Real-World Analysis of the Aging Effects on Visual Field Reliability Indices in Humans
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Subjects
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Caprioli, J. The importance of rates in glaucoma. Am. J. Ophthalmol. 2008, 145, 191–192. [Google Scholar] [CrossRef] [PubMed]
- Artes, P.H.; Iwase, A.; Ohno, Y.; Kitazawa, Y.; Chauhan, B.C. Properties of perimetric threshold estimates from Full Threshold, SITA Standard, and SITA Fast strategies. Investig. Ophthalmol. Vis. Sci. 2002, 43, 2654–2659. [Google Scholar]
- Russell, R.A.; Crabb, D.P.; Malik, R.; Garway-Heath, D.F. The relationship between variability and sensitivity in large-scale longitudinal visual field data. Investig. Ophthalmol. Vis. Sci. 2012, 53, 5985–5990. [Google Scholar] [CrossRef] [Green Version]
- Gardiner, S.K. Differences in the Relation Between Perimetric Sensitivity and Variability Between Locations Across the Visual Field. Investig. Ophthalmol. Vis. Sci. 2018, 59, 3667–3674. [Google Scholar] [CrossRef] [Green Version]
- Heijl, A.; Lindgren, A.; Lindgren, G. Test-retest variability in glaucomatous visual fields. Am. J. Ophthalmol. 1989, 108, 130–135. [Google Scholar] [CrossRef]
- Henson, D.B.; Chaudry, S.; Artes, P.; Faragher, E.B.; Ansons, A. Response variability in the visual field: Comparison of optic neuritis, glaucoma, ocular hypertension, and normal eyes. Investig. Ophthalmol. Vis. Sci. 2000, 41, 417–421. [Google Scholar]
- Matsuura, M.; Hirasawa, K.; Murata, H.; Asaoka, R. The Relationship Between Visual Acuity and the Reproducibility of Visual Field Measurements in Glaucoma Patients. Investig. Ophthalmol. Vis. Sci. 2015, 56, 5630–5635. [Google Scholar] [CrossRef]
- Gracitelli, C.P.B.; Zangwill, L.M.; Diniz-Filho, A.; Abe, R.; Girkin, C.A.; Weinreb, R.N.; Liebmann, J.M.; Medeiros, F.A. Detection of Glaucoma Progression in Individuals of African Descent Compared With Those of European Descent. JAMA Ophthalmol. 2018, 136, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Diniz-Filho, A.; Delano-Wood, L.; Daga, F.B.; Cronemberger, S.; Medeiros, F.A. Association Between Neurocognitive Decline and Visual Field Variability in Glaucoma. JAMA Ophthalmol. 2017, 135, 734–739. [Google Scholar] [CrossRef] [Green Version]
- Jaffe, G.J.; Alvarado, J.A.; Juster, R.P. Age-related changes of the normal visual field. Arch. Ophthalmol. 1986, 104, 1021–1025. [Google Scholar] [CrossRef]
- Drance, S.M.; Berry, V.; Hughes, A. Studies on the effects of age on the central and peripheral isopters of the visual field in normal subjects. Am. J. Ophthalmol. 1967, 63, 1667–1672. [Google Scholar] [CrossRef]
- Spry, P.G.; Johnson, C.A. Identification of progressive glaucomatous visual field loss. Surv. Ophthalmol. 2002, 47, 158–173. [Google Scholar] [CrossRef]
- Demirel, S.; Vingrys, A.J. Eye Movements During Perimetry and the Effect that Fixational Instability Has on Perimetric Outcomes. J. Glaucoma 1994, 3, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Hirasawa, K.; Kobayashi, K.; Shibamoto, A.; Tobari, H.; Fukuda, Y.; Shoji, N. Variability in monocular and binocular fixation during standard automated perimetry. PLoS ONE 2018, 13, e0207517. [Google Scholar] [CrossRef]
- Chauhan, B.C.; Garway-Heath, D.; Goni, F.J.; Rossetti, L.; Bengtsson, B.; Viswanathan, A.C.; Heijl, A. Practical recommendations for measuring rates of visual field change in glaucoma. Br. J. Ophthalmol. 2008, 92, 569–573. [Google Scholar] [CrossRef]
- Nouri-Mahdavi, K.; Zarei, R.; Caprioli, J. Influence of visual field testing frequency on detection of glaucoma progression with trend analyses. Arch. Ophthalmol. 2011, 129, 1521–1527. [Google Scholar] [CrossRef] [Green Version]
- O’Leary, N.; Chauhan, B.C.; Artes, P.H. Visual field progression in glaucoma: Estimating the overall significance of deterioration with permutation analyses of pointwise linear regression (PoPLR). Investig. Ophthalmol. Vis. Sci. 2012, 53, 6776–6784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, H.; Crabb, D.P.; Ho, T.; Garway-Heath, D.F. More Accurate Modeling of Visual Field Progression in Glaucoma: ANSWERS. Investig. Ophthalmol. Vis. Sci. 2015, 56, 6077–6083. [Google Scholar] [CrossRef] [Green Version]
- Ishiyama, Y.; Murata, H.; Asaoka, R. The Usefulness of Gaze Tracking as an Index of Visual Field Reliability in Glaucoma Patients. Investig. Ophthalmol. Vis. Sci. 2015, 56, 6233–6236. [Google Scholar] [CrossRef] [Green Version]
- Newkirk, M.R.; Gardiner, S.K.; Demirel, S.; Johnson, C.A. Assessment of false positives with the Humphrey Field Analyzer II perimeter with the SITA Algorithm. Investig. Ophthalmol. Vis. Sci. 2006, 47, 4632–4637. [Google Scholar] [CrossRef] [PubMed]
- Montolio FG, J.; Wesselink, C.; Gordijn, M.; Jansonius, N.M. Factors that influence standard automated perimetry test results in glaucoma: Test reliability, technician experience, time of day, and season. Investig. Ophthalmol. Vis. Sci. 2012, 53, 7010–7017. [Google Scholar] [CrossRef] [PubMed]
- Ishiyama, Y.; Murata, H.; Mayama, C.; Asaoka, R. An objective evaluation of gaze tracking in Humphrey perimetry and the relation with the reproducibility of visual fields: A pilot study in glaucoma. Investig. Ophthalmol. Vis. Sci. 2014, 55, 8149–8152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bengtsson, B. Reliability of computerized perimetric threshold tests as assessed by reliability indices and threshold reproducibility in patients with suspect and manifest glaucoma. Acta Ophthalmol. Scand. 2000, 78, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Ishiyama, Y.; Murata, H.; Hirasawa, H.; Asaoka, R. Estimating the Usefulness of Humphrey Perimetry Gaze Tracking for Evaluating Structure-Function Relationship in Glaucoma. Investig. Ophthalmol. Vis. Sci. 2015, 56, 7801–7805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarita-Nistor, L.; González, E.G.; Markowitz, S.N.; Steinbach, M.J. Fixation characteristics of patients with macular degeneration recorded with the mp-1 microperimeter. Retina 2008, 28, 125–133. [Google Scholar] [CrossRef]
- Mandelcorn, M.S.; Podbielski, D.W.; Mandelcorn, E.D. Fixation stability as a goal in the treatment of macular disease. Can. J. Ophthalmol. 2013, 48, 364–367. [Google Scholar] [CrossRef]
- Beck, R.W.; Bergstrom, T.J.; Lichter, P.R. A clinical comparison of visual field testing with a new automated perimeter, the Humphrey Field Analyzer, and the Goldmann perimeter. Ophthalmology 1985, 92, 77–82. [Google Scholar] [CrossRef]
- Bengtsson, B.; Heijl, A. False-negative responses in glaucoma perimetry: Indicators of patient performance or test reliability? Investig. Ophthalmol. Vis. Sci. 2000, 41, 2201–2204. [Google Scholar] [CrossRef]
- Adams, C.W.; Bullimore, M.A.; Wall, M.; Fingeret, M.; Johnson, C. Normal aging effects for frequency doubling technology perimetry. Optom. Vis. Sci. 1999, 76, 582–587. [Google Scholar] [CrossRef]
- Springelkamp, H.; Wolfs, R.C.; Ramdas, W.D.; Hofman, A.; Vingerling, J.R.; Klaver, C.C.; Jansonius, N.M. Incidence of glaucomatous visual field loss after two decades of follow-up: The Rotterdam Study. Eur. J. Epidemiol. 2017, 32, 691–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hudson, C.; Wild, J.M.; O’Neill, E.C. Fatigue effects during a single session of automated static threshold perimetry. Investig. Ophthalmol. Vis. Sci. 1994, 35, 268–280. [Google Scholar]
- Searle, A.E.; Wild, J.M.; Shaw, D.E.; O’Neill, E.C. Time-related variation in normal automated static perimetry. Ophthalmology 1991, 98, 701–707. [Google Scholar] [CrossRef]
- Kelly, S.R.; Bryan, S.R.; Crabb, D.P. Does eye examination order for standard automated perimetry matter? Acta Ophthalmol. 2019, 97, e833–e838. [Google Scholar] [CrossRef] [PubMed]
- Barkana, Y.; Gerber, Y.; Mora, R.; Liebmann, J.M.; Ritch, R. Effect of eye testing order on automated perimetry results using the Swedish Interactive Threshold Algorithm standard 24-2. Arch. Ophthalmol. 2006, 124, 781–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabiolo, A.; Morales, E.; Kim, J.H.; Afifi, A.A.; Yu, F.; Nouri-Mahdavi, K.; Caprioli, J. Predictors of Long-Term Visual Field Fluctuation in Glaucoma Patients. Ophthalmology 2020, 127, 739–747. [Google Scholar] [CrossRef] [PubMed]
Parameters | Mean ± SD | Range |
---|---|---|
Age (years) | 65.0 ± 15.1 | 5–99 |
MD (dB) | −6.9 ± 8.1 | −34.51–20.47 |
PSD (dB) | 6.3 ± 4.6 | 1–19.78 |
FL (%) | 8.6 ± 11.7 | 0–100 |
FN (%) | 5.3 ± 8.3 | 0–100 |
FP (%) | 2.6 ± 5.0 | 0–89 |
ρ * | Age (years) | MD (dB) | PSD (dB) | FL (%) | FN (%) | FP (%) | |
---|---|---|---|---|---|---|---|
p * | |||||||
Age (years) | −0.21 | 0.17 | 0.08 | 0.20 | 0.05 | ||
MD (dB) | <0.0001 * | −0.82 | 0.06 | −0.32 | 0.12 | ||
PSD (dB) | <0.0001 * | <0.0001 * | −0.00 | 0.31 | 0.00 | ||
FL (%) | <0.0001 * | <0.0001 * | 0.7688 | 0.15 | 0.30 | ||
FN (%) | <0.0001 * | <0.0001 * | <0.0001 * | <0.0001 * | 0.10 | ||
FP (%) | <0.0001 * | <0.0001 * | 0.3553 | <0.0001 * | <0.0001 * |
Age Group (Years) | No. | Mean (%)± SD | Lower 95% CI | Upper 95% CI | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
vs. 10–19 | vs. 20–29 | vs. 30–39 | vs. 40–49 | vs. 50–59 | vs. 60–69 | vs. 70–79 | vs. 80–89 | vs. 90–99 | |||||
0–9 | 63 | 21.43 ± 17.32 | 17.07 | 25.80 | <0.0001 * | <0.0001 * | <0.0001 * | <0.0001 * | <0.0001 * | <0.0001 * | <0.0001 * | <0.0001 * | <0.0001 * |
10–19 | 624 | 9.55 ± 13.49 | 8.49 | 10.61 | <0.0001 * | <0.0001 * | 0.0977 | 0.0232 * | 0.2199 | 0.9912 | 0.9999 | 1.0000 | |
20–29 | 858 | 5.64 ± 10.13 | 4.96 | 6.32 | 0.6482 | <0.0001 * | <0.0001 * | <0.0001 * | <0.0001 * | <0.0001 * | 0.0008 * | ||
30–39 | 1340 | 6.63 ± 9.47 | 6.12 | 7.13 | 0.0071* | 0.0128 * | <0.0001 * | <0.0001 * | <0.0001 * | 0.0004 * | |||
40–49 | 3063 | 8.05 ± 12.39 | 7.61 | 8.49 | 0.9997 | 0.9868 | 0.0007 * | <0.0001 * | 0.1903 | ||||
50–59 | 6112 | 7.88 ± 11.8 | 7.59 | 8.18 | 0.3904 | <0.0001 * | <0.0001 * | 0.0889 | |||||
60–69 | 11376 | 8.31 ± 11.12 | 8.10 | 8.51 | <0.0001 * | <0.0001 * | 0.3396 | ||||||
70–79 | 12899 | 9.06 ± 11.62 | 8.86 | 9.26 | 0.0017 * | 0.9590 | |||||||
80–89 | 5749 | 9.82 ± 12.46 | 9.50 | 10.14 | 1.0000 | ||||||||
90–99 | 296 | 9.94 ± 11.78 | 8.59 | 11.28 |
Age Group (Years) | No. | Mean (%) ± SD | Lower 95% CI | Upper 95% CI | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
vs. 10–19 | vs. 20–29 | vs. 30–39 | vs. 40–49 | vs. 50–59 | vs. 60–69 | vs. 70–79 | vs. 80–89 | vs. 90–99 | |||||
0–9 | 63 | 15.07 ± 14.69 | 11.37 | 18.77 | <0.0001 * | <0.0001 * | <0.0001 * | <0.0001 * | <0.0001 * | <0.0001 * | <0.0001 * | <0.0001 * | <0.0001 * |
10–19 | 624 | 5.66 ± 9.78 | 4.89 | 6.42 | <0.0001 * | 0.0032 * | <0.0001 * | <0.0001 * | 0.0139 * | 0.8608 | <0.0001 * | 0.0006 * | |
20–29 | 837 | 3.2 ± 8.67 | 2.61 | 3.79 | 0.2796 | 0.6476 | 0.8105 | 0.0006 * | <0.0001 * | <0.0001 * | <0.0001 * | ||
30–39 | 1305 | 4.09 ± 8.42 | 3.63 | 4.55 | 0.9898 | 0.8616 | 0.8660 | <0.0001 * | <0.0001 * | <0.0001 * | |||
40–49 | 3040 | 3.81 ± 6.83 | 3.57 | 4.05 | 0.9998 | 0.0036 * | <0.0001 * | <0.0001 * | <0.0001 * | ||||
50–59 | 5997 | 3.7 ± 6.67 | 3.53 | 3.87 | <0.0001 * | <0.0001 * | <0.0001 * | <0.0001 * | |||||
60–69 | 11164 | 4.46 ± 7.41 | 4.33 | 4.60 | <0.0001 * | <0.0001 * | <0.0001 * | ||||||
70–79 | 12310 | 6.18 ± 8.87 | 6.02 | 6.34 | <0.0001 * | 0.0018 * | |||||||
80–89 | 5239 | 7.67 ± 9.43 | 7.42 | 7.93 | 0.9839 | ||||||||
90–99 | 267 | 8.24 ± 9.4 | 7.11 | 9.37 |
Age Group (Years) | No. | Mean (%) ± SD | Lower 95% CI | Upper 95% CI | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
vs. 10–19 | vs. 20–29 | vs. 30–39 | vs. 40–49 | vs. 50–59 | vs. 60–69 | vs. 70–79 | vs. 80–89 | vs. 90–99 | |||||
0–9 | 63 | 6.78 ± 14.11 | 3.23 | 10.34 | <0.0001 * | <0.0001 * | <0.0001 * | <0.0001 * | <0.0001 * | <0.0001 * | <0.0001 * | <0.0001 * | <0.0001 * |
10–19 | 635 | 3.61 ± 7.19 | 3.05 | 4.17 | <0.0001 * | 0.0106 * | 0.0389 * | 0.0004 * | <0.0001 * | <0.0001 * | <0.0001 * | 0.0223 * | |
20–29 | 860 | 2.03 ± 5.14 | 1.69 | 2.37 | 0.0342 * | 0.0002 * | 0.0096 * | 0.0180 * | 0.0641 | 0.1045 | 0.9785 | ||
30–39 | 1340 | 2.74 ± 5.46 | 2.45 | 3.03 | 0.9911 | 1.0000 | 0.9995 | 0.9687 | 0.9670 | 0.9911 | |||
40–49 | 3073 | 2.91 ± 6.03 | 2.69 | 3.12 | 0.6140 | 0.1945 | 0.0226 * | 0.0491 * | 0.8354 | ||||
50–59 | 6115 | 2.69 ± 5.11 | 2.56 | 2.82 | 0.9998 | 0.851 | 0.9027 | 0.9956 | |||||
60–69 | 11383 | 2.64 ± 5.22 | 2.54 | 2.73 | 0.9807 | 0.9892 | 0.9990 | ||||||
70–79 | 12902 | 2.57 ± 4.46 | 2.49 | 2.64 | 1.0000 | 1.0000 | |||||||
80–89 | 5751 | 2.55 ± 3.98 | 2.45 | 2.66 | 1.0000 | ||||||||
90–99 | 296 | 2.42 ± 3.49 | 2.02 | 2.81 |
Reliability Index | FL (%) | FN (%) | FP (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Parameters | R | 95% CI | p-Value | R | 95% CI | p-Value | R | 95% CI | p-Value |
Age (/years) | 0.05 | 0.03–0.06 | <0.0001 ** | 0.04 | 0.03–0.06 | <0.0001 ** | 0.00 | −0.00–0.01 | 0.4126 |
MD (/dB) | 0.16 | 0.14–0.18 | <0.0001 ** | −0.29 | −0.32–−0.29 | <0.0001 ** | 0.14 | 0.13–0.15 | <0.0001 ** |
PSD (/dB) | 0.12 | 0.08–0.16 | <0.0001 ** | 0.13 | −0.10–0.16 | <0.0001 ** | 0.14 | 0.12–0.15 | <0.0001 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shirakami, T.; Omura, T.; Fukuda, H.; Asaoka, R.; Tanito, M. Real-World Analysis of the Aging Effects on Visual Field Reliability Indices in Humans. J. Clin. Med. 2021, 10, 5775. https://doi.org/10.3390/jcm10245775
Shirakami T, Omura T, Fukuda H, Asaoka R, Tanito M. Real-World Analysis of the Aging Effects on Visual Field Reliability Indices in Humans. Journal of Clinical Medicine. 2021; 10(24):5775. https://doi.org/10.3390/jcm10245775
Chicago/Turabian StyleShirakami, Tomoki, Tetsuro Omura, Hiroki Fukuda, Ryo Asaoka, and Masaki Tanito. 2021. "Real-World Analysis of the Aging Effects on Visual Field Reliability Indices in Humans" Journal of Clinical Medicine 10, no. 24: 5775. https://doi.org/10.3390/jcm10245775
APA StyleShirakami, T., Omura, T., Fukuda, H., Asaoka, R., & Tanito, M. (2021). Real-World Analysis of the Aging Effects on Visual Field Reliability Indices in Humans. Journal of Clinical Medicine, 10(24), 5775. https://doi.org/10.3390/jcm10245775