Keratitis. Cornea 2002, 21, 161–163. [Google Scholar] [CrossRef]
- Chatterjee, S.; Agrawal, D. Use of Topical Cyclosporine 0.1% in Therapeutic Penetrating Keratoplasty for Fungal Keratitis. Cornea 2021. [Google Scholar] [CrossRef]
- Onyewu, C.; Blankenship, J.; Del Poeta, M.; Heitman, J. Ergosterol Biosynthesis Inhibitors Become Fungicidal when Combined with Calcineurin Inhibitors against Candida albicans, Candida glabrata, and Candida krusei. Antimicrob. Agents Chemother. 2003, 47, 956–964. [Google Scholar] [CrossRef] [Green Version]
- Marchetti, O.; Moreillon, P.; Glauser, M.P.; Bille, J.; Sanglard, D. Potent Synergism of the Combination of Fluconazole and Cyclosporine in Candida albicans. Antimicrob. Agents Chemother. 2000, 44, 2373–2381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Antifungal | Topical | Intrastromal | Intracameral | Oral | References |
---|---|---|---|---|---|
Natamycin | 5%, hourly in first 48 h | 10 µg/0.1 mL | not used | not used | [81,87] |
Amphotericin B | 0.15%, rarely used | 5 µg/0.1 mL, can be repeated with 72 h interval | 5 µg/0.1 mL, can be repeated | not used | [81,82,83,84] |
Voriconazole | 1%, hourly in first 48 h | 50 µg/0.1 mL, can be repeated with 72 h interval | 50 µg/0.1 mL, 100 µg/0.1 mL, can be repeated | 2 × 400 mg in first 24 h, 2 × 200 mg in the next days | [70,79,81,85,86,87] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szaliński, M.; Zgryźniak, A.; Rubisz, I.; Gajdzis, M.; Kaczmarek, R.; Przeździecka-Dołyk, J. Fusarium Keratitis—Review of Current Treatment Possibilities. J. Clin. Med. 2021, 10, 5468. https://doi.org/10.3390/jcm10235468
Szaliński M, Zgryźniak A, Rubisz I, Gajdzis M, Kaczmarek R, Przeździecka-Dołyk J. Fusarium Keratitis—Review of Current Treatment Possibilities. Journal of Clinical Medicine. 2021; 10(23):5468. https://doi.org/10.3390/jcm10235468
Chicago/Turabian StyleSzaliński, Marek, Aleksandra Zgryźniak, Izabela Rubisz, Małgorzata Gajdzis, Radosław Kaczmarek, and Joanna Przeździecka-Dołyk. 2021. "Fusarium Keratitis—Review of Current Treatment Possibilities" Journal of Clinical Medicine 10, no. 23: 5468. https://doi.org/10.3390/jcm10235468
APA StyleSzaliński, M., Zgryźniak, A., Rubisz, I., Gajdzis, M., Kaczmarek, R., & Przeździecka-Dołyk, J. (2021). Fusarium Keratitis—Review of Current Treatment Possibilities. Journal of Clinical Medicine, 10(23), 5468. https://doi.org/10.3390/jcm10235468