Prevention, Diagnosis and Management of Post-Surgical Mediastinitis in Adults Consensus Guidelines of the Spanish Society of Cardiovascular Infections (SEICAV), the Spanish Society of Thoracic and Cardiovascular Surgery (SECTCV) and the Biomedical Research Centre Network for Respiratory Diseases (CIBERES)
Abstract
:1. Introduction
2. Scope and Purpose
3. Materials and Methods
4. Prevention
4.1. Does Preoperative Control of Hyperglycaemia in Adult Patients Reduce the Risk of Mediastinitis?
4.2. Does Smoking Cessation before Surgery Reduce the Risk of Postoperative Mediastinitis?
4.3. Does Weight Loss Reduce the Risk of Postoperative Mediastinitis in Obese or Overweight Adult Patients?
4.4. Which Non-Antibiotic Measures Should Be Recommended to Prevent Postoperative Mediastinitis?
4.5. Should Staphylococcus aureus Nasal Carriage Be Assessed in Patients Undergoing Cardiac Surgery? Is it Effective to Eradicate This Pathogen in Positive Cases?
4.6. What Is the Best Time and Technique to Assess S. aureus Carriage in Adult Patients Who Will Undergo Cardiac Surgery?
4.7. Which Is the Drug of Choice for Nasal Decontamination of S. aureus Carriers? Is Universal Prophylaxis Preferable?
4.8. In Adult Patients Undergoing Cardiac Surgery through Median Sternotomy, Does Skin Preparation with Chlorhexidine Reduce the Risk of Post-Surgical Mediastinitis in Comparison to Povidone-Based Preparations?
4.9. Does Maintaining Adjusted Blood Glucose Levels during Surgery Reduce the Risk of Postoperative Mediastinitis?
5. Diagnosis
5.1. Do Surveillance Cultures Performed at the Time of Mediastinal Wound Closure Allow Predicting the Risk of Mediastinitis and Anticipate the Aetiology?
5.2. Is Radiologically Guided Needle Aspiration Convenient in Patients from Whom Parasternal or Retrosternal Purulent Collection Is Performed?
5.3. What Interpretation Should Be Given to Cultures Derived from Superficial Wounds or Fistulous Tracts in Cases of Suspected Mediastinitis?
5.4. What Is the Value of Anticipating the Diagnosis of Mediastinitis from Routine Cultures of Pacemaker Wires?
5.5. Does the Information Regarding Any Microorganism Identified from Samples Not Necessarily Sterile, Cultures Grown during Patient’s Progress and Samples Different from the Original One Have Any Value?
5.6. What Is the Significance of Positive Blood Cultures in Patients with Suspected Mediastinitis?
5.7. What Is the Value of Molecular and Other Non-Culture-Based Methods in the Diagnosis of Mediastinitis?
5.8. What Aetiology-Related Determinations Are Possible in Patients with Conventional Negative Bacterial Cultures?
5.9. Imaging Tests in the Diagnosis of Post-Surgical Mediastinitis
5.9.1. What Is the Diagnostic Value of a Plain X-ray for the Diagnosis of Mediastinitis?
5.9.2. What Is the Diagnostic Value of a Computed Tomography Scan?
- -
- As a first-choice diagnostic imaging technique in post-surgical mediastinitis preferably at week 2 after the surgery, when gas or normal collections of the immediate post-surgery period are potentially not present.
- -
- In patients with fever and leucocytosis without signs of infection or sternal wound drainage.
- -
- In patients with wound infection, to establish the extent of the infection. For sternal wound assessment in patients with suspected dehiscence (multiplanar reconstructions).
- -
- As a guide for sampling.
- In patients with fever and leucocytosis without signs of infection or sternal wound drainage. In these patients, a CT scan may allow a diagnosis of mediastinitis or an alternative diagnosis to be established [111]. As reported in various articles, the efficacy of a CT scan in the diagnosis of mediastinitis increases by week 3, when immediate postoperative findings may simulate a retrosternal infection (e.g., oedema and erasure of soft tissues, haematomas or gas) and are no longer as evident [111,115,123,124,125,126,127].
- Patients with wound infection, in order to establish the extent of the infection. In these cases, it is possible to differentiate between skin wound, pre-sternal or deep infection. The precise location of the lesions and their extent are of great help when planning surgical treatment [111,113,114,115,125,126,127,128,129].
- Evaluation of sternal suture in patients with suspected dehiscence. The axial image and the reconstructions in multiple planes/3D allow the precise assessment of the degree of separation of the sternal fragments, existence or not of finishing, location of the incision (median or paramedian), condition of the wires, presence or absence of transverse fractures, etc. This information is of great interest when considering the treatment [113,117,126]. In patients with suspected sternal osteomyelitis, a complementary study with scintigraphy may be helpful [114,117,132,133,134].
- In specific cases, as a guide for sampling. Several works (although none specifically, except that of Benlolo et al.) address the usefulness of CT scans as guides for sampling [121,126]. According to the reviewers, sampling with CT scans is a simple technique and, in experienced hands, practically free of complications.
5.9.3. What Is the Indication to Perform an MRI, a Nuclear Imaging Test or a PET-CT in Patients with Suspected Mediastinitis?
5.10. Are Imaging Tests Necessary When There Is a Clear Diagnosis of Mediastinitis?
6. Surgical Management
6.1. Does the Administration of Topical Antibiotics before Surgical Closure of the Mediastinum Decrease the Incidence of Mediastinitis?
6.2. Is There a Specific Surgical Technique That Reduces the Risk of Mediastinitis in Adult Patients Undergoing Cardiac Surgery with Median Sternotomy?
- Sternum wires. They are the most commonly used material and the majority of studies compare them with other closure systems or techniques. In a multicentre randomised study with high-risk patients [159], conventional closure was compared with cerclage-reinforced closure of both sternal halves (Robicsek procedure). The authors concluded that there was no benefit regarding infection or dehiscence with cerclage. Two retrospective trials found a significant association between the use of wires and higher rates of mediastinitis: an Italian trial in which wires were compared with nitinol staples [160] and an American trial that included only 45 patients and in which the sternum was fixed with titanium plates (SternaLock™ W. Lorenz Surgical, Jacksonville, FL, USA) [161].Nevertheless, a randomised study showed that conventional closure with surgical steel wires is superior to polyester suture (less mild infections in valvular patients) [162]. In addition, in a retrospective versus nitinol staples (Flexigrip®, Praesidia SRL, Bologna, Italy) [163], there were similar results in terms of deep infection or pain in two randomised versus sternal cables (Flexigrip®) [164] and closure with Mersilene® tape (Ethicon, Inc., Somerville, NJ, USA) (braided Dacron) [165]; and in a substudy of propensity analysis with mating of the Anglo-Australian nitinol staples [163].
- Other prevention systems. A randomised trial [166] on coronary patients with/without associated valvular surgery compared soft tissue closure (saphenectomy, sternotomy) and suture impregnated with Triclosan (bactericidal and fungicidal agent) against unimpregnated suture. No differences were found for deep infections. A review of the literature on the postoperative use of preventive NPWT [167] that included three heterogeneous studies with evidence level 2 or 3 concluded that NPWT may be recommended in populations at higher risk of developing mediastinitis.
6.3. What Is the Prophylactic Value of Negative Pressure Wound Therapy to Avoid Mediastinitis?
6.4. During the Postoperative Period, Is There Evidence That Sternal Immobilisation Systems Reduce the Risk of Mediastinitis Compared to Conventional Bandages?
6.5. Should Mediastinitis Patients Be Treated with Mediastinal Lavage? For How Long?
6.6. What Is the Best Surgical Reconstruction Technique?
6.6.1. Wound with Minimal Bone Loss, Relatively Stable Sternum
6.6.2. Unstable Sternum and Viable Bone Wounds
6.6.3. Unstable Sternum and Non-Viable Bone
6.7. What Is the Risk of Developing Sternal Dehiscence and Mediastinitis with the Use Bilateral Harvesting of Internal Mammary/Thoracic Arteries as Grafts?
6.8. Are Negative Cultures Necessary before the Definitive Sternal Reconstruction? What Is the Incidence and Risk Factors of Therapeutic Failure and Recurrence?
6.9. What Is the Therapeutic Indication for NPWT? How Should Progression Be Assessed and Its Duration Be Calculated?
7. Medical Management
7.1. When Should Empirical Antimicrobial Treatment Be Initiated?
7.2. Should Coverage against Methicillin-Resistant Staphylococci Be Systematically Included?
7.3. When Should Empirical Coverage against Gram-Negative Bacilli Be Included?
7.4. When Should Empirical Coverage against Fungi Be Included?
7.5. Is Topical Use of Antimicrobial Agents Beneficial?
7.5.1. Topical Use of Antibiotics
7.5.2. Topical Use of Other Antimicrobials
7.6. What Are the Indications and When to Switch to Oral Antimicrobial Agents?
7.7. What Is the Antibiotic Treatment of Choice for Mediastinitis Confirmed to Be Caused by Gram-Positive Cocci, Including Multidrug Resistant Microorganisms?
7.8. What Is the Antibiotic Treatment of Choice for Mediastinitis Caused by Gram-Negative Bacilli Including Multidrug Resistant Microorganisms?
7.9. What Is the Treatment of Choice for Mediastinitis Caused by Fungi?
7.10. What Criteria Make It Possible to Estimate the Duration of Treatment for Mediastinitis?
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
A1cHb | A1c blood glycosylated haemoglobin |
CIBERES | Biomedical Research Centre Network for Respiratory Diseases |
BMI | Body mass index |
CDC | Centres for Disease Control |
CH | Chlorhexidine |
CNS | Coagulase-negative Staphylococcus |
CT | Computed tomography |
GNB | Gram-negative bacilli |
IPA | Isopropyl alcohol |
MRI | Magnetic resonance imaging |
CS | Cardiac surgery |
MRSA | Methicillin-resistant Staphylococcus aureus |
MSSA | Methicillin-sensitive Staphylococcus aureus |
MDR | Multidrug resistance |
NPWT | Negative pressure wound therapy |
PCR | Polymerase chain reaction |
PICO | Population, intervention, comparison and outcome |
PET-CT | Positron-emission-tomography/computed tomography |
PSM | Post-surgical mediastinitis |
PI | Povidone iodine |
SIGN | Scottish Intercollegiate Guidelines Network |
STS | Society of Thoracic Surgeons |
SEQ | Spanish Journal of Chemotherapy |
SEICAV | Spanish Society of Cardiovascular Infections |
SECTCV | Spanish Society of Thoracic-Cardiovascular Surgery |
SWI | Surgical wound infection |
Summary
Section | Recommendation | Grade of Evidence/Strength of Recommendation |
Prevention | We recommend optimising preoperative glycaemic control in diabetic patients with high HbA1c levels (>6.5–7%) to reduce the risk of mediastinitis. | Evidence level 2++. Strong recommendation, moderate quality of evidence |
We recommend that patients should be encouraged to stop smoking at least 30 days prior to heart surgery. | Evidence level 2+. Strong recommendation, moderate quality of evidence. | |
Obese or overweight patients should be encouraged to lose weight before surgery; we also recommend adjusting prophylactic antimicrobials doses, reinforce the preparation of the surgical field and ensure a very stable wound closure to avoid dehiscence, besides systematic closure with a NPWT device. | Evidence level 2++. Strong recommendation, moderate quality of evidence. | |
When hair removal is considered necessary, we recommend the use of a depilatory cream or an electric razor, never a blade. | Evidence level 1 +. Strong recommendation, high quality of evidence | |
We recommend knowing the state of S. aureus nasal carriage and proceeding with its eradication if possible or time allowable in positive patients before cardiac surgery. | Evidence level 1−. Strong recommendation, moderate quality of evidence | |
We recommend PCR-based screening techniques for S. aureus carriage when a rapid method is necessary due to their high negative predictive value. | Evidence level 1++. Strong recommendation, moderate quality of evidence | |
We recommend topical mupirocin for nasal decontamination in combination with chlorhexidine for skin decontamination. | Evidence level 1+. Strong recommendation, high quality of evidence. | |
We suggest systematic decontamination in patients in whom nasal carrier status cannot be assessed in a timely manner. | Evidence level 3. Strong recommendation, low quality of evidence | |
We recommend chlorhexidine over povidone-based products for skin preparation in cardiac surgery. | Evidence level 2+. Strong recommendation, moderate quality of evidence | |
We recommend the control of blood glucose level during surgery (preferably with continuous insulin infusion) keeping it within 110 and 180 mg/dL. | Evidence level 2+. Strong recommendation, moderate quality of evidence | |
Diagnosis | Systematic collection of surveillance cultures at the time of closure of the mediastinal wound is not recommended | Evidence level 2+. Strong recommendation, moderate quality of evidence |
We recommend CT-guided puncture in patients with retrosternal collections, when there are no other means to confirm the aetiological diagnosis | Evidence level 3. Strong recommendation, low quality of evidence | |
Cultures from sites that do not represent normally sterile tissues or fluids should be interpreted with caution, since they do not always allow determination of the causative agent of mediastinitis. | Evidence level 3. Strong recommendation, low quality of evidence | |
Systematic epicardial pacing wire cultures are not recommended for early diagnosis of mediastinitis in the absence of clinical signs of infection. | Evidence level 2+. Strong recommendation, moderate quality of evidence | |
Interpretation of bacterial culture results different from the original mediastinal tissue samples or blood cultures, and must be performed on a case-by-case basis. Their potential significance will depend on the type of isolated microorganism, the collection site and the clinical picture. | Evidence level 3. Strong recommendation, low quality of evidence | |
Presence of significant bacteraemia, with no other clear origin in the 90 days after surgery, is potentially indicative of mediastinitis, particularly when the isolate is S. aureus. | Evidence level 2+. Strong recommendation, low quality of evidence | |
There is not enough evidence yet to recommend the routine use of non-culture-based methods for the diagnosis of mediastinitis. | Evidence level 3. Strong recommendation, low quality of evidence | |
Recommendations for the diagnostic approach in mediastinitis with classic negative culture cases should include: specific serological tests (Coxiella and Bartonella), deep mediastinal samples for 16S and 18S (panbacterial and panfungal, respectively) PCRs and cultures in special media for Mycoplasma spp., Ureaplasma spp., Legionella spp., Nocardia spp., Fungi and Mycobacteria. | Evidence level 3. Strong recommendation, low quality of evidence | |
Plain X-rays are of limited use for the diagnosis of mediastinitis. We do not recommend their use as the first-choice diagnostic imaging test. | Evidence level 2+. Strong recommendation, moderate quality of evidence | |
We recommend performing a CT scan as the first-choice diagnostic imaging technique in post-surgical mediastinitis. Scans should be performed two weeks after the surgery, when gas or normal collections of the immediate post-surgery period should not be present. | Evidence level 2+. Strong recommendation, moderate evidence quality | |
We do not recommend a routine use of MRI, as there are few available data and wires can cause artefacts. | Evidence level 3. Strong recommendation, low quality of evidence | |
Nuclear medicine techniques may be a useful tool in the study of sternum osteomyelitis. There is not enough evidence to recommend the routine use of PET-CT in patients with suspected mediastinitis. However, it may be useful in cases with suspected chronic infection, as well as for monitoring response to treatment. | Evidence level 2+. Strong recommendation, moderate quality of evidence | |
We recommend performing a CT scan whenever there are signs of infection, despite the scarce information in the literature on this topic. | Evidence level 3. Strong recommendation, low quality of evidence | |
Surgical Management | The available evidence is not sufficient to recommend the use of topical antibiotics on the surgical site prior to closure. | Evidence level 2+. Strong recommendation, with moderate quality of evidence |
The use of surgical steel wires to close the sternum remains as the technique of choice. Superiority in reducing the incidence of mediastinitis has not been shown for other evaluated alternatives. | Evidence level 1+. Strong recommendation, high quality of evidence | |
In high-risk patients, we recommend the use of prophylactic negative pressure wound therapy to reduce the incidence of infection. | Evidence level 2+. Strong recommendation, moderate quality of evidence | |
We recommend the use of postoperative sternal immobilisation systems in all patients who undergo major cardiac surgery. | Evidence Level 2+. Strong recommendation, moderate quality of evidence | |
Mediastinal lavage is not recommended on a routine basis, except in patients in whom Negative Pressure Wound Treatment (NPWT) cannot be performed or who require immediate closure. Povidone iodine should not be used in any case. | Evidence level 2+. Strong recommendation, low quality of evidence | |
The surgical technique of choice in patients with post-surgical mediastinitis depends on the stage, sternal stability and bone viability. For wounds with minimal bone loss, relatively stable sternum, current evidence supports the use of NPWT as a first-line treatment or bridge for surgical closure or direct closure with muscle flap reconstruction if NPWT is not available. For unstable sternum and viable bone wound, we suggest that the initial application of NPWT followed by sternal rewiring or plates and coverage by muscle flaps. For wounds with unstable sternum and non-viable bone, Omental flaps coverage is recommended | Evidence level 2+. Strong recommendation, low quality of evidence | |
To date, there is not enough evidence to recommend delaying surgical closure based on the persistence of positive wound cultures. | Evidence level 3. Strong recommendation, low quality of evidence. | |
We recommend applying NPWT considering the following: the stability of the sternum, as a curative method (with or without surgery) in patients with a stable sternum, or as a bridge technique in preparation for surgery in subjects with an unstable sternum. NPWT should be checked every two to three days and last no longer than three weeks | Evidence level 2+. Strong recommendation, moderate quality of evidence | |
Medical Management | In adults with signs and symptoms of severe acute infection, we recommend initiating empirical antibiotic treatment as soon as there is clinical suspicion of mediastinitis. In non-critical adults, empirical treatment can wait for targeted treatment, based on laboratory findings. | Evidence level 3. Strong recommendation, low quality of evidence. |
In critically ill adult patients for whom aetiological confirmation is a threat, we recommend including methicillin-resistant Staphylococcus coverage for the empirical treatment of mediastinitis depending on local susceptibility pattern. | Evidence level 4. Conditioned recommendation based on expert opinion. Very low level of evidence | |
In the empirical treatment of adult patients with PSM, we recommend including coverage against Gram-negative bacilli considering local epidemiology, until aetiological confirmation is available. | Evidence level 2−. Strong recommendation. Low level of evidence | |
We do not recommend systematic administration of antifungal treatments as part of the empirical treatment of PSM. It should only be administered in critical situations where there are risk factors for invasive fungal infection. | Evidence level 4. Conditioned recommendation based on expert opinion. Very low level of evidence | |
With the current available information, it is not possible to recommend mediastinal irrigation either with antibiotics or antiseptic substances. | Evidence level 3. Strong recommendation, low quality of evidence | |
We recommend the use of sequential antimicrobial treatment in stable patients who have received adequate surgical treatment after a period of i.v. therapy, the proper duration of which is difficult to determine. Active antimicrobials with high bioavailability have been used, depending on the aetiology. | Evidence level 2−. Strong recommendation. Low level of evidence | |
In patients with methicillin-sensitive staphylococcal mediastinitis, beta-lactam drugs such as isoxazolyl penicillins or cefazolin are preferred | Evidence level 3. Strong recommendation, low quality of evidence | |
In patients with methicillin-resistant staphylococcal infections, the use of glycopeptides or glycolipopeptides (vancomycin or daptomycin) is recommended. | Evidence level 3. Strong recommendation, low quality of evidence | |
In Enterococcal mediastinitis, it is recommended to follow the accepted scheme for endocarditis with double beta-lactam treatment (ampicillin + ceftriaxone) or the beta-lactam-aminoglycoside combination. | Evidence level 3. Strong recommendation, low quality of evidence | |
The selection of antimicrobial treatment in patients with proven GNB mediastinitis must be adjusted in each circumstance and under expert supervision. | Evidence level 3. Strong recommendation, low quality of evidence | |
Confirmed mediastinitis caused by fungi is a very serious rare entity. The treatment is only indicative (described in Table 4) and always requires expert consensus. | Evidence level 3. Strong recommendation, low quality of evidence | |
We recommend an average duration of four to six weeks in bacterial mediastinitis. When possible, we recommend switching to oral antimicrobials at week two to three if feasible. In case of sternal osteomyelitis and/or fungal mediastinitis, we recommend prolonged treatment. | Evidence level 4. Conditioned recommendation based on expert opinion. Very low-grade quality of evidence |
References
- El Oakley, R.M.; Wright, J.E. Postoperative mediastinitis: Classification and management. Ann. Thorac. Surg. 1996, 61, 1030–1036. [Google Scholar] [CrossRef]
- Satta, J.; Lahtinen, J.; Raisanen, L.; Salmela, E.; Juvonen, T. Options for the management of poststernotomy mediastinitis. Scand. Cardiovasc. J. 1998, 32, 29–32. [Google Scholar] [PubMed]
- Sarr, M.G.; Gott, V.L.; Townsend, T.R. Mediastinal infection after cardiac surgery. Ann. Thorac. Surg. 1984, 38, 415–423. [Google Scholar] [CrossRef]
- Diez, C.; Koch, D.; Kuss, O.; Silber, R.E.; Friedrich, I.; Boergermann, J. Risk factors for mediastinitis after cardiac surgery—A retrospective analysis of 1700 patients. J. Cardiothorac. Surg. 2007, 2, 23. [Google Scholar] [CrossRef] [Green Version]
- Guyatt, G.H.; Oxman, A.D.; Vist, G.E.; Kunz, R.; Falck-Ytter, Y.; Alonso-Coello, P.; Schunemann, H.J. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008, 336, 924–926. [Google Scholar] [CrossRef] [Green Version]
- Schunemann, H.J.; Oxman, A.D.; Brozek, J.; Glasziou, P.; Jaeschke, R.; Vist, G.E.; Williams, J.W., Jr.; Kunz, R.; Craig, J.; Montori, V.M.; et al. Grading quality of evidence and strength of recommendations for diagnostic tests and strategies. BMJ 2008, 336, 1106–1110. [Google Scholar] [CrossRef] [Green Version]
- Doenst, T.; Wijeysundera, D.; Karkouti, K.; Zechner, C.; Maganti, M.; Rao, V.; Borger, M.A. Hyperglycemia during cardiopulmonary bypass is an independent risk factor for mortality in patients undergoing cardiac surgery. J. Thorac. Cardiovasc. Surg. 2005, 130, 1144. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, G.Y.; Nuttall, G.A.; Abel, M.D.; Mullany, C.J.; Schaff, H.V.; Williams, B.A.; Schrader, L.M.; Rizza, R.A.; McMahon, M.M. Intraoperative hyperglycemia and perioperative outcomes in cardiac surgery patients. Mayo Clin. Proc. 2005, 80, 862–866. [Google Scholar] [CrossRef]
- American Diabetes Association. Standards of medical care in diabetes—2009. Diabetes Care 2009, 32 (Suppl. S1), S13–S61. [CrossRef] [Green Version]
- Subramaniam, B.; Lerner, A.; Novack, V.; Khabbaz, K.; Paryente-Wiesmann, M.; Hess, P.; Talmor, D. Increased glycemic variability in patients with elevated preoperative HbA1C predicts adverse outcomes following coronary artery bypass grafting surgery. Anesth. Analg. 2014, 118, 277–287. [Google Scholar] [CrossRef]
- Halkos, M.E.; Puskas, J.D.; Lattouf, O.M.; Kilgo, P.; Kerendi, F.; Song, H.K.; Guyton, R.A.; Thourani, V.H. Elevated preoperative hemoglobin A1c level is predictive of adverse events after coronary artery bypass surgery. J. Thorac. Cardiovasc. Surg. 2008, 136, 631–640. [Google Scholar] [CrossRef] [Green Version]
- Lazar, H.L.; McDonnell, M.; Chipkin, S.R.; Furnary, A.P.; Engelman, R.M.; Sadhu, A.R.; Bridges, C.R.; Haan, C.K.; Svedjeholm, R.; Taegtmeyer, H.; et al. The Society of Thoracic Surgeons practice guideline series: Blood glucose management during adult cardiac surgery. Ann. Thorac. Surg. 2009, 87, 663–669. [Google Scholar] [CrossRef]
- Potter, M.L.; Kane, E.M.; Bergstrom, J.R.; Dritz, S.S.; Tokach, M.D.; Derouchey, J.M.; Goodband, R.D.; Nelssen, J.L. Effects of diet source and vaccination for porcine circovirustype 2 and Mycoplasma hyopneumoniae on nursery pig performance. J. Anim. Sci. 2012, 90, 4063–4071. [Google Scholar] [CrossRef]
- Benedetto, U.; Albanese, A.; Kattach, H.; Ruggiero, D.; De Robertis, F.; Amrani, M.; Raja, S.G. Smoking cessation before coronary artery bypass grafting improves operative outcomes. J. Thorac. Cardiovasc. Surg. 2014, 148, 468–474. [Google Scholar] [CrossRef] [Green Version]
- Ji, Q.; Zhao, H.; Mei, Y.; Shi, Y.; Ma, R.; Ding, W. Impact of smoking on early clinical outcomes in patients undergoing coronary artery bypass grafting surgery. J. Cardiothorac. Surg. 2015, 10, 16. [Google Scholar] [CrossRef] [Green Version]
- Nagachinta, T.; Stephens, M.; Reitz, B.; Polk, B.F. Risk factors for surgical-wound infection following cardiac surgery. J. Infect. Dis. 1987, 156, 967–973. [Google Scholar] [CrossRef]
- Jones, R.; Nyawo, B.; Jamieson, S.; Clark, S. Current smoking predicts increased operative mortality and morbidity after cardiac surgery in the elderly. Interact. Cardiovasc. Thorac. Surg. 2011, 12, 449–453. [Google Scholar] [CrossRef]
- Gummert, J.F.; Barten, M.J.; Hans, C.; Kluge, M.; Doll, N.; Walther, T.; Hentschel, B.; Schmitt, D.V.; Mohr, F.W.; Diegeler, A. Mediastinitis and cardiac surgery—An updated risk factor analysis in 10,373 consecutive adult patients. Thorac. Cardiovasc. Surg. 2002, 50, 87–91. [Google Scholar] [CrossRef]
- Rehman, S.M.; Elzain, O.; Mitchell, J.; Shine, B.; Bowler, I.C.; Sayeed, R.; Westaby, S.; Ratnatunga, C. Risk factors for mediastinitis following cardiac surgery: The importance of managing obesity. J. Hosp. Infect. 2014, 88, 96–102. [Google Scholar] [CrossRef]
- Magedanz, E.H.; Bodanese, L.C.; Guaragna, J.C.; Albuquerque, L.C.; Martins, V.; Minossi, S.D.; Piccoli Jda, C.; Goldani, M.A. Risk score elaboration for mediastinitis after coronary artery bypass grafting. Rev. Bras. Cir. Cardiovasc. 2010, 25, 154–159. [Google Scholar] [CrossRef] [Green Version]
- Abboud, C.S.; Wey, S.B.; Baltar, V.T. Risk factors for mediastinitis after cardiac surgery. Ann. Thorac. Surg. 2004, 77, 676–683. [Google Scholar] [CrossRef]
- Ridderstolpe, L.; Gill, H.; Granfeldt, H.; Ahlfeldt, H.; Rutberg, H. Superficial and deep sternal wound complications: Incidence, risk factors and mortality. Eur. J. Cardiothorac. Surg. 2001, 20, 1168–1175. [Google Scholar] [CrossRef]
- Lu, J.C.; Grayson, A.D.; Jha, P.; Srinivasan, A.K.; Fabri, B.M. Risk factors for sternal wound infection and mid-term survival following coronary artery bypass surgery. Eur. J. Cardiothorac. Surg. 2003, 23, 943–949. [Google Scholar] [CrossRef]
- Munoz, P.; Menasalvas, A.; Bernaldo de Quiros, J.C.; Desco, M.; Vallejo, J.L.; Bouza, E. Postsurgical mediastinitis: A case-control study. Clin. Infect. Dis. 1997, 25, 1060–1064. [Google Scholar] [CrossRef]
- Crabtree, T.D.; Codd, J.E.; Fraser, V.J.; Bailey, M.S.; Olsen, M.A.; Damiano, R.J., Jr. Multivariate analysis of risk factors for deep and superficial sternal infection after coronary artery bypass grafting at a tertiary care medical center. Semin. Thorac. Cardiovasc. Surg. 2004, 16, 53–61. [Google Scholar] [CrossRef]
- Dodds Ashley, E.S.; Carroll, D.N.; Engemann, J.J.; Harris, A.D.; Fowler, V.G., Jr.; Sexton, D.J.; Kaye, K.S. Risk factors for postoperative mediastinitis due to methicillin-resistant Staphylococcus aureus. Clin. Infect. Dis. 2004, 38, 1555–1560. [Google Scholar] [CrossRef]
- Harrington, G.; Russo, P.; Spelman, D.; Borrell, S.; Watson, K.; Barr, W.; Martin, R.; Edmonds, D.; Cocks, J.; Greenbough, J.; et al. Surgical-site infection rates and risk factor analysis in coronary artery bypass graft surgery. Infect. Control. Hosp. Epidemiol. 2004, 25, 472–476. [Google Scholar] [CrossRef]
- Fowler, V.G., Jr.; O’Brien, S.M.; Muhlbaier, L.H.; Corey, G.R.; Ferguson, T.B.; Peterson, E.D. Clinical predictors of major infections after cardiac surgery. Circulation 2005, 112, I358–I365. [Google Scholar] [CrossRef] [PubMed]
- Mycobacterium chimaera Infections: Guidance for Secondary Care. Available online: https://www.gov.uk/government/publications/mycobacterium-chimaera-infections-guidance-for-secondary-care (accessed on 26 May 2019).
- Risnes, I.; Abdelnoor, M.; Almdahl, S.M.; Svennevig, J.L. Mediastinitis after coronary artery bypass grafting risk factors and long-term survival. Ann. Thorac. Surg. 2010, 89, 1502–1509. [Google Scholar] [CrossRef]
- EU Protocol for Case Detection, Laboratory Diagnosis and Environmental Testing of Mycobacterium Chimaera Infections Pottentially Associate with Heater-Cooler Units: Case Definition and Environmental Testing Methodology; European Center for Disease Prevention and Control (ECDC): Stockholm, Sweden, 2015.
- Gatti, G.; Barbati, G.; Luzzati, R.; Sinagra, G.; Pappalardo, A. Prospective validation of a predictive scoring system for deep sternal wound infection after routine bilateral internal thoracic artery grafting. Interact. Cardiovasc. Thorac. Surg. 2016, 22, 606–611. [Google Scholar] [CrossRef] [Green Version]
- Allen, K.B.; Yuh, D.D.; Schwartz, S.B.; Lange, R.A.; Hopkins, R.; Bauer, K.; Marders, J.A.; Donayre, J.D.; Milligan, N.; Wentz, C. Nontuberculous Mycobacterium Infections Associated with Heater-Cooler Devices. Ann. Thorac. Surg. 2017, 104, 1237–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, P.J.; Billah, B.; Leder, K.; Reid, C.M. Factors associated with deep sternal wound infection and haemorrhage following cardiac surgery in Victoria. Interact. Cardiovasc. Thorac. Surg. 2007, 6, 167–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hysi, I.; Pincon, C.; Guesnier, L.; Gautier, L.; Renaut, C.; Geronimi, H.; Jasaitis, L.; Fabre, O. Results of elective cardiac surgery in patients with severe obesity (body mass index ≥35 kg/m2). Arch. Cardiovasc. Dis. 2014, 107, 540–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirmani, B.H.; Mazhar, K.; Saleh, H.Z.; Ward, A.N.; Shaw, M.; Fabri, B.M.; Mark Pullan, D. External validity of the Society of Thoracic Surgeons risk stratification tool for deep sternal wound infection after cardiac surgery in a UK population. Interact. Cardiovasc. Thorac. Surg. 2013, 17, 479–484. [Google Scholar] [CrossRef] [Green Version]
- Prabhakar, G.; Haan, C.K.; Peterson, E.D.; Coombs, L.P.; Cruzzavala, J.L.; Murray, G.F. The risks of moderate and extreme obesity for coronary artery bypass grafting outcomes: A study from the Society of Thoracic Surgeons’ database. Ann. Thorac. Surg. 2002, 74, 1125–1130; discussion 1130–1131. [Google Scholar] [CrossRef]
- Meszaros, K.; Fuehrer, U.; Grogg, S.; Sodeck, G.; Czerny, M.; Marschall, J.; Carrel, T. Risk Factors for Sternal Wound Infection After Open Heart Operations Vary According to Type of Operation. Ann. Thorac. Surg. 2016, 101, 1418–1425. [Google Scholar] [CrossRef] [Green Version]
- Bitkover, C.Y.; Gardlund, B. Mediastinitis after cardiovascular operations: A case-control study of risk factors. Ann. Thorac. Surg. 1998, 65, 36–40. [Google Scholar] [CrossRef]
- Cayci, C.; Russo, M.; Cheema, F.H.; Martens, T.; Ozcan, V.; Argenziano, M.; Oz, M.C.; Ascherman, J. Risk analysis of deep sternal wound infections and their impact on long-term survival: A propensity analysis. Ann. Plast. Surg. 2008, 61, 294–301. [Google Scholar] [CrossRef]
- Filsoufi, F.; Castillo, J.G.; Rahmanian, P.B.; Broumand, S.R.; Silvay, G.; Carpentier, A.; Adams, D.H. Epidemiology of deep sternal wound infection in cardiac surgery. J. Cardiothorac. Vasc. Anesth. 2009, 23, 488–494. [Google Scholar] [CrossRef] [Green Version]
- Ariyaratnam, P.; Bland, M.; Loubani, M. Risk factors and mortality associated with deep sternal wound infections following coronary bypass surgery with or without concomitant procedures in a UK population: A basis for a new risk model? Interact. Cardiovasc. Thorac. Surg. 2010, 11, 543–546. [Google Scholar] [CrossRef] [Green Version]
- Shahian, D.M.; O’Brien, S.M.; Filardo, G.; Ferraris, V.A.; Haan, C.K.; Rich, J.B.; Normand, S.L.; DeLong, E.R.; Shewan, C.M.; Dokholyan, R.S.; et al. The Society of Thoracic Surgeons 2008 cardiac surgery risk models: Part 1—Coronary artery bypass grafting surgery. Ann. Thorac. Surg. 2009, 88, S2–S22. [Google Scholar] [CrossRef]
- Shahian, D.M.; O’Brien, S.M.; Filardo, G.; Ferraris, V.A.; Haan, C.K.; Rich, J.B.; Normand, S.L.; DeLong, E.R.; Shewan, C.M.; Dokholyan, R.S.; et al. The Society of Thoracic Surgeons 2008 cardiac surgery risk models: Part 3—Valve plus coronary artery bypass grafting surgery. Ann. Thorac. Surg. 2009, 88, S43–S62. [Google Scholar] [CrossRef]
- O’Brien, S.M.; Shahian, D.M.; Filardo, G.; Ferraris, V.A.; Haan, C.K.; Rich, J.B.; Normand, S.L.; DeLong, E.R.; Shewan, C.M.; Dokholyan, R.S.; et al. The Society of Thoracic Surgeons 2008 cardiac surgery risk models: Part 2—Isolated valve surgery. Ann. Thorac. Surg. 2009, 88, S23–S42. [Google Scholar] [CrossRef]
- Shahian, D.M.; Edwards, F.H. The Society of Thoracic Surgeons 2008 cardiac surgery risk models: Introduction. Ann. Thorac. Surg. 2009, 88, S1. [Google Scholar] [CrossRef]
- Eagle, K.A.; Guyton, R.A.; Davidoff, R.; Ewy, G.A.; Fonger, J.; Gardner, T.J.; Gott, J.P.; Herrmann, H.C.; Marlow, R.A.; Nugent, W.C.; et al. ACC/AHA Guidelines for Coronary Artery Bypass Graft Surgery: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1991 Guidelines for Coronary Artery Bypass Graft Surgery). American College of Cardiology/American Heart Association. J. Am. Coll. Cardiol. 1999, 34, 1262–1347. [Google Scholar]
- Milano, C.A.; Kesler, K.; Archibald, N.; Sexton, D.J.; Jones, R.H. Mediastinitis after coronary artery bypass graft surgery. Risk factors and long-term survival. Circulation 1995, 92, 2245–2251. [Google Scholar] [CrossRef]
- Marin-Royo, G.; Gallardo, I.; Martinez-Martinez, E.; Gutierrez, B.; Jurado-Lopez, R.; Lopez-Andres, N.; Gutierrez-Tenorio, J.; Rial, E.; Bartolome, M.A.V.; Nieto, M.L.; et al. Inhibition of galectin-3 ameliorates the consequences of cardiac lipotoxicity in a rat model of diet-induced obesity. Dis. Model. Mech. 2018, 11, dmm032086. [Google Scholar] [CrossRef] [Green Version]
- Risk factors for deep sternal wound infection after sternotomy: A prospective, multicenter study. J. Thorac. Cardiovasc. Surg. 1996, 111, 1200–1207. [CrossRef] [Green Version]
- Kuhme, T.; Isaksson, B.; Dahlin, L.G. Wound contamination in cardiac surgery. A systematic quantitative and qualitative study of the bacterial growth in sternal wounds in cardiac surgery patients. APMIS 2007, 115, 1001–1007. [Google Scholar] [CrossRef]
- Kamel, C.; McGahan, L.; Polisena, J.; Mierzwinski-Urban, M.; Embil, J.M. Preoperative skin antiseptic preparations for preventing surgical site infections: A systematic review. Infect. Control. Hosp. Epidemiol. 2012, 33, 608–617. [Google Scholar] [CrossRef]
- Webster, J.; Osborne, S. Preoperative bathing or showering with skin antiseptics to prevent surgical site infection. Cochrane Database Syst Rev. 2007, 9, CD004985. [Google Scholar] [CrossRef] [Green Version]
- Edmiston, C.E.; Seabrook, G.R.; Johnson, C.P.; Paulson, D.S.; Beausoleil, C.M. Comparative of a new and innovative 2% chlorhexidine gluconate-impregnated cloth with 4% chlorhexidine gluconate as topical antiseptic for preparation of the skin prior to surgery. Am. J. Infect. Control. 2007, 35, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Eiselt, D. Presurgical skin preparation with a novel 2% chlorhexidine gluconate cloth reduces rates of surgical site infection in orthopaedic surgical patients. Orthop. Nurs. 2009, 28, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Cruse, P.J.E. Preparing the patient for operation. Plast. Reconstr. Surg. 1981, 68, 846. [Google Scholar] [CrossRef]
- Tanner, J.; Moncaster, K.; Fau-Woodings, D.; Woodings, D. Preoperative hair removal: A systematic review. J. Perioper. Pract. 2007, 17, 118–132. [Google Scholar] [CrossRef] [PubMed]
- Tanner, J.; Woodings, D.; Moncaster, K. Preoperative hair removal to reduce surgical site infection. Cochrane Database Syst. Rev. 2006, CD004122. [Google Scholar] [CrossRef]
- Van Rijen, M.; Bonten, M.; Wenzel, R.; Kluytmans, J. Mupirocin ointment for preventing Staphylococcus aureus infections in nasal carriers. Cochrane Database Syst. Rev. 2008, CD006216. [Google Scholar] [CrossRef]
- Von Eiff, C.; Becker, K.; Machka, K.; Stammer, H.; Peters, G. Nasal carriage as a source of Staphylococcus aureus bacteremia. Study Group. N. Engl. J. Med. 2001, 344, 11–16. [Google Scholar] [CrossRef]
- Wertheim, H.F.; Vos, M.C.; Ott, A.; Voss, A.; Kluytmans, J.A.; Vandenbroucke-Grauls, C.M.; Meester, M.H.; van Keulen, P.H.; Verbrugh, H.A. Mupirocin prophylaxis against nosocomial Staphylococcus aureus infections in nonsurgical patients: A randomized study. Ann. Intern. Med. 2004, 140, 419–425. [Google Scholar] [CrossRef]
- Wertheim, H.F.; Melles, D.C.; Vos, M.C.; van Leeuwen, W.; van Belkum, A.; Verbrugh, H.A.; Nouwen, J.L. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis. 2005, 5, 751–762. [Google Scholar] [CrossRef]
- Saraswat, M.K.; Magruder, J.T.; Crawford, T.C.; Gardner, J.M.; Duquaine, D.; Sussman, M.S.; Maragakis, L.L.; Whitman, G.J. Preoperative Staphylococcus aureus Screening and Targeted Decolonization in Cardiac Surgery. Ann. Thorac. Surg. 2017, 104, 1349–1356. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Norman, G.; Iheozor-Ejiofor, Z.; Wong, J.K.; Crosbie, E.J.; Wilson, P. Nasal decontamination for the prevention of surgical site infection in Staphylococcus aureus carriers. Cochrane Database Syst. Rev. 2017, 5, CD012462. [Google Scholar] [CrossRef] [Green Version]
- Coates, T.; Bax, R.; Coates, A. Nasal decolonization of Staphylococcus aureus with mupirocin: Strengths, weaknesses and future prospects. J. Antimicrob. Chemother. 2009, 64, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Konvalinka, A.; Errett, L.; Fong, I.W. Impact of treating Staphylococcus aureus nasal carriers on wound infections in cardiac surgery. J. Hosp. Infect. 2006, 64, 162–168. [Google Scholar] [CrossRef]
- Bode, L.G.; van Rijen, M.M.; Wertheim, H.F.; Vandenbroucke-Grauls, C.M.; Troelstra, A.; Voss, A.; Verbrugh, H.A.; Vos, M.C.; Kluytmans, J.A. Long-term Mortality After Rapid Screening and Decolonization of Staphylococcus aureus Carriers: Observational Follow-up Study of a Randomized, Placebo-controlled Trial. Ann. Surg. 2016, 263, 511–515. [Google Scholar] [CrossRef]
- Healy, D.G.; Duignan, E.; Tolan, M.; Young, V.K.; O’Connell, B.; McGovern, E. Should cardiac surgery be delayed among carriers of methicillin-resistant Staphylococcus aureus to reduce methicillin-resistant Staphylococcus aureus-related morbidity by preoperative decolonisation? Eur. J. Cardiothorac. Surg. 2011, 39, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Bouza, E.; Perez-Granda, M.; Burillo, A.; De Egea, V.; Hortal, J.; JM, B.; Vicente, T.; Munoz, P. Colonization of the nasal airways by Staphylococcus aureus on admission to a major heart surgery operating room: A real world experience. Enferm Infecc Microbiol. 2020, 38, 466–470. [Google Scholar] [CrossRef]
- Papachristofi, O.; Klein, A.A.; Mackay, J.; Nashef, S.; Fletcher, N.; Sharples, L.D. Effect of individual patient risk, centre, surgeon and anaesthetist on length of stay in hospital after cardiac surgery: Association of Cardiothoracic Anaesthesia and Critical Care (ACTACC) consecutive cases series study of 10 UK specialist centres. BMJ Open 2017, 7, e016947. [Google Scholar] [CrossRef]
- Oteo, J.; Bou, G.; Chaves, F.; Oliver, A. Microbiological methods for surveillance of carrier status of multiresistant bacteria. Enferm. Infecc. Microbiol. Clin. 2017, 35, 667–675. [Google Scholar] [CrossRef]
- Schulz, M.; Nonnenmacher, C.; Mutters, R. Cost-effectiveness of rapid MRSA screening in surgical patients. Eur. J. Clin. Microbiol. Infect. Dis. 2009, 28, 1291–1296. [Google Scholar] [CrossRef]
- Black, A. Black’s Medical Dictionary (42nd edition). Ref. Rev. 2010, 24, 35. [Google Scholar] [CrossRef]
- Bebko, S.P.; Green, D.M.; Awad, S.S. Effect of a preoperative decontamination protocol on surgical site infections in patients undergoing elective orthopedic surgery with hardware implantation. JAMA Surg. 2015, 150, 390–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hibbard, J.S.; Mulberry, G.K.; Brady, A.R. A clinical study comparing the skin antisepsis and safety of ChloraPrep, 70% isopropy alcohol, and 2% aqueous chlorhexidine. J. Infus. Nurs. 2002, 25, 244–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leekha, S.; Terrell, C.L.; Edson, R.S. General principles of antimicrobial therapy. Mayo Clin. Proc. 2011, 86, 156–167. [Google Scholar] [CrossRef] [Green Version]
- Doebbeling, B.N.; Reagan, D.R.; Pfaller, M.A.; Houston, A.K.; Hollis, R.J.; Wenzel, R.P. Long-term efficacy of intranasal mupirocin ointment. A prospective cohort study of Staphylococcus aureus carriage. Arch. Intern. Med. 1994, 154, 1505–1508. [Google Scholar] [CrossRef]
- Yu, V.L.; Goetz, A.; Wagener, M.; Smith, P.B.; Rihs, J.D.; Hanchett, J.; Zuravleff, J.J. Staphylococcus aureusNasal Carriage and Infection in Patients on Hemodialysis. N. Engl. J. Med. 1986, 315, 91–96. [Google Scholar] [CrossRef]
- Perl, T.M.; Cullen, J.J.; Wenzel, R.P.; Zimmerman, M.B.; Pfaller, M.A.; Sheppard, D.; Twombley, J.; French, P.P.; Herwaldt, L.A. Intranasal mupirocin to prevent postoperative Staphylococcus aureus infections. N. Engl. J. Med. 2002, 346, 1871–1877. [Google Scholar] [CrossRef]
- Nicholson, M.R.; Huesman, L.A. Controlling the usage of intranasal mupirocin does impact the rate of Staphylococcus aureus deep sternal wound infections in cardiac surgery patients. Am. J. Infect. Control. 2006, 34, 44–48. [Google Scholar] [CrossRef]
- Dumville, J.C.; McFarlane, E.; Edwards, P.; Lipp, A.; Holmes, A. Preoperative skin antiseptics for preventing surgical wound infections after clean surgery. Cochrane Database Syst. Rev. 2013, CD003949. [Google Scholar] [CrossRef]
- Park, H.M.; Han, S.S.; Lee, E.C.; Lee, S.D.; Yoon, H.M.; Eom, B.W.; Kim, S.H.; Ryu, K.W.; Park, S.J.; Kim, Y.W.; et al. Randomized clinical trial of preoperative skin antisepsis with chlorhexidine gluconate or povidone-iodine. Br. J. Surg. 2017, 104, e145–e150. [Google Scholar] [CrossRef]
- Tuuli, M.G.; Liu, J.; Stout, M.J.; Martin, S.; Cahill, A.G.; Odibo, A.O.; Colditz, G.A.; Macones, G.A. A Randomized Trial Comparing Skin Antiseptic Agents at Cesarean Delivery. N. Engl. J. Med. 2016, 374, 647–655. [Google Scholar] [CrossRef] [Green Version]
- Harnoss, J.C.; Assadian, O.; Kramer, A.; Probst, P.; Muller-Lantzsch, C.; Scheerer, L.; Bruckner, T.; Diener, M.K.; Buchler, M.W.; Ulrich, A.B. Comparison of chlorhexidine-isopropanol with isopropanol skin antisepsis for prevention of surgical-site infection after abdominal surgery. Br. J. Surg. 2018, 105, 893–899. [Google Scholar] [CrossRef]
- Darouiche, R.O.; Wall, M.J., Jr.; Itani, K.M.; Otterson, M.F.; Webb, A.L.; Carrick, M.M.; Miller, H.J.; Awad, S.S.; Crosby, C.T.; Mosier, M.C.; et al. Chlorhexidine-Alcohol versus Povidone-Iodine for Surgical-Site Antisepsis. N. Engl. J. Med. 2010, 362, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Segal, C.G.; Anderson, J.J. Preoperative skin preparation of cardiac patients. AORN J. 2002, 76, 821–828. [Google Scholar] [CrossRef]
- Stevens, M.H.; Klinger, N. Bacterial recolonization of the skin and wound contamination during cardiac surgery. J. Hosp. Infect. 2013, 85, 325–326. [Google Scholar] [CrossRef]
- Haga, K.K.; McClymont, K.L.; Clarke, S.; Grounds, R.S.; Ng, K.Y.B.; Glyde, D.W.; Loveless, R.J.; Carter, G.H.; Alston, R.P. The effect of tight glycaemic control, during and after cardiac surgery, on patient mortality and morbidity: A systematic review and meta-analysis. J. Cardiothorac. Surg. 2011, 6, 3. [Google Scholar] [CrossRef] [Green Version]
- Furnary, A.P.; Gao, G.; Grunkemeier, G.L.; Wu, Y.; Zerr, K.J.; Bookin, S.O.; Floten, H.S.; Starr, A. Continuous insulin infusion reduces mortality in patients with diabetes undergoing coronary artery bypass grafting. J. Thorac. Cardiovasc. Surg. 2003, 125, 1007–1021. [Google Scholar] [CrossRef] [Green Version]
- Aldea, G.S.; Bakaeen, F.G.; Pal, J.; Fremes, S.; Head, S.J.; Sabik, J.; Rosengart, T.; Kappetein, A.P.; Thourani, V.H.; Firestone, S.; et al. The Society of Thoracic Surgeons Clinical Practice Guidelines on Arterial Conduits for Coronary Artery Bypass Grafting. Ann. Thorac. Surg. 2016, 101, 801–809. [Google Scholar] [CrossRef] [Green Version]
- Latham, R.; Lancaster, A.D.; Covington, J.F.; Pirolo, J.S.; Thomas, C.S., Jr. The association of diabetes and glucose control with surgical-site infections among cardiothoracic surgery patients. Infect. Control. Hosp. Epidemiol. 2001, 22, 607–612. [Google Scholar] [CrossRef] [Green Version]
- Bhamidipati, C.M.; LaPar, D.J.; Stukenborg, G.J.; Morrison, C.C.; Kern, J.A.; Kron, I.L.; Ailawadi, G. Superiority of moderate control of hyperglycemia to tight control in patients undergoing coronary artery bypass grafting. J. Thorac. Cardiovasc. Surg. 2011, 141, 543–551. [Google Scholar] [CrossRef] [Green Version]
- Van Schooneveld, T.C.; Rupp, M.E. 87—Mediastinitis. In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 8th ed.; Content Repository Only; Bennett, J.E., Dolin, R., Blaser, M.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1080–1090.e1083. [Google Scholar]
- Bouza, E.; Munoz, P.; Alcala, L.; Perez, M.J.; Rincon, C.; Barrio, J.M.; Pinto, A. Cultures of sternal wound and mediastinum taken at the end of heart surgery do not predict postsurgical mediastinitis. Diagn. Microbiol. Infect. Dis. 2006, 56, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Sarr, M.G.; Watkins, L., Jr.; Stewart, J.R. Mediastinal tap as useful method for the early diagnosis of mediastinal infection. Surg Gynecol. Obs. 1984, 159, 79–81. [Google Scholar]
- Benlolo, S.; Mateo, J.; Raskine, L.; Tibourtine, O.; Bel, A.; Payen, D.; Mebazaa, A. Sternal puncture allows an early diagnosis of poststernotomy mediastinitis. J. Thorac. Cardiovasc. Surg. 2003, 125, 611–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cobo, J.; Aguado, J.M.; Cortina, J.; Cobo, P.; Martin del Hierro, J.L.; Rufilanchas, J.J.; Noriega, A.R. Infection of sternal wound in heart surgery: Analysis of 1000 operations. Med. Clin. 1996, 106, 401–404. [Google Scholar]
- Fowler, V.G., Jr.; Kaye, K.S.; Simel, D.L.; Cabell, C.H.; McClachlan, D.; Smith, P.K.; Levin, S.; Sexton, D.J.; Reller, L.B.; Corey, G.R.; et al. Staphylococcus aureus bacteremia after median sternotomy: Clinical utility of blood culture results in the identification of postoperative mediastinitis. Circulation 2003, 108, 73–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tammelin, A.; Hambraeus, A.; Stahle, E. Mediastinitis after cardiac surgery: Improvement of bacteriological diagnosis by use of multiple tissue samples and strain typing. J. Clin. Microbiol. 2002, 40, 2936–2941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maroto, L.C.; Aguado, J.M.; Carrascal, Y.; Perez, A.; Perez-de-la-Sota, E.; Cortina, J.M.; Delgado, R.; Rodriguez, E.; Molina, L.; Rufilanchas, J.J. Role of epicardial pacing wire cultures in the diagnosis of poststernotomy mediastinitis. Clin. Infect. Dis. 1997, 24, 419–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mekontso-Dessap, A.; Honore, S.; Kirsch, M.; Houel, R.; Loisance, D.; Brun-Buisson, C. Usefulness of routine epicardial pacing wire culture for early prediction of poststernotomy mediastinitis. J. Clin. Microbiol. 2004, 42, 5245–5248. [Google Scholar] [CrossRef] [Green Version]
- Chua, J.D.; Wilkoff, B.L.; Lee, I.; Juratli, N.; Longworth, D.L.; Gordon, S.M. Diagnosis and management of infections involving implantable electrophysiologic cardiac devices. Ann. Intern. Med. 2000, 133, 604–608. [Google Scholar] [CrossRef]
- Golzio, P.G.; Vinci, M.; Anselmino, M.; Comoglio, C.; Rinaldi, M.; Trevi, G.P.; Bongiorni, M.G. Accuracy of swabs, tissue specimens, and lead samples in diagnosis of cardiac rhythm management device infections. Pacing Clin. Electrophysiol. 2009, 32 (Suppl. S1), S76–S80. [Google Scholar] [CrossRef]
- Chan, M.; Yusuf, E.; Giulieri, S.; Perrottet, N.; Von Segesser, L.; Borens, O.; Trampuz, A. A retrospective study of deep sternal wound infections: Clinical and microbiological characteristics, treatment, and risk factors for complications. Diagn. Microbiol. Infect. Dis. 2016, 84, 261–265. [Google Scholar] [CrossRef]
- Rodriguez Cetina Biefer, H.; Sundermann, S.H.; Emmert, M.Y.; Rancic, Z.; Salzberg, S.P.; Grunenfelder, J.; Falk, V.; Plass, A.R. Negative microbiological results are not mandatory in deep sternal wound infections before wound closure. Eur. J. Cardiothorac. Surg. 2012, 42, 306–310; discussion 310. [Google Scholar] [CrossRef] [Green Version]
- Brook, I. Microbiology of postthoractomy sternal wound infection. J. Clin. Microbiol. 1989, 27, 806–807. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, T.; Daimon, T.; Mouri, N.; Masuda, H.; Sawa, Y. Staphylococcus aureus and repeat bacteremia in febrile patients as early signs of sternal wound infection after cardiac surgery. J. Cardiothorac. Surg. 2014, 9, 80. [Google Scholar] [CrossRef] [Green Version]
- Rampini, S.K.; Bloemberg, G.V.; Keller, P.M.; Buchler, A.C.; Dollenmaier, G.; Speck, R.F.; Bottger, E.C. Broad-range 16S rRNA gene polymerase chain reaction for diagnosis of culture-negative bacterial infections. Clin. Infect. Dis. 2011, 53, 1245–1251. [Google Scholar] [CrossRef] [Green Version]
- Melendez, J.H.; Frankel, Y.M.; An, A.T.; Williams, L.; Price, L.B.; Wang, N.Y.; Lazarus, G.S.; Zenilman, J.M. Real-time PCR assays compared to culture-based approaches for identification of aerobic bacteria in chronic wounds. Clin. Microbiol. Infect. 2010, 16, 1762–1769. [Google Scholar] [CrossRef]
- Sontakke, S.; Cadenas, M.B.; Maggi, R.G.; Diniz, P.P.; Breitschwerdt, E.B. Use of broad range16S rDNA PCR in clinical microbiology. J. Microbiol. Methods 2009, 76, 217–225. [Google Scholar] [CrossRef]
- van Wingerden, J.J.; Maas, M.; Braam, R.L.; de Mol, B.A. Diagnosing poststernotomy mediastinitis in the ED. Am. J. Emerg. Med. 2016, 34, 618–622. [Google Scholar] [CrossRef]
- Akman, C.; Kantarci, F.; Cetinkaya, S. Imaging in mediastinitis: A systematic review based on aetiology. Clin. Radiol. 2004, 59, 573–585. [Google Scholar] [CrossRef]
- Misawa, Y.; Fuse, K.; Hasegawa, T. Infectious mediastinitis after cardiac operations: Computed tomographic findings. Ann. Thorac. Surg. 1998, 65, 622–624. [Google Scholar] [CrossRef]
- Gur, E.; Stern, D.; Weiss, J.; Herman, O.; Wertheym, E.; Cohen, M.; Shafir, R. Clinical-radiological evaluation of poststernotomy wound infection. Plast. Reconstr. Surg. 1998, 101, 348–355. [Google Scholar] [CrossRef]
- Goodman, L.R.; Kay, H.R.; Teplick, S.K.; Mundth, E.D. Complications of median sternotomy: Computed tomographic evaluation. Am. J. Roentgenol. 1983, 141, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Carter, A.R.; Sostman, H.D.; Curtis, A.M.; Swett, H.A. Thoracic alterations after cardiac surgery. Am. J. Roentgenol. 1983, 140, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Restrepo, C.S.; Martinez, S.; Lemos, D.F.; Washington, L.; McAdams, H.P.; Vargas, D.; Lemos, J.A.; Carrillo, J.A.; Diethelm, L. Imaging appearances of the sternum and sternoclavicular joints. Radiographics 2009, 29, 839–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boiselle, P.M.; Mansilla, A.V. A closer look at the midsternal stripe sign. Am. J. Roentgenol. 2002, 178, 945–948. [Google Scholar] [CrossRef] [PubMed]
- Boiselle, P.M.; Mansilla, A.V.; White, C.S.; Fisher, M.S. Sternal dehiscence in patients with and without mediastinitis. J. Thorac. Imaging 2001, 16, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Yamashiro, T.; Kamiya, H.; Murayama, S.; Unten, S.; Nakayama, T.; Gibo, M.; Kuniyoshi, Y. Infectious mediastinitis after cardiovascular surgery: Role of computed tomography. Radiat. Med. 2008, 26, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Exarhos, D.N.; Malagari, K.; Tsatalou, E.G.; Benakis, S.V.; Peppas, C.; Kotanidou, A.; Chondros, D.; Roussos, C. Acute mediastinitis: Spectrum of computed tomography findings. Eur. Radiol. 2005, 15, 1569–1574. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Yamauchi, H.; Yamada, T.; Ariyoshi, T.; Aikawa, H.; Kato, Y. Diagnostic validity of computed tomography for mediastinitis after cardiac surgery. Ann. Thorac. Cardiovasc. Surg. 2001, 7, 94–98. [Google Scholar]
- Bitkover, C.Y.; Cederlund, K.; Aberg, B.; Vaage, J. Computed tomography of the sternum and mediastinum after median sternotomy. Ann. Thorac. Surg. 1999, 68, 858–863. [Google Scholar] [CrossRef]
- Jolles, H.; Henry, D.A.; Roberson, J.P.; Cole, T.J.; Spratt, J.A. Mediastinitis following median sternotomy: CT findings. Radiology 1996, 201, 463–466. [Google Scholar] [CrossRef]
- Kay, H.R.; Goodman, L.R.; Teplick, S.K.; Mundth, E.D. Use of computed tomography to assess mediastinal complications after median sternotomy. Ann. Thorac. Surg. 1983, 36, 706–714. [Google Scholar] [CrossRef]
- Li, A.E.; Fishman, E.K. Evaluation of complications after sternotomy using single- and multidetector CT with three-dimensional volume rendering. Am. J. Roentgenol. 2003, 181, 1065–1070. [Google Scholar] [CrossRef]
- Templeton, P.A.; Fishman, E.K. CT evaluation of poststernotomy complications. Am. J. Roentgenol. 1992, 159, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Bhatnagar, G.; Vardhanabhuti, V.; Nensey, R.R.; Sidhu, H.S.; Morgan-Hughes, G.; Roobottom, C.A. The role of multidetector computed tomography coronary angiography in imaging complications post-cardiac surgery. Clin. Radiol. 2013, 68, e254–e265. [Google Scholar] [CrossRef]
- Carrol, C.L.; Jeffrey, R.B., Jr.; Federle, M.P.; Vernacchia, F.S. CT evaluation of mediastinal infections. J. Comput. Assist. Tomogr. 1987, 11, 449–454. [Google Scholar] [CrossRef]
- Katabathina, V.S.; Restrepo, C.S.; Martinez-Jimenez, S.; Riascos, R.F. Nonvascular, nontraumatic mediastinal emergencies in adults: A comprehensive review of imaging findings. Radiographics 2011, 31, 1141–1160. [Google Scholar] [CrossRef]
- Gualdi, G.F.; Bertini, L.; Colaiacomo, M.C.; Lanciotti, S.; Casciani, E.; Polettini, E. Imaging of median sternotomy complications. Clin. Ter. 2005, 156, 19–22. [Google Scholar]
- Bessette, P.R.; Hanson, M.J.; Czarnecki, D.J.; Yuille, D.L.; Rankin, J.J. Evaluation of postoperative osteomyelitis of the sternum comparing CT and dual Tc-99m MDP bone and In-111 WBC SPECT. Clin. Nucl. Med. 1993, 18, 197–202. [Google Scholar] [CrossRef]
- Cooper, J.A.; Elmendorf, S.L.; Teixeira, J.P., 3rd; McCandless, B.K.; Foster, E.D. Diagnosis of sternal wound infection by technetium-99m-leukocyte imaging. J. Nucl. Med. 1992, 33, 59–65. [Google Scholar]
- Salit, I.E.; Detsky, A.S.; Simor, A.E.; Weisel, R.D.; Feiglin, D. Gallium-67 scanning in the diagnosis of postoperative sternal osteomyelitis: Concise communication. J. Nucl. Med. 1983, 24, 1001–1004. [Google Scholar] [PubMed]
- Rouzet, F.; de Labriolle-Vaylet, C.; Trouillet, J.L.; Hitzel, A.; Benali, K.; Lebtahi, R.; Le Guludec, D. Diagnostic value of (9)(9)mTc-HMPAO-labeled leukocytes scintigraphy in suspicion of post-sternotomy mediastinitis relapse. J. Nucl. Cardiol. 2015, 22, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Hauet, J.R.; Barge, M.L.; Fajon, O.; Comte, F.; Goulart, D.M. Sternal infection and retrosternal abscess shown on Tc-99m HMPAO-labeled leukocyte scintigraphy. Clin. Nucl. Med. 2004, 29, 194–195. [Google Scholar] [CrossRef] [PubMed]
- Quirce, R.; Carril, J.M.; Gutierrez-Mendiguchia, C.; Serrano, J.; Rabasa, J.M.; Bernal, J.M. Assessment of the diagnostic capacity of planar scintigraphy and SPECT with 99mTc-HMPAO-labelled leukocytes in superficial and deep sternal infections after median sternotomy. Nucl. Med. Commun. 2002, 23, 453–459. [Google Scholar] [CrossRef]
- Liberatore, M.; Fiore, V.; D’Agostini, A.; Prosperi, D.; Iurilli, A.P.; Santini, C.; Baiocchi, P.; Galie, M.; Di Nucci, G.D.; Sinatra, R. Sternal wound infection revisited. Eur. J. Nucl. Med. 2000, 27, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Papos, M.; Nehez, I.; Simonfalvi, I.; Kovacs, G.; Csernay, L.; Pavics, L. Diagnostic value of 99mTc-HM-PAO leukocyte scintigraphy and computer tomography in patients with sternal wound infections. Nucl. Med. Rev. Cent. East. Eur. 2000, 3, 35–39. [Google Scholar]
- Gutierrez-Mendiguchia, C.; Carril, J.M.; Quirce, R.; Serrano, J.; Rabasa, J.M.; Bernal, J.M. Planar scintigraphy and SPET with 99Tcm-HMPAO-labelled leukocytes in patients with median sternotomy: Normal patterns. Nucl. Med. Commun. 1999, 20, 901–906. [Google Scholar] [CrossRef]
- Montero, A.; Carril, J.M.; Quirce, R.; Blanco, I.; Uriarte, I.; Bernal, J.M.; Hernandez, A. Contribution of planar scintigraphy and SPECT with Ga-67 in the diagnosis of infectious complications after median sternotomy. Rev. Esp. Med. Nucl. 1998, 17, 331–337. [Google Scholar]
- Oates, E.; Payne, D.D. Postoperative cardiothoracic infection: Diagnostic value of indium-111 white blood cell imaging. Ann. Thorac. Surg. 1994, 58, 1442–1446. [Google Scholar] [CrossRef]
- Browdie, D.A.; Bernstein, R.V.; Agnew, R.; Damle, A.; Fischer, M.; Balz, J. Diagnosis of poststernotomy infection: Comparison of three means of assessment. Ann. Thorac. Surg. 1991, 51, 290–292. [Google Scholar] [CrossRef]
- Randall, P.A.; Trasolini, N.C.; Kohman, L.J.; Groskin, S.A.; Scalzetti, E.M.; Heitzman, E.R.; Riebel, S.T. MR imaging in the evaluation of the chest after uncomplicated median sternotomy. Radiographics 1993, 13, 329–340. [Google Scholar] [CrossRef] [Green Version]
- Bitkover, C.Y.; Gardlund, B.; Larsson, S.A.; Aberg, B.; Jacobsson, H. Diagnosing sternal wound infections with 99mTc-labeled monoclonal granulocyte antibody scintigraphy. Ann. Thorac. Surg. 1996, 62, 1412–1416; discussion 1416–1417. [Google Scholar] [CrossRef]
- Vallejo, E.; Martinez, I.; Tejero, A.; Hernandez, S.; Jimenez, L.; Bialostozky, D.; Sanchez, G.; Ilarraza, H.; Ferro-Flores, G. Clinical utility of 99mTc-labeled ubiquicidin 29–41 antimicrobial peptide for the scintigraphic detection of mediastinitis after cardiac surgery. Arch. Med. Res. 2008, 39, 768–774. [Google Scholar] [CrossRef]
- Read, C.; Branford, O.A.; Verjee, L.S.; Wood, S.H. PET-CT imaging in patients with chronic sternal wound infections prior to reconstructive surgery: A case series. J. Plast. Reconstr. Aesthet. Surg. 2015, 68, 1132–1137. [Google Scholar] [CrossRef]
- Berdajs, D.A.; Trampuz, A.; Ferrari, E.; Ruchat, P.; Hurni, M.; von Segesser, L.K. Delayed primary versus late secondary wound closure in the treatment of postsurgical sternum osteomyelitis. Interact. Cardiovasc. Thorac. Surg. 2011, 12, 914–918. [Google Scholar] [CrossRef] [Green Version]
- Petzina, R.; Ugander, M.; Gustafsson, L.; Engblom, H.; Hetzer, R.; Arheden, H.; Ingemansson, R.; Malmsjo, M. Topical negative pressure therapy of a sternotomy wound increases sternal fluid content but does not affect internal thoracic artery blood flow: Assessment using magnetic resonance imaging. J. Thorac. Cardiovasc. Surg. 2008, 135, 1007–1013. [Google Scholar] [CrossRef] [Green Version]
- Formanek, M.B.; Herwaldt, L.A.; Perencevich, E.N.; Schweizer, M.L. Gentamicin/collagen sponge use may reduce the risk of surgical site infections for patients undergoing cardiac operations: A meta-analysis. Surg Infect. 2014, 15, 244–255. [Google Scholar] [CrossRef] [Green Version]
- Vander Salm, T.J.; Okike, O.N.; Pasque, M.K.; Pezzella, A.T.; Lew, R.; Traina, V.; Mathieu, R. Reduction of sternal infection by application of topical vancomycin. J. Thorac. Cardiovasc. Surg. 1989, 98, 618–622. [Google Scholar] [CrossRef]
- Arruda, M.V.; Braile, D.M.; Joaquim, M.R.; Suzuki, F.A.; Alves, R.H. [The use of the vancomycin paste for sternal hemostasis and mediastinitis prophylaxis]. Rev. Bras. Cir. Cardiovasc. 2008, 23, 35–39. [Google Scholar] [CrossRef] [Green Version]
- Godbole, G.; Pai, V.; Kolvekar, S.; Wilson, A.P. Use of gentamicin-collagen sponges in closure of sternal wounds in cardiothoracic surgery to reduce wound infections. Interact. Cardiovasc. Thorac. Surg. 2012, 14, 390–394. [Google Scholar] [CrossRef] [Green Version]
- Bennett-Guerrero, E.; Ferguson, T.B., Jr.; Lin, M.; Garg, J.; Mark, D.B.; Scavo, V.A., Jr.; Kouchoukos, N.; Richardson, J.B., Jr.; Pridgen, R.L.; Corey, G.R. Effect of an implantable gentamicin-collagen sponge on sternal wound infections following cardiac surgery: A randomized trial. JAMA 2010, 304, 755–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eklund, A.M.; Valtonen, M.; Werkkala, K.A. Prophylaxis of sternal wound infections with gentamicin-collagen implant: Randomized controlled study in cardiac surgery. J. Hosp. Infect. 2005, 59, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Friberg, O.; Svedjeholm, R.; Soderquist, B.; Granfeldt, H.; Vikerfors, T.; Kallman, J. Local gentamicin reduces sternal wound infections after cardiac surgery: A randomized controlled trial. Ann. Thorac. Surg. 2005, 79, 153–161; discussion 161–162. [Google Scholar] [CrossRef] [PubMed]
- Schimmer, C.; Ozkur, M.; Sinha, B.; Hain, J.; Gorski, A.; Hager, B.; Leyh, R. Gentamicin-collagen sponge reduces sternal wound complications after heart surgery: A controlled, prospectively randomized, double-blind study. J. Thorac. Cardiovasc. Surg. 2012, 143, 194–200. [Google Scholar] [CrossRef] [Green Version]
- Osawa, H.; Yoshii, S.; Abraham, S.J.; Okamoto, Y.; Hosaka, S.; Fukuda, S.; Tsuchiya, K.; Nakajima, M.; Honda, Y.; Takizawa, K. Topical spraying of cefazolin and gentamicin reduces deep sternal wound infections after heart surgery: A multicenter, large volume, retrospective study. Gen. Thorac. Cardiovasc. Surg. 2015, 64, 197–202. [Google Scholar] [CrossRef]
- Schimmer, C.; Reents, W.; Berneder, S.; Eigel, P.; Sezer, O.; Scheld, H.; Sahraoui, K.; Gansera, B.; Deppert, O.; Rubio, A.; et al. Prevention of sternal dehiscence and infection in high-risk patients: A prospective randomized multicenter trial. Ann. Thorac. Surg. 2008, 86, 1897–1904. [Google Scholar] [CrossRef]
- Bejko, J.; Tarzia, V.; De Franceschi, M.; Bianco, R.; Castoro, M.; Bottio, T.; Gerosa, G. Nitinol flexigrip sternal closure system and chest wound infections: Insight from a comparative analysis of complications and costs. Ann. Thorac. Surg. 2012, 94, 1848–1853. [Google Scholar] [CrossRef]
- Song, D.H.; Lohman, R.F.; Renucci, J.D.; Jeevanandam, V.; Raman, J. Primary sternal plating in high-risk patients prevents mediastinitis. Eur. J. Cardiothorac. Surg. 2004, 26, 367–372. [Google Scholar] [CrossRef]
- Malhotra, A.; Garg, P.; Bishnoi, A.K.; Pendro, V.; Sharma, P.; Upadhyay, M.; Gandhi, S. Is steel wire closure of sternotomy better than polyester suture closure? Asian Cardiovasc Thorac Ann. 2014, 22, 409–415. [Google Scholar] [CrossRef]
- Srivastava, V.; Yap, C.H.; Burdett, C.; Smailes, T.; Kendall, S.; Akowuah, E. Thermoreactive clips do not reduce sternal infection: A propensity-matched comparison with sternal wires. Interact. Cardiovasc. Thorac. Surg. 2015, 21, 699–704. [Google Scholar] [CrossRef]
- Dunne, B.; Murphy, M.; Skiba, R.; Wang, X.; Ho, K.; Larbalestier, R.; Merry, C. Sternal cables are not superior to traditional sternal wiring for preventing deep sternal wound infection. Interact. Cardiovasc. Thorac. Surg. 2016, 22, 594–598. [Google Scholar] [CrossRef] [Green Version]
- Imagawa, H.; Nakano, S.; Kawachi, K.; Takano, S.; Tsunooka, N.; Shikata, F. A prospective randomized study of sternal closure: Comparison of Mersilene tape versus standard wire closure. Ann. Thorac. Cardiovasc. Surg. 2004, 10, 362–366. [Google Scholar]
- Steingrimsson, S.; Thimour-Bergstrom, L.; Roman-Emanuel, C.; Schersten, H.; Friberg, O.; Gudbjartsson, T.; Jeppsson, A. Triclosan-coated sutures and sternal wound infections: A prospective randomized clinical trial. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 2331–2338. [Google Scholar] [CrossRef]
- Dohmen, P.M.; Markou, T.; Ingemansson, R.; Rotering, H.; Hartman, J.M.; van Valen, R.; Brunott, M.; Kramer, A.; Segers, P. Can post-sternotomy mediastinitis be prevented by a closed incision management system? GMS Hyg. Infect. Control. 2014, 9, Doc19. [Google Scholar] [CrossRef]
- Paul, M.; Raz, A.; Leibovici, L.; Madar, H.; Holinger, R.; Rubinovitch, B. Sternal wound infection after coronary artery bypass graft surgery: Validation of existing risk scores. J. Thorac. Cardiovasc. Surg. 2007, 133, 397–403. [Google Scholar] [CrossRef] [Green Version]
- Gardlund, B.; Bitkover, C.Y.; Vaage, J. Postoperative mediastinitis in cardiac surgery—Microbiology and pathogenesis. Eur. J. Cardiothorac. Surg. 2002, 21, 825–830. [Google Scholar] [CrossRef] [Green Version]
- Grauhan, O.; Navasardyan, A.; Hofmann, M.; Muller, P.; Stein, J.; Hetzer, R. Prevention of poststernotomy wound infections in obese patients by negative pressure wound therapy. J. Thorac. Cardiovasc. Surg. 2013, 145, 1387–1392. [Google Scholar] [CrossRef] [Green Version]
- Grauhan, O.; Navasardyan, A.; Tutkun, B.; Hennig, F.; Muller, P.; Hummel, M.; Hetzer, R. Effect of surgical incision management on wound infections in a poststernotomy patient population. Int. Wound J. 2014, 11 (Suppl. S1), 6–9. [Google Scholar] [CrossRef]
- Dohmen, P.M.; Markou, T.; Ingemansson, R.; Rotering, H.; Hartman, J.M.; van Valen, R.; Brunott, M.; Segers, P. Use of incisional negative pressure wound therapy on closed median sternal incisions after cardiothoracic surgery: Clinical evidence and consensus recommendations. Med. Sci. Monit. 2014, 20, 1814–1825. [Google Scholar] [CrossRef] [Green Version]
- Nordmeyer, M.; Pauser, J.; Biber, R.; Jantsch, J.; Lehrl, S.; Kopschina, C.; Rapke, C.; Bail, H.J.; Forst, R.; Brem, M.H. Negative pressure wound therapy for seroma prevention and surgical incision treatment in spinal fracture care. Int. Wound J. 2016, 13, 1176–1179. [Google Scholar] [CrossRef] [Green Version]
- Stannard, J.P.; Volgas, D.A.; McGwin, G., 3rd; Stewart, R.L.; Obremskey, W.; Moore, T.; Anglen, J.O. Incisional negative pressure wound therapy after high-risk lower extremity fractures. J. Orthop. Trauma 2012, 26, 37–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorlitzer, M.; Folkmann, S.; Meinhart, J.; Poslussny, P.; Thalmann, M.; Weiss, G.; Bijak, M.; Grabenwoeger, M. A newly designed thorax support vest prevents sternum instability after median sternotomy. Eur. J. Cardiothorac. Surg. 2009, 36, 335–339; discussion 339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorlitzer, M.; Wagner, F.; Pfeiffer, S.; Folkmann, S.; Meinhart, J.; Fischlein, T.; Reichenspurner, H.; Grabenwoger, M. A prospective randomized multicenter trial shows improvement of sternum related complications in cardiac surgery with the Posthorax support vest. Interact. Cardiovasc. Thorac. Surg. 2010, 10, 714–718. [Google Scholar] [CrossRef] [Green Version]
- Gorlitzer, M.; Wagner, F.; Pfeiffer, S.; Folkmann, S.; Meinhart, J.; Fischlein, T.; Reichenspurner, H.; Grabenwoeger, M. Prevention of sternal wound complications after sternotomy: Results of a large prospective randomized multicentre trial. Interact. Cardiovasc. Thorac. Surg. 2013, 17, 515–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tewarie, L.S.; Menon, A.K.; Hatam, N.; Amerini, A.; Moza, A.K.; Autschbach, R.; Goetzenich, A. Prevention of sternal dehiscence with the sternum external fixation (Stern-E-Fix) corset—Randomized trial in 750 patients. J. Cardiothorac. Surg. 2012, 7, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sjogren, J.; Gustafsson, R.; Nilsson, J.; Malmsjo, M.; Ingemansson, R. Clinical outcome after poststernotomy mediastinitis: Vacuum-assisted closure versus conventional treatment. Ann. Thorac. Surg. 2005, 79, 2049–2055. [Google Scholar] [CrossRef]
- Yu, A.W.; Rippel, R.A.; Smock, E.; Jarral, O.A. In patients with post-sternotomy mediastinitis is vacuum-assisted closure superior to conventional therapy? Interact. Cardiovasc. Thorac. Surg. 2013, 17, 861–865. [Google Scholar] [CrossRef]
- Risnes, I.; Abdelnoor, M.; Veel, T.; Svennevig, J.L.; Lundblad, R.; Rynning, S.E. Mediastinitis after coronary artery bypass grafting: The effect of vacuum-assisted closure versus traditional closed drainage on survival and re-infection rate. Int. Wound J. 2014, 11, 177–182. [Google Scholar] [CrossRef]
- Sjogren, J.; Malmsjo, M.; Gustafsson, R.; Ingemansson, R. Poststernotomy mediastinitis: A review of conventional surgical treatments, vacuum-assisted closure therapy and presentation of the Lund University Hospital mediastinitis algorithm. Eur. J. Cardiothorac. Surg. 2006, 30, 898–905. [Google Scholar] [CrossRef] [Green Version]
- Merrill, W.H.; Akhter, S.A.; Wolf, R.K.; Schneeberger, E.W.; Flege, J.B., Jr. Simplified treatment of postoperative mediastinitis. Ann. Thorac. Surg. 2004, 78, 608–612; discussion 608–612. [Google Scholar] [CrossRef]
- Molina, J.E.; Nelson, E.C.; Smith, R.R. Treatment of postoperative sternal dehiscence with mediastinitis: Twenty-four-year use of a single method. J. Thorac. Cardiovasc. Surg. 2006, 132, 782–787. [Google Scholar] [CrossRef] [Green Version]
- Deschka, H.; Erler, S.; El-Ayoubi, L.; Vogel, C.; Vohringer, L.; Wimmer-Greinecker, G. Suction-irrigation drainage: An underestimated therapeutic option for surgical treatment of deep sternal wound infections. Interact. Cardiovasc. Thorac. Surg. 2013, 17, 85–89. [Google Scholar] [CrossRef] [Green Version]
- Berg, H.F.; Brands, W.G.; van Geldorp, T.R.; Kluytmans-VandenBergh, F.Q.; Kluytmans, J.A. Comparison between closed drainage techniques for the treatment of postoperative mediastinitis. Ann. Thorac. Surg. 2000, 70, 924–929. [Google Scholar] [CrossRef]
- Imren, Y.; Selek, H.; Zor, H.; Bayram, H.; Ereren, E.; Tasoglu, I.; Sariguney, Y. The management of complicated sternal dehiscence following open heart surgery. Heart Surg. Forum 2006, 9, E871–E875. [Google Scholar] [CrossRef] [Green Version]
- Kovacikova, L.; Kunovsky, P.; Skrak, P.; Hraska, V.; Kostalova, L.; Tomeckova, E. Thyroid hormone metabolism in pediatric cardiac patients treated by continuous povidone-iodine irrigation for deep sternal wound infection. Eur. J. Cardiothorac. Surg. 2002, 21, 1037–1041. [Google Scholar] [CrossRef] [Green Version]
- Damiani, G.; Pinnarelli, L.; Sommella, L.; Tocco, M.P.; Marvulli, M.; Magrini, P.; Ricciardi, W. Vacuum-assisted closure therapy for patients with infected sternal wounds: A meta-analysis of current evidence. J. Plast. Reconstr. Aesthet. Surg. 2011, 64, 1119–1123. [Google Scholar] [CrossRef]
- Falagas, M.E.; Tansarli, G.S.; Kapaskelis, A.; Vardakas, K.Z. Impact of vacuum-assisted closure (VAC) therapy on clinical outcomes of patients with sternal wound infections: A meta-analysis of non-randomized studies. PLoS ONE 2013, 8, e64741. [Google Scholar] [CrossRef]
- Pairolero, P.C.; Arnold, P.G. Management of infected median sternotomy wounds. Ann. Thorac. Surg. 1986, 42, 1–2. [Google Scholar] [CrossRef]
- Jones, G.; Jurkiewicz, M.J.; Bostwick, J.; Wood, R.; Bried, J.T.; Culbertson, J.; Howell, R.; Eaves, F.; Carlson, G.; Nahai, F. Management of the infected median sternotomy wound with muscle flaps. The Emory 20-year experience. Ann. Surg. 1997, 225, 766–776; discussion 776–778. [Google Scholar] [CrossRef]
- Greig, A.V.; Geh, J.L.; Khanduja, V.; Shibu, M. Choice of flap for the management of deep sternal wound infection—An anatomical classification. J. Plast. Reconstr. Aesthet. Surg. 2007, 60, 372–378. [Google Scholar] [CrossRef]
- Van Wingerden, J.J.; Ubbink, D.T.; van der Horst, C.M.; de Mol, B.A. Poststernotomy mediastinitis: A classification to initiate and evaluate reconstructive management based on evidence from a structured review. J. Cardiothorac. Surg. 2014, 9, 179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raja, S.G.; Berg, G.A. Should vacuum-assisted closure therapy be routinely used for management of deep sternal wound infection after cardiac surgery? Interact. Cardiovasc. Thorac. Surg. 2007, 6, 523–527. [Google Scholar] [CrossRef]
- Segers, P.; de Jong, A.P.; Kloek, J.J.; de Mol, B.A. Poststernotomy mediastinitis: Comparison of two treatment modalities. Interact. Cardiovasc. Thorac. Surg. 2005, 4, 555–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segers, P.; de Jong, A.P.; Kloek, J.J.; van der Horst, C.M.; Spanjaard, L.; de Mol, B.A. Topical negative pressure therapy in wounds after cardiothoracic surgery: Successful experience supported by literature. Thorac. Cardiovasc. Surg. 2006, 54, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Ennker, I.C.; Malkoc, A.; Pietrowski, D.; Vogt, P.M.; Ennker, J.; Albert, A. The concept of negative pressure wound therapy (NPWT) after poststernotomy mediastinitis—A single center experience with 54 patients. J. Cardiothorac. Surg. 2009, 4, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuchs, U.; Zittermann, A.; Stuettgen, B.; Groening, A.; Minami, K.; Koerfer, R. Clinical outcome of patients with deep sternal wound infection managed by vacuum-assisted closure compared to conventional therapy with open packing: A retrospective analysis. Ann. Thorac. Surg. 2005, 79, 526–531. [Google Scholar] [CrossRef] [PubMed]
- Bapat, V.; El-Muttardi, N.; Young, C.; Venn, G.; Roxburgh, J. Experience with Vacuum-assisted closure of sternal wound infections following cardiac surgery and evaluation of chronic complications associated with its use. J. Card. Surg. 2008, 23, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Vos, R.J.; Yilmaz, A.; Sonker, U.; Kelder, J.C.; Kloppenburg, G.T. Vacuum-assisted closure of post-sternotomy mediastinitis as compared to open packing. Interact. Cardiovasc. Thorac. Surg. 2012, 14, 17–21. [Google Scholar] [CrossRef]
- Deniz, H.; Gokaslan, G.; Arslanoglu, Y.; Ozcaliskan, O.; Guzel, G.; Yasim, A.; Ustunsoy, H. Treatment outcomes of postoperative mediastinitis in cardiac surgery; negative pressure wound therapy versus conventional treatment. J. Cardiothorac. Surg. 2012, 7, 67. [Google Scholar] [CrossRef] [Green Version]
- Lindstedt, S.; Malmsjo, M.; Gesslein, B.; Ingemansson, R. Topical negative pressure effects on coronary blood flow in a sternal wound model. Int. Wound J. 2008, 5, 503–509. [Google Scholar] [CrossRef]
- Gustafsson, R.; Sjogren, J.; Malmsjo, M.; Wackenfors, A.; Algotsson, L.; Ingemansson, R. Vacuum-assisted closure of the sternotomy wound: Respiratory mechanics and ventilation. Plast. Reconstr. Surg. 2006, 117, 1167–1176. [Google Scholar] [CrossRef]
- Atkins, B.Z.; Onaitis, M.W.; Hutcheson, K.A.; Kaye, K.; Petersen, R.P.; Wolfe, W.G. Does method of sternal repair influence long-term outcome of postoperative mediastinitis? Am. J. Surg. 2011, 202, 565–567. [Google Scholar] [CrossRef]
- Morisaki, A.; Hosono, M.; Sasaki, Y.; Hirai, H.; Sakaguchi, M.; Nakahira, A.; Seo, H.; Suehiro, S.; Shibata, T. Evaluation of risk factors for hospital mortality and current treatment for poststernotomy mediastinitis. Gen. Thorac. Cardiovasc. Surg. 2011, 59, 261–267. [Google Scholar] [CrossRef]
- De Feo, M.; Vicchio, M.; Nappi, G.; Cotrufo, M. Role of vacuum in methicillin-resistant deep sternal wound infection. Asian Cardiovasc. Thorac. Ann. 2010, 18, 360–363. [Google Scholar] [CrossRef]
- Osada, H.; Nakajima, H.; Morishima, M.; Su, T. Candidal mediastinitis successfully treated using vacuum-assisted closure following open-heart surgery. Interact. Cardiovasc. Thorac. Surg. 2012, 14, 872–874. [Google Scholar] [CrossRef]
- van Wingerden, J.J.; Segers, P.; Jekel, L. Major bleeding during negative pressure wound/V.A.C.(R)—Therapy for postsurgical deep sternal wound infection—A critical appraisal. J. Cardiothorac. Surg. 2011, 6, 121. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.H.; Senewiratne, S.; Garlick, B.; Mullany, D. Two-stage management of sternal wound infection using bilateral pectoralis major advancement flap. Eur. J. Cardiothorac. Surg. 2006, 30, 148–152. [Google Scholar] [CrossRef]
- Schroeyers, P.; Wellens, F.; Degrieck, I.; De Geest, R.; Van Praet, F.; Vermeulen, Y.; Vanermen, H. Aggressive primary treatment for poststernotomy acute mediastinitis: Our experience with omental- and muscle flaps surgery. Eur. J. Cardiothorac. Surg. 2001, 20, 743–746. [Google Scholar] [CrossRef] [Green Version]
- Fleck, T.M.; Koller, R.; Giovanoli, P.; Moidl, R.; Czerny, M.; Fleck, M.; Wolner, E.; Grabenwoger, M. Primary or delayed closure for the treatment of poststernotomy wound infections? Ann. Plast. Surg. 2004, 52, 310–314. [Google Scholar] [CrossRef]
- Izaddoost, S.; Withers, E.H. Sternal reconstruction with omental and pectoralis flaps: A review of 415 consecutive cases. Ann. Plast. Surg. 2012, 69, 296–300. [Google Scholar] [CrossRef]
- Agarwal, J.P.; Ogilvie, M.; Wu, L.C.; Lohman, R.F.; Gottlieb, L.J.; Franczyk, M.; Song, D.H. Vacuum-assisted closure for sternal wounds: A first-line therapeutic management approach. Plast Reconstr. Surg. 2005, 116, 1035–1040; discussion 1041–1043. [Google Scholar] [CrossRef] [PubMed]
- Cowan, K.N.; Teague, L.; Sue, S.C.; Mahoney, J.L. Vacuum-assisted wound closure of deep sternal infections in high-risk patients after cardiac surgery. Ann. Thorac. Surg. 2005, 80, 2205–2212. [Google Scholar] [CrossRef] [PubMed]
- Ascherman, J.A.; Patel, S.M.; Malhotra, S.M.; Smith, C.R. Management of sternal wounds with bilateral pectoralis major myocutaneous advancement flaps in 114 consecutively treated patients: Refinements in technique and outcomes analysis. Plast. Reconstr. Surg. 2004, 114, 676–683. [Google Scholar] [CrossRef] [PubMed]
- Cabbabe, E.B.; Cabbabe, S.W. Surgical management of a postoperative protruding heart with pectoralis muscle transposition. Plast. Reconstr. Surg. 2010, 125, 81e–82e. [Google Scholar] [CrossRef]
- Jang, Y.J.; Park, M.C.; Park, D.H.; Lim, H.; Kim, J.H.; Lee, I.J. Immediate debridement and reconstruction with a pectoralis major muscle flap for poststernotomy mediastinitis. Arch. Plast. Surg. 2012, 39, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Gaudreau, G.; Costache, V.; Houde, C.; Cloutier, D.; Montalin, L.; Voisine, P.; Baillot, R. Recurrent sternal infection following treatment with negative pressure wound therapy and titanium transverse plate fixation. Eur. J. Cardiothorac. Surg. 2010, 37, 888–892. [Google Scholar] [CrossRef] [Green Version]
- Baillot, R.; Cloutier, D.; Montalin, L.; Cote, L.; Lellouche, F.; Houde, C.; Gaudreau, G.; Voisine, P. Impact of deep sternal wound infection management with vacuum-assisted closure therapy followed by sternal osteosynthesis: A 15-year review of 23,499 sternotomies. Eur. J. Cardiothorac. Surg. 2010, 37, 880–887. [Google Scholar] [CrossRef] [Green Version]
- Huh, J.; Bakaeen, F.; Chu, D.; Wall, M.J., Jr. Transverse sternal plating in secondary sternal reconstruction. J. Thorac. Cardiovasc. Surg. 2008, 136, 1476–1480. [Google Scholar] [CrossRef] [Green Version]
- Fawzy, H.; Alhodaib, N.; Mazer, C.D.; Harrington, A.; Latter, D.; Bonneau, D.; Errett, L.; Mahoney, J. Sternal plating for primary and secondary sternal closure; can it improve sternal stability? J. Cardiothorac. Surg. 2009, 4, 19. [Google Scholar] [CrossRef] [Green Version]
- Sansone, F.; Mossetti, C.; Bruna, M.C.; Oliaro, A.; Zingarelli, E.; Flocco, R.; Del Ponte, S.; Casabona, R. Transomental titanium plates for sternal osteomyelitis in cardiac surgery. J. Card. Surg. 2011, 26, 600–603. [Google Scholar] [CrossRef]
- Rocco, G.; Fazioli, F.; La Manna, C.; La Rocca, A.; Mori, S.; Palaia, R.; Martucci, N.; Salvi, R. Omental flap and titanium plates provide structural stability and protection of the mediastinum after extensive sternocostal resection. Ann. Thorac. Surg. 2010, 90, e14–e16. [Google Scholar] [CrossRef]
- Zeitani, J.; Pompeo, E.; Nardi, P.; Sergiacomi, G.; Scognamiglio, M.; Chiariello, G.; Del Giudice, C.; Arganini, C.; Simonetti, G.; Chiariello, L. Early and long-term results of pectoralis muscle flap reconstruction versus sternal rewiring following failed sternal closure. Eur. J. Cardiothorac. Surg. 2013, 43, e144–e150. [Google Scholar] [CrossRef] [Green Version]
- van Wingerden, J.J.; Lapid, O.; Boonstra, P.W.; de Mol, B.A. Muscle flaps or omental flap in the management of deep sternal wound infection. Interact. Cardiovasc. Thorac. Surg. 2011, 13, 179–187. [Google Scholar] [CrossRef]
- Tomos, P.; Lachanas, E.; Michail, P.O.; Kostakis, A. Alternative bi-pectoral muscle flaps for postoperative sternotomy mediastinitis. Ann. Thorac. Surg. 2006, 81, 754–755. [Google Scholar] [CrossRef]
- Litbarg, N.O.; Gudehithlu, K.P.; Sethupathi, P.; Arruda, J.A.; Dunea, G.; Singh, A.K. Activated omentum becomes rich in factors that promote healing and tissue regeneration. Cell Tissue Res. 2007, 328, 487–497. [Google Scholar] [CrossRef]
- Singh, A.K.; Patel, J.; Litbarg, N.O.; Gudehithlu, K.P.; Sethupathi, P.; Arruda, J.A.; Dunea, G. Stromal cells cultured from omentum express pluripotent markers, produce high amounts of VEGF, and engraft to injured sites. Cell Tissue Res. 2008, 332, 81–88. [Google Scholar] [CrossRef]
- Paslakis, G.; Keuneke, C.; Groene, H.J.; Schroppel, B.; Schmid, H.; Schloendorff, D. The putative role of human peritoneal adipocytes in the fight against bacteria: Synthesis of the antimicrobial active peptide DEFA1-3. Nephron. Exp. Nephrol. 2010, 115, e96–e100. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.; Lowery, E.; Braun, R.K.; Martin, A.; Huang, N.; Medina, M.; Sethupathi, P.; Seki, Y.; Takami, M.; Byrne, K.; et al. Cellular basis of tissue regeneration by omentum. PLoS ONE 2012, 7, e38368. [Google Scholar] [CrossRef] [Green Version]
- Danner, B.C.; Zenker, D.; Didilis, V.N.; Grossmann, M.; Stojanovic, T.; Seipelt, R.; Tirilomis, T.; Schondube, F.A. Transposition of greater omentum in deep sternal wound infection caused by methicillin-resistant staphylococci, with differing clinical course for MRSA and MRSE. Thorac. Cardiovasc. Surg. 2011, 59, 21–24. [Google Scholar] [CrossRef]
- Milano, C.A.; Georgiade, G.; Muhlbaier, L.H.; Smith, P.K.; Wolfe, W.G. Comparison of omental and pectoralis flaps for poststernotomy mediastinitis. Ann. Thorac. Surg. 1999, 67, 377–380; discussion 380–381. [Google Scholar] [CrossRef]
- Chittithavorn, V.; Rergkliang, C.; Chetpaophan, A.; Simapattanapong, T. Single-stage omental flap transposition: Modality of an effective treatment for deep sternal wound infection. Interact. Cardiovasc. Thorac. Surg. 2011, 12, 982–986. [Google Scholar] [CrossRef] [Green Version]
- Hirata, N.; Hatsuoka, S.; Amemiya, A.; Ueno, T.; Kosakai, Y. New strategy for treatment of MRSA mediastinitis: One-stage procedure for omental transposition and closed irrigation. Ann. Thorac. Surg. 2003, 76, 2104–2106. [Google Scholar] [CrossRef]
- Pasic, M.; Schaffarczyk, R.; Hetzer, R. Successful treatment of methicillin-resistant Staphylococcus aureus (MRSA) mediastinitis in a heart transplant recipient. Eur. J. Cardiothorac. Surg. 2004, 25, 1127–1128. [Google Scholar] [CrossRef] [Green Version]
- Francel, T.J.; Kouchoukos, N.T. A rational approach to wound difficulties after sternotomy: Reconstruction and long-term results. Ann. Thorac. Surg. 2001, 72, 1419–1429. [Google Scholar] [CrossRef]
- Parissis, H.; Al-Alao, B.; Soo, A.; Orr, D.; Young, V. Risk analysis and outcome of mediastinal wound and deep mediastinal wound infections with specific emphasis to omental transposition. J. Cardiothorac. Surg. 2011, 6, 111. [Google Scholar] [CrossRef]
- Kobayashi, T.; Mikamo, A.; Kurazumi, H.; Suzuki, R.; Shirasawa, B.; Hamano, K. Secondary omental and pectoralis major double flap reconstruction following aggressive sternectomy for deep sternal wound infections after cardiac surgery. J. Cardiothorac. Surg. 2011, 6, 56. [Google Scholar] [CrossRef] [Green Version]
- Lytle, B.W. Bilateral internal thoracic artery grafting. Ann. Cardiothorac. Surg. 2013, 2, 485–492. [Google Scholar] [CrossRef]
- Masroor, M.; Fu, X.; Khan, U.Z.; Zhao, Y. Effect of bilateral internal thoracic artery harvesting on deep sternal wound infection in diabetic patients: Review of literature. Ann. Med. Surg. 2021, 66, 102382. [Google Scholar] [CrossRef]
- Brunet, A.; N’Guyen, Y.; Lefebvre, A.; Poncet, A.; Robbins, A.; Bajolet, O.; Saade, Y.; Ruggieri, V.G.; Rubin, S. Obesity and Preoperative Anaemia as Independent Risk Factors for Sternal Wound Infection After Coronary Artery Bypass Graft Surgery with Pedicled (Non-Skeletonized) Internal Mammary Arteries: The Role of Thoracic Wall Ischemia? Vasc. Health Risk Manag. 2020, 16, 553–559. [Google Scholar] [CrossRef]
- Kieser, T.M.; Rose, M.S.; Aluthman, U.; Montgomery, M.; Louie, T.; Belenkie, I. Toward zero: Deep sternal wound infection after 1001 consecutive coronary artery bypass procedures using arterial grafts: Implications for diabetic patients. J. Thorac. Cardiovasc. Surg. 2014, 148, 1887–1895. [Google Scholar] [CrossRef] [Green Version]
- Iribarne, A.; Goodney, P.P.; Flores, A.M.; DeSimone, J.; DiScipio, A.W.; Austin, A.; McCullough, J.N. National Trends and Geographic Variation in Bilateral Internal Mammary Artery Use in the United States. Ann. Thorac. Surg. 2017, 104, 1902–1907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Paulis, R.; de Notaris, S.; Scaffa, R.; Nardella, S.; Zeitani, J.; Del Giudice, C.; De Peppo, A.P.; Tomai, F.; Chiariello, L. The effect of bilateral internal thoracic artery harvesting on superficial and deep sternal infection: The role of skeletonization. J. Thorac. Cardiovasc. Surg. 2005, 129, 536–543. [Google Scholar] [CrossRef] [PubMed]
- Raza, S.; Sabik III, J.F.; Masabni, K.; Ainkaran, P.; Lytle, B.W.; Blackstone, E.H. Surgical revascularization techniques that minimize surgical risk and maximize late survival after coronary artery bypass grafting in patients with diabetes mellitus. J. Thorac. Cardiovasc. Surg. 2014, 148, 1257–1266.e1259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puskas, J.D.; Sadiq, A.; Vassiliades, T.A.; Kilgo, P.D.; Lattouf, O.M. Bilateral internal thoracic artery grafting is associated with significantly improved long-term survival, even among diabetic patients. Ann. Thorac. Surg. 2012, 94, 710–716. [Google Scholar] [CrossRef]
- Lev-Ran, O.; Mohr, R.; Amir, K.; Matsa, M.; Nehser, N.; Locker, C.; Uretzky, G. Bilateral internal thoracic artery grafting in insulin-treated diabetics: Should it be avoided? Ann. Thorac. Surg. 2003, 75, 1872–1877. [Google Scholar] [CrossRef]
- Sjogren, J.; Mokhtari, A.; Gustafsson, R.; Malmsjo, M.; Nilsson, J.; Ingemansson, R. Vacuum-assisted closure therapy for deep sternal wound infections: The impact of learning curve on survival and predictors for late mortality. Int. Wound J. 2008, 5, 216–223. [Google Scholar] [CrossRef]
- Moues, C.M.; Heule, F.; Hovius, S.E. A review of topical negative pressure therapy in wound healing: Sufficient evidence? Am. J. Surg. 2011, 201, 544–556. [Google Scholar] [CrossRef]
- Gdalevitch, P.; Afilalo, J.; Lee, C. Predictors of vacuum-assisted closure failure of sternotomy wounds. J. Plast. Reconstr. Aesthet. Surg. 2010, 63, 180–183. [Google Scholar] [CrossRef]
- Van Wingerden, J.J.; Coret, M.E.; van Nieuwenhoven, C.A.; Totte, E.R. The laparoscopically harvested omental flap for deep sternal wound infection. Eur. J. Cardiothorac. Surg. 2010, 37, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Argenta, L.C.; Morykwas, M.J.; Marks, M.W.; DeFranzo, A.J.; Molnar, J.A.; David, L.R. Vacuum-assisted closure: State of clinic art. Plast. Reconstr. Surg. 2006, 117, 127S–142S. [Google Scholar] [CrossRef]
- Thomas, G.P.L.; Banwell, P.E. Topical Negative-Pressure Therapy in Wound Management. In Surgery in Wounds; Téot, L., Banwell, P.E., Ziegler, U.E., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 109–124. [Google Scholar]
- Morykwas, M.J.; Argenta, L.C.; Shelton-Brown, E.I.; McGuirt, W. Vacuum-assisted closure: A new method for wound control and treatment: Animal studies and basic foundation. Ann. Plast. Surg. 1997, 38, 553–562. [Google Scholar] [CrossRef]
- Wackenfors, A.; Sjögren, J.; Gustafsson, R.; Algotsson, L.; Ingemansson, R.; Malmsjo, M. Effects of vacuum-assisted closure therapy on inguinal wound edge microvascular blood flow. Wound Repair Regen. 2004, 12, 600–606. [Google Scholar] [CrossRef] [Green Version]
- Moidl, R.; Fleck, T.; Giovanoli, P.; Grabenwoger, M.; Wolner, E. [Cost effectiveness of V.A.C. therapy after post-sternotomy mediastinitis]. Zent. Chir. 2006, 131 (Suppl. S1), S189–S190. [Google Scholar] [CrossRef]
- Doss, M.; Martens, S.; Wood, J.P.; Wolff, J.D.; Baier, C.; Moritz, A. Vacuum-assisted suction drainage versus conventional treatment in the management of poststernotomy osteomyelitis. Eur. J. Cardiothorac. Surg. 2002, 22, 934–938. [Google Scholar] [CrossRef] [Green Version]
- Moues, C.M.; Vos, M.C.; van den Bemd, G.J.; Stijnen, T.; Hovius, S.E. Bacterial load in relation to vacuum-assisted closure wound therapy: A prospective randomized trial. Wound Repair Regen. 2004, 12, 11–17. [Google Scholar] [CrossRef]
- Salica, A.; Weltert, L.; Scaffa, R.; Guerrieri Wolf, L.; Nardella, S.; Bellisario, A.; De Paulis, R. Negative pressure wound treatment improves Acute Physiology and Chronic Health Evaluation II score in mediastinitis allowing a successful elective pectoralis muscle flap closure: Six-year experience of a single protocol. J. Thorac. Cardiovasc. Surg. 2014, 148, 2397–2403. [Google Scholar] [CrossRef] [Green Version]
- Karra, R.; McDermott, L.; Connelly, S.; Smith, P.; Sexton, D.J.; Kaye, K.S. Risk factors for 1-year mortality after postoperative mediastinitis. J. Thorac. Cardiovasc. Surg. 2006, 132, 537–543. [Google Scholar] [CrossRef] [Green Version]
- Fernández-de la Reguera, G.; Soto-Nieto, G.; López-Madrigal, N.; Moreno-González, A.; Medina-Concebida, L.E.; Herrera-Alarcon, V.; Amaro-Camacho, J.A.; Baranda-Tovar, F.M. Mediastinitis posquirúrgica. Arch. Cardiol. México 2011, 81, 64–72. [Google Scholar]
- Weis, F.; Heyn, J.; Hinske, C.L.; Vogt, F.; Weis, M.; Kur, F.; Hagl, C.; Beiras-Fernandez, A. Daptomycin as supportive treatment option in patients developing mediastinitis after open cardiac surgery. J. Cardiothorac. Surg. 2012, 7, 81. [Google Scholar] [CrossRef] [Green Version]
- Abdelnoor, M.; Vengen, O.A.; Johansen, O.; Sandven, I.; Abdelnoor, A.M. Latitude of the study place and age of the patient are associated with incidence of mediastinitis and microbiology in open-heart surgery: A systematic review and meta-analysis. Clin. Epidemiol. 2016, 8, 151–163. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.; Mo, R.; Zhou, Q.; Wang, D. Deep sternal wound infection after cardiac surgery in the Chinese population: A single-centre 15-year retrospective study. J. Thorac. Dis. 2017, 9, 3031–3037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemaignen, A.; Birgand, G.; Ghodhbane, W.; Alkhoder, S.; Lolom, I.; Belorgey, S.; Lescure, F.X.; Armand-Lefevre, L.; Raffoul, R.; Dilly, M.P.; et al. Sternal wound infection after cardiac surgery: Incidence and risk factors according to clinical presentation. Clin. Microbiol Infect. 2015, 21, 674.e11–674.e18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, J.E.; Dolin, R.; Blaser, M.J. Principles and Practice of Infectious Diseases; Elsevier: Philadelphia, PA, USA, 2014. [Google Scholar]
- Beckmann, A.; Doebler, K.; Schaefer, E.; Koetting, J.; Gastmeier, P.; Graf, K. Sternal surgical site infection prevention—Is there any room for improvement? Eur. J. Cardiothorac. Surg. 2011, 40, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Charbonneau, H.; Maillet, J.M.; Faron, M.; Mangin, O.; Puymirat, E.; Le Besnerais, P.; Du Puy-Montbrun, L.; Achouh, P.; Diehl, J.L.; Fagon, J.Y.; et al. Mediastinitis due to Gram-negative bacteria is associated with increased mortality. Clin. Microbiol. Infect. 2014, 20, O197–O202. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.G.; An, J.X. Deep sternal wound infection after cardiac surgery: A comparison of three different wound infection types and an analysis of antibiotic resistance. J. Thorac. Dis. 2018, 10, 377–387. [Google Scholar] [CrossRef] [Green Version]
- Valenzuela, H.; Carrascal, Y.; Maroto, L.; Arce, N. Fulminant mediastinitis due to extended-spectrum beta-lactamase-producing Klebsiella pneumoniae: Atypical presentation and spreading following cardiac surgery. Interact. Cardiovasc. Thorac. Surg. 2013, 16, 703–704. [Google Scholar] [CrossRef] [Green Version]
- Ambrosch, A. Rationale Antibiotikatherapie der Mediastinitis. Der Chirurg. 2016, 87, 497–503. [Google Scholar] [CrossRef]
- Bryant, L.R.; Spencer, F.C.; Trinkle, J.K. Treatment of median sternotomy infection by mediastinal irrigation with an antibiotic solution. Ann. Surg. 1969, 169, 914–920. [Google Scholar] [CrossRef]
- Ericsson, C.D.; Duke, J.H., Jr.; Pickering, L.K. Clinical pharmacology of intravenous and intraperitoneal aminoglycoside antibiotics in the prevention of wound infections. Ann. Surg. 1978, 188, 66–70. [Google Scholar] [CrossRef]
- Leyh, R.G.; Bartels, C.; Sievers, H.-H. Adjuvant treatment of deep sternal wound infection with collagenous gentamycin. Ann. Thorac. Surg. 1999, 68, 1648–1651. [Google Scholar] [CrossRef]
- Ozcan, A.V.; Demir, M.; Onem, G.; Goksin, I.; Baltalarli, A.; Topkara, V.K.; Kaleli, I. Topical versus systemic vancomycin for deep sternal wound infection caused by methicillin-resistant Staphylococcus aureus in a rodent experimental model. Tex. Heart Inst. J. 2006, 33, 107–110. [Google Scholar]
- Thurer, R.J.; Bognolo, D.; Vargas, A.; Isch, J.H.; Kaiser, G.A. The management of mediastinal infection following cardiac surgery: An experience utilizing continuous irrigation with povidone-iodine. J. Thorac. Cardiovasc. Surg. 1974, 68, 962–968. [Google Scholar] [CrossRef]
- Glick, P.L.; Guglielmo, B.J.; Tranbaugh, R.F.; Turley, K. Iodine toxicity in a patient treated by continuous povidone-iodine mediastinal irrigation. Ann. Thorac. Surg. 1985, 39, 478–480. [Google Scholar] [CrossRef]
- Glick, P.L.; Guglielmo, B.J.; Winter, M.E.; Finkbeiner, W.; Turley, K. Iodine toxicity secondary to continuous povidone-iodine mediastinal irrigation in dogs. J. Surg. Res. 1990, 49, 428–434. [Google Scholar] [CrossRef]
- Campistol, J.; Abad, C.; Nogue, S.; Bertran, A. Acute renal failure in a patient treated by continuous povidone-iodine mediastinal irrigation. J. Cardiovasc. Surg. 1988, 29, 410–412. [Google Scholar]
- Zec, N.; Donovan, J.W.; Aufiero, T.X.; Kincaid, R.L.; Demers, L.M. Seizures in a patient treated with continuous povidone–iodine mediastinal irrigation. New Engl. J. Med. 1992, 326, 1784. [Google Scholar] [CrossRef]
- Trouillet, J.L.; Chastre, J.; Fagon, J.Y.; Pierre, J.; Domart, Y.; Gibert, C. Use of granulated sugar in treatment of open mediastinitis after cardiac surgery. Lancet. 1985, 2, 180–184. [Google Scholar] [CrossRef]
- Szerafin, T.; Vaszily, M.; Peterffy, A. Granulated sugar treatment of severe mediastinitis after open-heart surgery. Scand. J. Thorac. Cardiovasc. Surg. 1991, 25, 77–80. [Google Scholar] [CrossRef]
- De Feo, M.; Gregorio, R.; Renzulli, A.; Ismeno, G.; Romano, G.P.; Cotrufo, M. Treatment of recurrent postoperative mediastinitis with granulated sugar. J. Cardiovasc. Surg. 2000, 41, 715–719. [Google Scholar]
- Caputi, V.; Marsilio, I.; Mereu, M.; Contarini, G.; Galuppini, F.; Lante, I.; Filpa, V.; Rugge, M.; Orso, G.; Giaroni, C.; et al. UEG Week 2015 Poster Presentations. United Eur. Gastroenterol. J. 2015, 3, 146–687. [Google Scholar] [CrossRef] [Green Version]
- Kato, T.; Takagi, H.; Matsuno, Y.; Imaizumi, M.; Umemoto, T. High-pressure irrigation and gentian-violet application for mediastinitis following replacement of ascending aorta and aortic valve. Heart Vessel. 2006, 21, 392–394. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, S.; Katayama, Y.; Mishima, H.; Ohnishi, K. Successful treatment of an infected new vascular graft. Interact. Cardiovasc. Thorac. Surg. 2013, 16, 79–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mossad, S.B.; Serkey, J.M.; Longworth, D.L.; Cosgrove, D.M., 3rd; Gordon, S.M. Coagulase-negative staphylococcal sternal wound infections after open heart operations. Ann. Thorac. Surg. 1997, 63, 395–401. [Google Scholar] [CrossRef]
- Khanlari, B.; Elzi, L.; Estermann, L.; Weisser, M.; Brett, W.; Grapow, M.; Battegay, M.; Widmer, A.F.; Flückiger, U. A rifampicin-containing antibiotic treatment improves outcome of staphylococcal deep sternal wound infections. J. Antimicrob. Chemother. 2010, 65, 1799–1806. [Google Scholar] [CrossRef]
- Tocco, M.P.; Costantino, A.; Ballardini, M.; D’Andrea, C.; Masala, M.; Merico, E.; Mosillo, L.; Sordini, P. Improved results of the vacuum assisted closure and Nitinol clips sternal closure after postoperative deep sternal wound infection. Eur. J. Cardio-Thorac. Surg. 2009, 35, 833–838. [Google Scholar] [CrossRef] [Green Version]
- Iversen, K.; Ihlemann, N.; Gill, S.U.; Madsen, T.; Elming, H.; Jensen, K.T.; Bruun, N.E.; Høfsten, D.E.; Fursted, K.; Christensen, J.J. Partial oral versus intravenous antibiotic treatment of endocarditis. N. Engl. J. Med. 2019, 380, 415–424. [Google Scholar] [CrossRef]
- Habib, G.; Lancellotti, P.; Antunes, M.J.; Bongiorni, M.G.; Casalta, J.-P.; Del Zotti, F.; Dulgheru, R.; El Khoury, G.; Erba, P.A.; Iung, B. 2015 ESC guidelines for the management of infective endocarditis: The task force for the management of infective endocarditis of the European Society of Cardiology (ESC) endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur. Heart J. 2015, 36, 3075–3128. [Google Scholar]
- Mzabi, A.; Kernéis, S.; Richaud, C.; Podglajen, I.; Fernandez-Gerlinger, M.-P.; Mainardi, J.-L. Switch to oral antibiotics in the treatment of infective endocarditis is not associated with increased risk of mortality in non–severely ill patients. Clin. Microbiol. Infect. 2016, 22, 607–612. [Google Scholar] [CrossRef] [Green Version]
- Holland, T.L.; Fowler, V.G. Rifampicin for Staphylococcus aureus bacteraemia: Give it ARREST. Lancet 2018, 391, 634–636. [Google Scholar] [CrossRef] [Green Version]
- Bassetti, M.; Ginocchio, F.; Mikulska, M. New treatment options against gram-negative organisms. Annu. Update Intensive Care Emerg. Med. 2011, 2011, 501–515. [Google Scholar]
- Bassetti, M.; Peghin, M.; Vena, A.; Giacobbe, D.R. Treatment of infections due to MDR Gram-negative bacteria. Front. Med. 2019, 6, 74. [Google Scholar] [CrossRef]
- Bassetti, M.; Righi, E. New antibiotics and antimicrobial combination therapy for the treatment of gram-negative bacterial infections. Curr. Opin. Crit. Care 2015, 21, 402–411. [Google Scholar] [CrossRef]
- Bassetti, M.; Righi, E.; Esposito, S.; Petrosillo, N.; Nicolini, L. Drug treatment for multidrug-resistant Acinetobacter baumannii infections. Future Microbiol. 2008, 3, 649–660. [Google Scholar] [CrossRef]
- Wilson, A.; Livermore, D.; Otter, J.; Warren, R.; Jenks, P.; Enoch, D.; Newsholme, W.; Oppenheim, B.; Leanord, A.; McNulty, C. Prevention and control of multi-drug-resistant Gram-negative bacteria: Recommendations from a Joint Working Party. J. Hosp. Infect. 2016, 92, S1–S44. [Google Scholar] [CrossRef] [Green Version]
- Tacconelli, E.; Mazzaferri, F.; de Smet, A.M.; Bragantini, D.; Eggimann, P.; Huttner, B.D.; Kuijper, E.J.; Lucet, J.-C.; Mutters, N.T.; Sanguinetti, M. ESCMID-EUCIC clinical guidelines on decolonization of multidrug-resistant Gram-negative bacteria carriers. Clin. Microbiol. Infect. 2019, 25, 807–817. [Google Scholar] [CrossRef] [Green Version]
- Palacios-Baena, Z.R.; Giannella, M.; Manissero, D.; Rodríguez-Baño, J.; Viale, P.; Lopes, S.; Wilson, K.; McCool, R.; Longshaw, C. Risk factors for carbapenem-resistant Gram-negative bacterial infections: A systematic review. Clin. Microbiol. Infect. 2021, 27, 228–235. [Google Scholar] [CrossRef]
- Modrau, I.S.; Ejlertsen, T.; Rasmussen, B.S. Emerging role of Candida in deep sternal wound infection. Ann. Thorac. Surg. 2009, 88, 1905–1909. [Google Scholar] [CrossRef]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 62, e1–e50. [Google Scholar] [CrossRef]
- Patterson, T.F.; Thompson, G.R., 3rd; Denning, D.W.; Fishman, J.A.; Hadley, S.; Herbrecht, R.; Kontoyiannis, D.P.; Marr, K.A.; Morrison, V.A.; Nguyen, M.H.; et al. Practice Guidelines for the Diagnosis and Management of Aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 63, e1–e60. [Google Scholar] [CrossRef]
- Thomas, F.E., Jr.; Martin, C.E.; Fisher, R.D.; Alford, R.H. Candida albicans infection of sternum and costal cartilages: Combined operative treatment and drug therapy and 5-fluorocytosine. Ann. Thorac. Surg. 1977, 23, 163–166. [Google Scholar] [CrossRef]
- Isenberg, H.D.; Tucci, V.; Cintron, F.; Singer, C.; Weinstein, G.S.; Tyras, D.H. Single-source outbreak of Candida tropicalis complicating coronary bypass surgery. J. Clin. Microbiol. 1989, 27, 2426–2428. [Google Scholar] [CrossRef] [Green Version]
- Pertowski, C.A.; Baron, R.C.; Lasker, B.A.; Werner, S.B.; Jarvis, W.R. Nosocomial outbreak of Candida albicans sternal wound infections following cardiac surgery traced to a scrub nurse. J. Infect. Dis. 1995, 172, 817–822. [Google Scholar] [CrossRef]
- Petrikkos, G.; Skiada, A.; Sabatakou, H.; Antoniadou, A.; Dosios, T.; Giamarellou, H. Case report. Successful treatment of two cases of post-surgical sternal osteomyelitis, due to Candida krusei and Candida albicans, respectively, with high doses of triazoles (fluconazole, itraconazole). Mycoses 2001, 44, 422–425. [Google Scholar] [CrossRef]
- Malani, P.N.; McNeil, S.A.; Bradley, S.F.; Kauffman, C.A. Candida albicans sternal wound infections: A chronic and recurrent complication of median sternotomy. Clin. Infect. Dis. 2002, 35, 1316–1320. [Google Scholar] [CrossRef] [Green Version]
- Singh, N. Fungal infections in the recipients of solid organ transplantation. Infect. Dis. Clin. N. Am. 2003, 17, 113–134. [Google Scholar] [CrossRef]
- Herbrecht, R.; Denning, D.W.; Patterson, T.F.; Bennett, J.E.; Greene, R.E.; Oestmann, J.W.; Kern, W.V.; Marr, K.A.; Ribaud, P.; Lortholary, O.; et al. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N. Engl. J. Med. 2002, 347, 408–415. [Google Scholar] [CrossRef] [Green Version]
Quality of Evidence | |
---|---|
1++ | High quality meta-analysis, SR of a RCT or a RCT with a very low risk of bias |
1+ | Well-conducted meta-analysis, SR of a RCT or a RCT with a low risk of bias |
1− | Meta-analyses, SR, RCT or RCT with a high risk of bias |
2++ | High-quality SR of case–control or cohort studies |
2+ | High quality or cohort case and control studies with very low risk of confusion or bias and a high probability that the relationship is causal |
2− | Well-executed case–control or cohort studies with low risk of confusion or bias and a moderate probability that the relationship is causal |
3 | Non-analytical studies (e.g., clinical cases, case series) |
4 | Expert opinion(s) |
Degree of Recommendation | Risk vs. Profit | Methodological Strength of Evidence |
---|---|---|
Strong recommendation, high quality of evidence | Benefits clearly outweigh the risk | Consistent evidence from randomised controlled trials without major limitations or exceptionally strong evidence from observational studies |
Strong recommendation, moderate quality evidence | Benefits clearly outweigh the risk | Evidence from randomised controlled trials with relevant limitations (inconsistent results, methodological weaknesses, indirect or imprecise) or very strong evidence from observational studies |
Strong recommendation, low or very low quality of evidence | Benefits clearly outweigh the risk | Evidence of at least one critical outcome from observational studies, case series or randomised controlled trials, with serious defects or indirect evidence |
Weak recommendation, high quality of evidence | Close benefit/risk balance | Consistent evidence from randomised controlled trials without major limitations or exceptionally strong evidence from observational studies |
Weak recommendation, moderate quality of evidence | Close benefit/risk balance | Evidence from randomised controlled trials with relevant limitations (inconsistent results, methodological weaknesses, indirect or imprecise) or very strong evidence from observational studies |
Weak recommendation, low or very low quality of evidence | Uncertain risk/benefit estimates; possible close benefit/risk balance | Evidence of at least one critical outcome from observational studies, case series or randomised controlled trials, with serious defects or indirect evidence |
Recommendation | Dose |
---|---|
* Daptomycin or vancomycin + piperacillin-tazobactam or meropenem (depending on the centre) | High doses (8–10 mg/kg/day) of i.v. daptomycin 1 g/12 h of vancomycin and later adjustment considering concentration 4.5 g/6–8 h of i.v. piperacillin/tazobactam Meropenem: 1–2 g/8 h i.v. Aztreonam 2 g/8 h i.v. |
Allergy: * Daptomycin or vancomycin + meropenem or aztreonam |
Microorganism | First Choice | Alternatives |
---|---|---|
Gram-positive cocci | ||
Methicillin-sensitive Staphylococcus aureus | Cloxacillin/cefazolin | |
Methicillin-resistant Staphylococcus aureus | Vancomycin or daptomycin + cloxacillin/ceftaroline Allergic to BL Daptomycin + fosfomycin Daptomycin + cotrimoxazole | Ceftaroline Fosfomycin + imipenem Clindamycin + cotrimoxazole Telavancin ** Oral antimicrobials |
Enterococcus faecalis | Not high aminoglycoside resistance Ampicillin + ceftriaxone Ampicillin + gentamicin | Vancomycin + gentamicin |
High aminoglycoside resistance Ampicillin + ceftriaxone | Daptomycin + Fosfomycin | |
Enterococcus faecium | Daptomycin + ampicillin Daptomycin + ceftaroline | Daptomycin + tigecycline Tigecycline + gentamicin |
Gram-negative bacilli including multidrug resistant microorganisms | ||
Enterobacteriaceae | According to antibiogram Meropenem if BLEE | Tigecycline + amikacin or imipenem |
Pseudomonas | According to antibiogram Piperacillin-tazobactam if susceptible | Ceftazidime + amikacin Ceftolozane-tazobactam |
Acinetobacter | Tigecycline +/− colistin or meropenem if susceptible | |
Carbapenemase-producing | Expert consensus is required Ceftazidime-avibactam if susceptible. | Expert consensus |
Fungi | ||
Candida | Fluconazole/Voriconazole | Echinocandins Liposomal amphotericin |
Aspergillus | Voriconazole | Liposomal amphotericin Echinocandins Combinations |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouza, E.; de Alarcón, A.; Fariñas, M.C.; Gálvez, J.; Goenaga, M.Á.; Gutiérrez-Díez, F.; Hortal, J.; Lasso, J.; Mestres, C.A.; Miró, J.M.; et al. Prevention, Diagnosis and Management of Post-Surgical Mediastinitis in Adults Consensus Guidelines of the Spanish Society of Cardiovascular Infections (SEICAV), the Spanish Society of Thoracic and Cardiovascular Surgery (SECTCV) and the Biomedical Research Centre Network for Respiratory Diseases (CIBERES). J. Clin. Med. 2021, 10, 5566. https://doi.org/10.3390/jcm10235566
Bouza E, de Alarcón A, Fariñas MC, Gálvez J, Goenaga MÁ, Gutiérrez-Díez F, Hortal J, Lasso J, Mestres CA, Miró JM, et al. Prevention, Diagnosis and Management of Post-Surgical Mediastinitis in Adults Consensus Guidelines of the Spanish Society of Cardiovascular Infections (SEICAV), the Spanish Society of Thoracic and Cardiovascular Surgery (SECTCV) and the Biomedical Research Centre Network for Respiratory Diseases (CIBERES). Journal of Clinical Medicine. 2021; 10(23):5566. https://doi.org/10.3390/jcm10235566
Chicago/Turabian StyleBouza, Emilio, Arístides de Alarcón, María Carmen Fariñas, Juan Gálvez, Miguel Ángel Goenaga, Francisco Gutiérrez-Díez, Javier Hortal, José Lasso, Carlos A. Mestres, José M. Miró, and et al. 2021. "Prevention, Diagnosis and Management of Post-Surgical Mediastinitis in Adults Consensus Guidelines of the Spanish Society of Cardiovascular Infections (SEICAV), the Spanish Society of Thoracic and Cardiovascular Surgery (SECTCV) and the Biomedical Research Centre Network for Respiratory Diseases (CIBERES)" Journal of Clinical Medicine 10, no. 23: 5566. https://doi.org/10.3390/jcm10235566
APA StyleBouza, E., de Alarcón, A., Fariñas, M. C., Gálvez, J., Goenaga, M. Á., Gutiérrez-Díez, F., Hortal, J., Lasso, J., Mestres, C. A., Miró, J. M., Navas, E., Nieto, M., Parra, A., Pérez de la Sota, E., Rodríguez-Abella, H., Rodríguez-Créixems, M., Rodríguez-Roda, J., Sánchez Espín, G., Sousa, D., ... Kestler, M. (2021). Prevention, Diagnosis and Management of Post-Surgical Mediastinitis in Adults Consensus Guidelines of the Spanish Society of Cardiovascular Infections (SEICAV), the Spanish Society of Thoracic and Cardiovascular Surgery (SECTCV) and the Biomedical Research Centre Network for Respiratory Diseases (CIBERES). Journal of Clinical Medicine, 10(23), 5566. https://doi.org/10.3390/jcm10235566