Advances in Diagnostic Imaging for Cardiac Sarcoidosis
Abstract
:1. Introduction
2. Guidelines for the Diagnosis of CS
3. FDG-PET
3.1. Quantitative Analysis of FDG-PET Findings
3.2. The Other Tracers
4. CMR
4.1. Late Gadolinium Enhancement
4.2. Integrated PET/MRI
4.3. Regional Myocardial Function
4.4. Computed Tomography
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Drent, M.; Crouser, E.D.; Grunewald, J. Challenges of Sarcoidosis and Its Management. N. Engl. J. Med. 2021, 385, 1018–1032. [Google Scholar] [CrossRef] [PubMed]
- Statement on Sarcoidosis. Joint Statement of the American Thoracic Society (ATS), the European Respiratory Society (ERS) and the World Association of Sarcoidosis and Other Granulomatous Disorders (WASOG) Adopted by the ATS Board of Directors and by the ERS Executive Committee, February 1999. Am. J. Respir. Crit. Care Med. 1999, 160, 736–755. [Google Scholar]
- Silverman, K.J.; Hutchins, G.M.; Bulkley, B.H. Cardiac Sarcoid: A Clinicopathologic Study of 84 Unselected Patients with Systemic Sarcoidosis. Circulation 1978, 58, 1204–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oyama-Manabe, N.; Manabe, O.; Aikawa, T.; Tsuneta, S. The Role of Multimodality Imaging in Cardiac Sarcoidosis. Korean Circ. J. 2021, 51, 561–578. [Google Scholar] [CrossRef]
- Hiraga, H.; Hiroe, M.; Iwai, K. Guidelines for Diagnosis of Cardiac Sarcoidosis: Study Report on Diffuse Pulmonary Diseases; The Japanese Ministry of Health and Welfare: Tokyo, Japan, 1993; pp. 23–24. (In Japanese) [Google Scholar]
- Diagnostic Standard and Guidelines for Sarcoidosis. Jpn. J. Sarcoidosis Granulomatous Disord. 2007, 27, 89–102. (In Japanese)
- Sakamoto, N.; Michiru Sawahata, M.; Yamanouchi, Y.; Konno, S.; Shijubo, N.; Yamaguchi, T.; Nakamura, Y.; Suzuki, T.; Hagiwara, K.; Bando, M. Characteristics of patients with a diagnosis of sarcoidosis: A comparison of the 2006 and 2015 versions of diagnostic criteria for sarcoidosis in Japan. J. Rural. Med. 2021, 16, 77–82. [Google Scholar] [CrossRef]
- Terasaki, F.; Azuma, A.; Anzai, T.; Ishizaka, N.; Ishida, Y.; Isobe, M.; Inomata, T.; Ishibashi-Ueda, H.; Eishi, Y.; Kitakaze, M.; et al. JCS 2016 Guideline on Diagnosis and Treatment of Cardiac Sarcoidosis—Digest Version. Circ. J. Off. J. Jpn. Circ. Soc. 2019, 83, 2329–2388. [Google Scholar] [CrossRef] [Green Version]
- Birnie, D.H.; Sauer, W.H.; Bogun, F.; Cooper, J.M.; Culver, D.A.; Duvernoy, C.S.; Judson, M.A.; Kron, J.; Mehta, D.; Cosedis Nielsen, J.; et al. HRS Expert Consensus Statement on the Diagnosis and Management of Arrhythmias Associated with Cardiac Sarcoidosis. Heart Rhythm 2014, 11, 1305–1323. [Google Scholar] [CrossRef]
- Ardehali, H.; Howard, D.L.; Hariri, A.; Qasim, A.; Hare, J.M.; Baughman, K.L.; Kasper, E.K. A Positive Endomyocardial Biopsy Result for Sarcoid Is Associated with Poor Prognosis in Patients with Initially Unexplained Cardiomyopathy. Am. Heart J. 2005, 150, 459–463. [Google Scholar] [CrossRef]
- Aikawa, T.; Oyama-Manabe, N.; Naya, M.; Ohira, H.; Sugimoto, A.; Tsujino, I.; Obara, M.; Manabe, O.; Kudo, K.; Tsutsui, H.; et al. Delayed Contrast-Enhanced Computed Tomography in Patients with Known or Suspected Cardiac Sarcoidosis: A Feasibility Study. Eur. Radiol. 2017, 27, 4054–4063. [Google Scholar] [CrossRef]
- Ohira, H.; Birnie, D.H.; Pena, E.; Bernick, J.; Mc Ardle, B.; Leung, E.; Wells, G.A.; Yoshinaga, K.; Tsujino, I.; Sato, T.; et al. Comparison of 18F-Fluorodeoxyglucose Positron Emission Tomography (FDG PET) and Cardiac Magnetic Resonance (CMR) in Corticosteroid-Naive Patients with Conduction System Disease due to Cardiac Sarcoidosis. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Kumita, S.; Yoshinaga, K.; Miyagawa, M.; Momose, M.; Kiso, K.; Kasai, T.; Naya, M. Recommendations for 18F-fluorodeoxyglucose Positron Emission Tomography Imaging for Diagnosis of Cardiac sarcoidosis-2018 Update: Japanese Society of Nuclear Cardiology Recommendations. J. Nucl. Cardiol. Off. Publ. Am. Soc. Nucl. Cardiol. 2019, 26, 1414–1433. [Google Scholar] [CrossRef]
- Lu, Y.; Sweiss, N.J.; Macapinlac, H.A. What Is the Optimal Method on Myocardial Suppression in FDG PET/CT Evaluation of Cardiac Sarcoidosis? Clin. Nucl. Med. 2021, 46, 904–905. [Google Scholar] [CrossRef]
- Lu, Y.; Grant, C.; Xie, K.; Sweiss, N.J. Suppression of Myocardial 18F-FDG Uptake through Prolonged High-Fat, High-Protein, and Very-Low-Carbohydrate Diet before FDG-PET/CT for Evaluation of Patients with Suspected Cardiac Sarcoidosis. Clin. Nucl. Med. 2017, 42, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Manabe, O.; Kroenke, M.; Aikawa, T.; Murayama, A.; Naya, M.; Masuda, A.; Oyama-Manabe, N.; Hirata, K.; Watanabe, S.; Shiga, T.; et al. Volume-based glucose metabolic analysis of FDG PET/CT: The optimum threshold and conditions to suppress physiological myocardial uptake. J. Nucl. Cardiol. 2019, 26, 909–918. [Google Scholar] [CrossRef]
- Manabe, O.; Yoshinaga, K.; Ohira, H.; Masuda, A.; Sato, T.; Tsujino, I.; Yamada, A.; Oyama-Manabe, N.; Hirata, K.; Nishimura, M.; et al. The Effects of 18-h Fasting with Low-Carbohydrate Diet Preparation on Suppressed Physiological Myocardial 18F-Fluorodeoxyglucose (FDG) Uptake and Possible Minimal Effects of Unfractionated Heparin Use in Patients with Suspected Cardiac Involvement Sarcoidosis. J. Nucl. Cardiol. 2016, 23, 244–252. [Google Scholar]
- Baughman, R.P.; Valeyre, D.; Korsten, P.; Mathioudakis, A.G.; Wuyts, W.A.; Wells, A.; Rottoli, P.; Nunes, H.; Lower, E.E.; Judson, M.A.; et al. ERS clinical practice guidelines on treatment of sarcoidosis. Eur. Respir. J. 2021, 58, 2004079. [Google Scholar] [CrossRef] [PubMed]
- Ohira, H.; Ardle, B.M.; deKemp, R.A.; Nery, P.; Juneau, D.; Renaud, J.M.; Klein, R.; Clarkin, O.; MacDonald, K.; Leung, E.; et al. Inter- and Intraobserver Agreement of 18F-FDG PET/CT Image Interpretation in Patients Referred for Assessment of Cardiac Sarcoidosis. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2017, 58, 1324–1329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.J.; Pak, K.; Kim, K. Diagnostic Performance of F-18 FDG PET for Detection of Cardiac Sarcoidosis; A Systematic Review and Meta-Analysis. J. Nucl. Cardiol. 2020, 27, 2103–2115. [Google Scholar] [CrossRef]
- Blankstein, R.; Osborne, M.; Naya, M.; Waller, A.; Kim, C.K.; Murthy, V.L.; Kazemian, P.; Kwong, R.Y.; Tokuda, M.; Skali, H.; et al. Cardiac Positron Emission Tomography Enhances Prognostic Assessments of Patients with Suspected Cardiac Sarcoidosis. J. Am. Coll. Cardiol. 2014, 63, 329–336. [Google Scholar] [CrossRef] [Green Version]
- Manabe, O.; Yoshinaga, K.; Ohira, H.; Sato, T.; Tsujino, I.; Yamada, A.; Oyama-Manabe, N.; Masuda, A.; Magota, K.; Nishimura, M.; et al. Right Ventricular 18F-FDG Uptake Is an Important Indicator for Cardiac Involvement in Patients with Suspected Cardiac Sarcoidosis. Ann. Nucl. Med. 2014, 28, 656–663. [Google Scholar] [CrossRef] [PubMed]
- Omote, K.; Naya, M.; Koyanagawa, K.; Aikawa, T.; Manabe, O.; Nagai, T.; Kamiya, K.; Kato, Y.; Komoriyama, H.; Kuzume, M.; et al. 18F-FDG Uptake of the Right Ventricle Is an Important Predictor of Histopathologic Diagnosis by Endomyocardial Biopsy in Patients with Cardiac Sarcoidosis. J. Nucl. Cardiol. Off. Publ. Am. Soc. Nucl. Cardiol. 2020, 27, 2135–2143. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, R.; Miyagawa, M.; Okayama, H.; Inoue, T.; Miki, H.; Ogimoto, A.; Higaki, J.; Mochizuki, T. Quantitative Analysis of Myocardial 18F-fluorodeoxyglucose Uptake by PET/CT for Detection of Cardiac Sarcoidosis. Int. J. Cardiol. 2015, 195, 180–187. [Google Scholar] [CrossRef]
- Subramanian, M.; Swapna, N.; Ali, A.Z.; Saggu, D.K.; Yalagudri, S.; Kishore, J.; Swamy, L.T.N.; Narasimhan, C. Pre-Treatment Myocardial 18FDG Uptake Predicts Response to Immunosuppression in Patients with Cardiac Sarcoidosis. J. Am. Coll. Cardiol. Imaging 2021, 14, 2008–2016. [Google Scholar] [CrossRef] [PubMed]
- Ahmadian, A.; Brogan, A.; Berman, J.; Sverdlov, A.L.; Mercier, G.; Mazzini, M.; Govender, P.; Ruberg, F.L.; Miller, E.J. Quantitative Interpretation of FDG PET/CT with Myocardial Perfusion Imaging Increases Diagnostic Information in the Evaluation of Cardiac Sarcoidosis. J. Nucl. Cardiol. 2014, 21, 925–939. [Google Scholar] [CrossRef]
- Osborne, M.T.; Hulten, E.A.; Singh, A.; Waller, A.H.; Bittencourt, M.S.; Stewart, G.C.; Hainer, J.; Murthy, V.L.; Skali, H.; Dorbala, S.; et al. Reduction in 18F-fluorodeoxyglucose Uptake on Serial Cardiac Positron Emission Tomography Is Associated with Improved Left Ventricular Ejection Fraction in Patients with Cardiac Sarcoidosis. J. Nucl. Cardiol. Off. Publ. Am. Soc. Nucl. Cardiol. 2014, 21, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Tahara, N.; Tahara, A.; Nitta, Y.; Kodama, N.; Mizoguchi, M.; Kaida, H.; Baba, K.; Ishibashi, M.; Hayabuchi, N.; Narula, J.; et al. Heterogeneous Myocardial FDG Uptake and the Disease Activity in Cardiac Sarcoidosis. JACC Cardiovasc. Imaging 2010, 3, 1219–1228. [Google Scholar] [CrossRef] [Green Version]
- Sperry, B.W.; Tamarappoo, B.K.; Oldan, J.D.; Javed, O.; Culver, D.A.; Brunken, R.; Cerqueira, M.D.; Hachamovitch, R. Prognostic Impact of Extent, Severity, and Heterogeneity of Abnormalities on 18F-FDG PET Scans for Suspected Cardiac Sarcoidosis. J. Am. Coll. Cardiol. Imaging 2018, 11, 336–345. [Google Scholar] [CrossRef]
- Schildt, J.V.; Loimaala, A.J.; Hippeläinen, E.T.; Ahonen, A.A. Heterogeneity of Myocardial 2-[18F]Fluoro-2-Deoxy-D-Glucose Uptake Is a Typical Feature in Cardiac Sarcoidosis: A Study of 231 Patients. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 293–298. [Google Scholar] [CrossRef]
- Manabe, O.; Koyanagawa, K.; Hirata, K.; Oyama-Manabe, N.; Ohira, H.; Aikawa, T.; Furuya, S.; Naya, M.; Tsujino, I.; Tomiyama, Y.; et al. Prognostic Value of 18F-FDG PET Using Texture Analysis in Cardiac Sarcoidosis. J. Am. Coll. Cardiol. Imaging 2020, 13, 1096–1097. [Google Scholar] [CrossRef]
- Manabe, O.; Ohira, H.; Hirata, K.; Hayashi, S.; Naya, M.; Tsujino, I.; Aikawa, T.; Koyanagawa, K.; Oyama-Manabe, N.; Tomiyama, Y.; et al. Use of 18F-FDG PET/CT Texture Analysis to Diagnose Cardiac Sarcoidosis. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1240–1247. [Google Scholar] [CrossRef] [PubMed]
- Manabe, O.; Oyama-Manabe, N.; Nagai, T.; Furuya, S.; Anzai, T. Detailed Visualization of the Right and Left Ventricular, Left Atrial, and Epicardial Involvement of Cardiac Sarcoidosis with Novel Semiconductor PET/CT. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 1773–1774. [Google Scholar] [CrossRef]
- Manabe, O.; Naya, M.; Aikawa, T.; Tamaki, N. Recent Advances in Cardiac Positron Emission Tomography for Quantitative Perfusion Analyses and Molecular Imaging. Ann. Nucl. Med. 2020, 34, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Ten Bokum, A.M.; Hofland, L.J.; de Jong, G.; Bouma, J.; Melief, M.J.; Kwekkeboom, D.J.; Schonbrunn, A.; Mooy, C.M.; Laman, J.D.; Lamberts, S.W.; et al. Immunohistochemical Localization of Somatostatin Receptor sst2A in Sarcoid Granulomas. Eur. J. Clin. Investig. 1999, 29, 630–636. [Google Scholar] [CrossRef] [PubMed]
- Nobashi, T.; Nakamoto, Y.; Kubo, T.; Ishimori, T.; Handa, T.; Tanizawa, K.; Sano, K.; Mishima, M.; Togashi, K. The Utility of PET/CT with 68Ga-DOTATOC in Sarcoidosis: Comparison with 67Ga-Scintigraphy. Ann. Nucl. Med. 2016, 30, 544–552. [Google Scholar] [CrossRef]
- Lapa, C.; Reiter, T.; Kircher, M.; Schirbel, A.; Werner, R.A.; Pelzer, T.; Pizarro, C.; Skowasch, D.; Thomas, L.; Schlesinger-Irsch, U.; et al. Somatostatin Receptor Based PET/CT in Patients with the Suspicion of Cardiac Sarcoidosis: An Initial Comparison to Cardiac MRI. Oncotarget 2016, 7, 77807–77814. [Google Scholar] [CrossRef] [PubMed]
- Manabe, O.; Hirata, K.; Shozo, O.; Shiga, T.; Uchiyama, Y.; Kobayashi, K.; Watanabe, S.; Toyonaga, T.; Kikuchi, H.; Oyama-Manabe, N.; et al. 18F-fluoromisonidazole (FMISO) PET May Have the Potential to Detect Cardiac Sarcoidosis. J. Nucl. Cardiol. Off. Publ. Am. Soc. Nucl. Cardiol. 2017, 24, 329–331. [Google Scholar] [CrossRef] [PubMed]
- Furuya, S.; Naya, M.; Manabe, O.; Hirata, K.; Ohira, H.; Aikawa, T.; Koyanagawa, K.; Magota, K.; Tsujino, I.; Anzai, T.; et al. 18F-FMISO PET/CT Detects Hypoxic Lesions of Cardiac and Extra-Cardiac Involvement in Patients with Sarcoidosis. J. Nucl. Cardiol. Off. Publ. Am. Soc. Nucl. Cardiol. 2021, 28, 2141–2148. [Google Scholar] [CrossRef]
- Norikane, T.; Yamamoto, Y.; Maeda, Y.; Noma, T.; Dobashi, H.; Nishiyama, Y. Comparative Evaluation of 18F-FLT and 18F-FDG for Detecting Cardiac and Extra-Cardiac Thoracic Involvement in Patients with Newly Diagnosed Sarcoidosis. EJNMMI Res. 2017, 7, 69. [Google Scholar] [CrossRef]
- Martineau, P.; Pelletier-Galarneau, M.; Juneau, D.; Leung, E.; Nery, P.B.; de Kemp, R.; Beanlands, R.; Birnie, D. Imaging Cardiac Sarcoidosis with FLT-PET Compared with FDG/Perfusion-PET: A Prospective Pilot Study. JACC Cardiovasc. Imaging 2019, 12, 2280–2281. [Google Scholar] [CrossRef]
- Levin, B.; Baughman, R.P.; Sweiss, N.J. Detection of early phenotype cardiac sarcoidosis by cardiovascular magnetic resonance. Curr. Opin. Pulm. Med. 2021, 27, 478–483. [Google Scholar] [CrossRef]
- Patel, M.R.; Cawley, P.J.; Heitner, J.F.; Klem, I.; Parker, M.A.; Jaroudi, W.A.; Meine, T.J.; White, J.B.; Elliott, M.D.; Kim, H.W.; et al. Detection of Myocardial Damage in Patients with Sarcoidosis. Circulation 2009, 120, 1969–1977. [Google Scholar] [CrossRef] [Green Version]
- Okasha, O.; Kazmirczak, F.; Chen, K.A.; Farzaneh-Far, A.; Shenoy, C. Myocardial Involvement in Patients with Histologically Diagnosed Cardiac Sarcoidosis: A Systematic Review and Meta-Analysis of Gross Pathological Images from Autopsy or Cardiac Transplantation Cases. J. Am. Heart Assoc. 2019, 8, e011253. [Google Scholar] [CrossRef]
- Hulten, E.; Agarwal, V.; Cahill, M.; Cole, G.; Vita, T.; Parrish, S.; Bittencourt, M.S.; Murthy, V.L.; Kwong, R.; Di Carli, M.F.; et al. Presence of Late Gadolinium Enhancement by Cardiac Magnetic Resonance Among Patients with Suspected Cardiac Sarcoidosis Is Associated with Adverse Cardiovascular Prognosis: A Systematic Review and Meta-Analysis. Circ. Cardiovasc. Imaging 2016, 9, e005001. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, Y.; Xu, Q.; Xu, B.; Wang, H. Cardiac Magnetic Resonance Imaging for Diagnosis of Cardiac Sarcoidosis: A Meta-Analysis. Can. Respir. J. 2018, 2018, 7457369. [Google Scholar] [CrossRef] [PubMed]
- Blankstein, R.; Waller, A.H. Evaluation of Known or Suspected Cardiac Sarcoidosis. Circ. Cardiovasc. Imaging 2016, 9, e000867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greulich, S.; Deluigi, C.C.; Gloekler, S.; Wahl, A.; Zürn, C.; Kramer, U.; Nothnagel, D.; Bültel, H.; Schumm, J.; Grün, S.; et al. CMR Imaging Predicts Death and Other Adverse Events in Suspected Cardiac Sarcoidosis. JACC Cardiovasc. Imaging 2013, 6, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Coleman, G.C.; Shaw, P.W.; Balfour, P.C., Jr.; Gonzalez, J.A.; Kramer, C.M.; Patel, A.R.; Salerno, M. Prognostic Value of Myocardial Scarring on CMR in Patients with Cardiac Sarcoidosis. JACC Cardiovasc. Imaging 2017, 10, 411–420. [Google Scholar] [CrossRef]
- Ise, T.; Hasegawa, T.; Morita, Y.; Yamada, N.; Funada, A.; Takahama, H.; Amaki, M.; Kanzaki, H.; Okamura, H.; Kamakura, S.; et al. Extensive Late Gadolinium Enhancement on Cardiovascular Magnetic Resonance Predicts Adverse Outcomes and Lack of Improvement in LV Function After Steroid Therapy in Cardiac Sarcoidosis. Heart 2014, 100, 1165–1172. [Google Scholar] [CrossRef]
- Kazmirczak, F.; Chen, K.A.; Adabag, S.; von Wald, L.; Roukoz, H.; Benditt, D.G.; Okasha, O.; Farzaneh-Far, A.; Markowitz, J.; Nijjar, P.S.; et al. Assessment of the 2017 AHA/ACC/HRS Guideline Recommendations for Implantable Cardioverter-Defibrillator Implantation in Cardiac Sarcoidosis. Circ. Arrhythm. Electrophysiol. 2019, 12, e007488. [Google Scholar] [CrossRef]
- Mirakhur, A.; Anca, N.; Mikami, Y.; Merchant, N. T2-Weighted Imaging of the Heart--A Pictorial Review. Eur. J. Radiol. 2013, 82, 1755–1762. [Google Scholar] [CrossRef]
- Tonegawa-Kuji, R.; Oyama-Manabe, N.; Aoki, R.; Nagayoshi, S.; Pawhay, C.M.H.; Kusano, K.; Nakajima, T. T2-Weighted Short-Tau-Inversion-Recovery Imaging Reflects Disease Activity of Cardiac Sarcoidosis. Open Heart 2021, 8, e001728. [Google Scholar] [CrossRef]
- Puntmann, V.O.; Isted, A.; Hinojar, R.; Foote, L.; Carr-White, G.; Nagel, E. T1 and T2 Mapping in Recognition of Early Cardiac Involvement in Systemic Sarcoidosis. Radiology 2017, 285, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Dabir, D.; Luetkens, J.; Kuetting, D.; Nadal, J.; Schild, H.H.; Thomas, D. Myocardial Mapping in Systemic Sarcoidosis: A Comparison of Two Measurement Approaches. Rofo 2021, 193, 68–76. [Google Scholar] [CrossRef]
- Manabe, O.; Oyama-Manabe, N.; Tamaki, N. Positron Emission Tomography/MRI for Cardiac Diseases Assessment. Br. J. Radiol. 2020, 93, 20190836. [Google Scholar] [CrossRef]
- Dweck, M.R.; Abgral, R.; Trivieri, M.G.; Robson, P.M.; Karakatsanis, N.; Mani, V.; Palmisano, A.; Miller, M.A.; Lala, A.; Chang, H.L.; et al. Hybrid Magnetic Resonance Imaging and Positron Emission Tomography with Fluorodeoxyglucose to Diagnose Active Cardiac Sarcoidosis. JACC Cardiovasc. Imaging 2018, 11, 94–107. [Google Scholar] [CrossRef]
- Wisenberg, G.; Thiessen, J.D.; Pavlovsky, W.; Butler, J.; Wilk, B.; Prato, F.S. Same Day Comparison of PET/CT and PET/MR in Patients with Cardiac Sarcoidosis. J. Nucl. Cardiol. 2020, 27, 2118–2129. [Google Scholar] [CrossRef]
- Wicks, E.C.; Menezes, L.J.; Barnes, A.; Mohiddin, S.A.; Sekhri, N.; Porter, J.C.; Booth, H.L.; Garrett, E.; Patel, R.S.; Pavlou, M.; et al. Diagnostic Accuracy and Prognostic Value of Simultaneous Hybrid 18F-fluorodeoxyglucose Positron Emission Tomography/Magnetic Resonance Imaging in Cardiac Sarcoidosis. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 757–767. [Google Scholar] [CrossRef]
- Greulich, S.; Gatidis, S.; Gräni, C.; Blankstein, R.; Glatthaar, A.; Mezger, K.; Müller, K.A.L.; Castor, T.; Mahrholdt, H.; Häntschel, M.; et al. Hybrid Cardiac Magnetic Resonance/Fluorodeoxyglucose Positron Emission Tomography to Differentiate Active from Chronic Cardiac Sarcoidosis. JACC Cardiovasc. Imaging 2021, in press. [Google Scholar] [CrossRef] [PubMed]
- Tavora, F.; Cresswell, N.; Li, L.; Ripple, M.; Solomon, C.; Burke, A. Comparison of Necropsy Findings in Patients with Sarcoidosis Dying Suddenly from Cardiac Sarcoidosis Versus Dying Suddenly from Other Causes. Am. J. Cardiol. 2009, 104, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Barssoum, K.; Altibi, A.M.; Rai, D.; Kumar, A.; Kharsa, A.; Chowdhury, M.; Thakkar, S.; Shahid, S.; Abdelazeem, M.; Abuzaid, A.S.; et al. Speckle Tracking Echocardiography Can Predict Subclinical Myocardial Involvement in Patients with Sarcoidosis: A Meta-Analysis. Echocardiography 2020, 37, 2061–2070. [Google Scholar] [CrossRef] [PubMed]
- Nakano, S.; Kimura, F.; Osman, N.; Sugi, K.; Tanno, J.; Uchida, Y.; Shiono, A.; Senbonmatsu, T.; Nishimura, S. Improved Myocardial Strain Measured by Strain-Encoded Magnetic Resonance Imaging in a Patient with Cardiac Sarcoidosis. Can. J. Cardiol. 2013, 29, 1531.e9–1531.e11. [Google Scholar] [CrossRef]
- Dabir, D.; Meyer, D.; Kuetting, D.; Luetkens, J.; Homsi, R.; Pizarro, C.; Nadal, J.; Thomas, D. Diagnostic Value of Cardiac Magnetic Resonance Strain Analysis for Detection of Cardiac Sarcoidosis. Rofo 2018, 190, 712–721. [Google Scholar] [CrossRef] [Green Version]
- Velangi, P.S.; Chen, K.A.; Kazmirczak, F.; Okasha, O.; von Wald, L.; Roukoz, H.; Farzaneh-Far, A.; Markowitz, J.; Nijjar, P.S.; Bhargava, M.; et al. Right Ventricular Abnormalities on Cardiovascular Magnetic Resonance Imaging in Patients with Sarcoidosis. JACC Cardiovasc. Imaging 2020, 13, 1395–1405. [Google Scholar] [CrossRef] [PubMed]
- Elwazir, M.Y.; Bird, J.G.; Abouezzeddine, O.F.; Chareonthaitawee, P.; Blauwet, L.A.; Collins, J.D.; Gibbons, R.J.; Rodriguez-Porcel, M.; Kamal, H.M.; Abdellah, A.T.; et al. Performance of Cardiac PET/CT with and without Phase Analysis for Detection of Scar in Cardiac Sarcoidosis: Comparison to Cardiac Magnetic Resonance Imaging. J. Nucl. Cardiol. 2021, in press. [Google Scholar] [CrossRef]
- Koyanagawa, K.; Naya, M.; Aikawa, T.; Manabe, O.; Kuzume, M.; Ohira, H.; Tsujino, I.; Tamaki, N.; Anzai, T. Prognostic Value of Phase Analysis on Gated Single Photon Emission Computed Tomography in Patients with Cardiac Sarcoidosis. J. Nucl. Cardiol. 2021, 28, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Gerber, B.L.; Belge, B.; Legros, G.J.; Lim, P.; Poncelet, A.; Pasquet, A.; Gisellu, G.; Coche, E.; Vanoverschelde, J.L. Characterization of Acute and Chronic Myocardial Infarcts by Multidetector Computed Tomography: Comparison with Contrast-Enhanced Magnetic Resonance. Circulation 2006, 113, 823–833. [Google Scholar] [CrossRef] [Green Version]
- Aikawa, T.; Koyanagawa, K.; Oyama-Manabe, N.; Anzai, T. Cardiac Sarcoidosis Mimicking Myocardial Infarction: A Comprehensive Evaluation Using Computed Tomography and Positron Emission Tomography. J. Nucl. Cardiol. 2020, 27, 1066–1067. [Google Scholar] [CrossRef]
- Nieman, K.; Shapiro, M.D.; Ferencik, M.; Nomura, C.H.; Abbara, S.; Hoffmann, U.; Gold, H.K.; Jang, I.K.; Brady, T.J.; Cury, R.C. Reperfused Myocardial Infarction: Contrast-Enhanced 64-Section CT in Comparison to MR Imaging. Radiology 2008, 247, 49–56. [Google Scholar] [CrossRef]
- Ohta, Y.; Kitao, S.; Yunaga, H.; Fujii, S.; Mukai, N.; Yamamoto, K.; Ogawa, T. Myocardial Delayed Enhancement CT for the Evaluation of Heart Failure: Comparison to MRI. Radiology 2018, 288, 682–691. [Google Scholar] [CrossRef] [Green Version]
- Tsuneta, S.; Oyama-Manabe, N.; Hirata, K.; Harada, T.; Aikawa, T.; Manabe, O.; Ohira, H.; Koyanagawa, K.; Naya, M.; Kudo, K. Texture Analysis of Delayed Contrast-Enhanced Computed Tomography to Diagnose Cardiac Sarcoidosis. Jpn. J. Radiol. 2021, 39, 442–450. [Google Scholar] [CrossRef] [PubMed]
1. Histological diagnosis group Cardiac sarcoidosis is confirmed when endomyocardial biopsy specimens demonstrate noncaseating epithelioid cell granulomas with a histological or clinical diagnosis of extracardiac sarcoidosis. 2. Clinical diagnosis group Cardiac sarcoidosis is confirmed when, despite the absence of noncaseating epithelioid cell granulomas on endomyocardial biopsy specimens, extracardiac sarcoidosis is diagnosed histologically or clinically and the following conditions and the following diagnostic criteria are satisfied: (a) Two or more of the five major criteria are met; OR (b) One of the five major criteria and two or more of the three minor criteria are met. Major criteria (1) Advanced atrioventricular block or sustained ventricular tachycardia. (2) Basal thinning of the interventricular septum or morphological abnormality (aneurysm, wall thinning, or wall thickening). (3) Depressed ejection fraction (<50%) or regional wall motion abnormality. (4) Abnormal uptake of 67Ga or 18F-fluorodeoxyglucose in the heart. (5) Delayed gadolinium enhancement on cardiac magnetic resonance. Minor criteria (1) Abnormal electrocardiographic findings: ventricular arrhythmias (non-sustained ventricular tachycardia or multifocal or frequent premature ventricular contractions), bundle branch block, axis deviation, or abnormal Q-waves. (2) Perfusion defects on nuclear imaging. (3) Endomyocardial biopsy: interstitial fibrosis or monocyte infiltration of moderate grade. |
1. Histologic diagnosis Noncaseating granulomas on endomyocardial biopsy without an alternative cause 2. Clinical diagnosis (a) Histologic diagnosis of extracardiac sarcoidosis; and (b) The presence of one of the following findings: (1) Steroid-responsive cardiomyopathy or heart block. (2) Unexplained LVEF < 40%. (3) Unexplained sustained VT. (4) Advanced heart block. (5) Patchy uptake on cardiac PET. (6) Late gadolinium enhancement (LGE) on CMR. (7) Positive 67Ga uptake. and (c) Other causes for the cardiac manifestation(s) have been excluded. |
Advantages | Disadvantages | |
---|---|---|
PET | Active lesion Whole-body imaging possible Assesses response to therapy Safely performed in patients with advanced renal dysfunction Intracardiac devices | Radiation exposure Lower spatial resolution Long acquisition time Need for specialized patient preparation Nondiagnostic scans due to physiological uptake More expensive |
MRI | High spatial resolution Excellent soft-tissue contrast Non-ionizing radiation Detects morphological abnormalities including ventricular wall thinning A lower number of nondiagnostic scans No need for specialized patient preparation | Long acquisition time Limited by the incompatible cardiac devices With risk from gadolinium contrast in patients with advanced renal dysfunction |
Drink | Sugar-free drinking water such as tap water, mineral water, and tea, etc. |
Vegetables | Low-carbohydrate vegetables such as broccoli, cabbage, cucumber, green pepper, lettuce, spinach, etc. |
Low-carbohydrate food | Butter (without sugar), cheese, egg, fish, meat, tofu, etc. |
Seasoning | Sugar-free seasoning, such as mayonnaise, olive oil, pepper, salad oil, etc. |
PET Tracer | Reference | Gold Standard | Active CS/Total Number | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|
DOTATOC | Lapa, C [33] | CMR | 10/15 | 70.0 | 100.0 |
FMISO | Furuya, S [35] | FDG-PET | 8/9 | 77.8 | 100.0 |
FLT | Norikane, T [36] | FDG-PET | 13/20 | 92.3 | 100.0 |
Martineau, P [37] | FDG-PET | 7/14 | 85.7 | 100.0 |
Modality | Authors | Findings |
---|---|---|
FDG-PET | Blankstein et al. [21] | Abnormal uptake and focal perfusion defects RV FDG uptake |
Ahmadian et al. [26] | CMA | |
Sperry, B.W. et al. [29] Schildt, J.V. et al. [30] | Heterogeneity of myocardial FDG uptake | |
Manabe, O. et al. [31] | Texture parameter | |
CMR | Greulich, S. et al. [48] Coleman, G.C. et al. [49] | Presence of LGE |
Ise, T. et al. [50] Kazmirczak, F. et al. [51] | Extent of LGE | |
Dabir, D. et al. [64] | Global longitudinal strain | |
Velangi, P.S. et al. [65] | RV systolic dysfunction |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manabe, O.; Oyama-Manabe, N.; Aikawa, T.; Tsuneta, S.; Tamaki, N. Advances in Diagnostic Imaging for Cardiac Sarcoidosis. J. Clin. Med. 2021, 10, 5808. https://doi.org/10.3390/jcm10245808
Manabe O, Oyama-Manabe N, Aikawa T, Tsuneta S, Tamaki N. Advances in Diagnostic Imaging for Cardiac Sarcoidosis. Journal of Clinical Medicine. 2021; 10(24):5808. https://doi.org/10.3390/jcm10245808
Chicago/Turabian StyleManabe, Osamu, Noriko Oyama-Manabe, Tadao Aikawa, Satonori Tsuneta, and Nagara Tamaki. 2021. "Advances in Diagnostic Imaging for Cardiac Sarcoidosis" Journal of Clinical Medicine 10, no. 24: 5808. https://doi.org/10.3390/jcm10245808
APA StyleManabe, O., Oyama-Manabe, N., Aikawa, T., Tsuneta, S., & Tamaki, N. (2021). Advances in Diagnostic Imaging for Cardiac Sarcoidosis. Journal of Clinical Medicine, 10(24), 5808. https://doi.org/10.3390/jcm10245808