Fasting Glucose Variability as a Risk Indicator for End-Stage Kidney Disease in Patients with Diabetes: A Nationwide Population-Based Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects
2.2. Anthropometric and Laboratory Measurements
2.3. Definition of Glucose Variability
2.4. Operational Definition of Diseases
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Significant Findings of the Present Study
4.2. Kidney Outcomes and Long-Term Glucose Variability
4.3. Interpretation for the Impact of Glucose Variability
4.4. Parameters for Estimating Glycemic Variability
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saran, R.; Li, Y.; Robinson, B.; Ayanian, J.; Balkrishnan, R.; Bragg-Gresham, J.; Chen, J.T.; Cope, E.; Gipson, D.; He, K.; et al. US Renal Data System 2014 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am. J. Kidney Dis. 2015, 66, S1–S305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group. KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2020, 98, S1–S115. [Google Scholar] [CrossRef] [PubMed]
- De Bhailís, Á.M.; Azmi, S.; Kalra, P.A. Diabetic kidney disease: Update on clinical management and non-glycaemic effects of newer medications for type 2 diabetes. Ther. Adv. Endocrinol. Metab. 2021, 12, 20420188211020664. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.K.; Han, K.; Kim, H.S.; Park, Y.M.; Kwon, H.S.; Yoon, K.H.; Lee, S.H. Effects of Variability in Blood Pressure, Glucose, and Cholesterol Concentrations, and Body Mass Index on End-Stage Renal Disease in the General Population of Korea. J. Clin. Med. 2019, 8, 755. [Google Scholar] [CrossRef] [Green Version]
- Kwon, S.; Lee, S.R.; Choi, E.K.; Lee, S.H.; Han, K.D.; Lee, S.Y.; Yang, S.; Park, J.; Choi, Y.J.; Lee, H.J.; et al. Visit-to-visit variability of metabolic parameters and risk of heart failure: A nationwide population-based study. Int. J. Cardiol. 2019, 293, 153–158. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kim, M.K.; Rhee, E.-J. Effects of Cardiovascular Risk Factor Variability on Health Outcomes. Endocrinol. Metab. 2020, 35, 217–226. [Google Scholar] [CrossRef]
- Zhou, J.J.; Schwenke, D.C.; Bahn, G.; Reaven, P. Glycemic variation and cardiovascular risk in the Veterans Affairs Diabetes trial. Diabetes Care 2018, 41, 2187–2194. [Google Scholar] [CrossRef] [Green Version]
- Hirakawa, Y.; Arima, H.; Zoungas, S.; Ninomiya, T.; Cooper, M.; Hamet, P.; Mancia, G.; Poulter, N.; Harrap, S.; Woodward, M.; et al. Impact of visit-to-visit glycemic variability on the risks of macrovascular and microvascular events and all-cause mortality in type 2 diabetes: The ADVANCE trial. Diabetes Care 2014, 37, 2359–2365. [Google Scholar] [CrossRef] [Green Version]
- Yokota, S.; Tanaka, H.; Mochizuki, Y.; Soga, F.; Yamashita, K.; Tanaka, Y.; Shono, A.; Suzuki, M.; Sumimoto, K.; Mukai, J.; et al. Association of glycemic variability with left ventricular diastolic function in type 2 diabetes mellitus. Cardiovasc. Diabetol. 2019, 18, 166. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, L.; Moniz, A.C.; Carneiro, A.S.; Miranda, A.S.; Fangueiro, C.; Fernandes, D.; Silva, I.; Palhinhas, I.; Lemos, J.; Antunes, J.; et al. The impact of glycemic variability on length of stay and mortality in diabetic patients admitted with community-acquired pneumonia or chronic obstructive pulmonary disease. Diabetes Metab. Syndr. 2019, 13, 149–153. [Google Scholar] [CrossRef]
- Lee, D.Y.; Han, K.; Yu, J.H.; Park, S.; Heo, J.I.; Seo, J.A.; Kim, N.H.; Yoo, H.J.; Kim, S.G.; Kim, S.M.; et al. Gamma-glutamyl transferase variability can predict the development of end-stage of renal disease: A nationwide population-based study. Sci. Rep. 2020, 10, 11668. [Google Scholar] [CrossRef]
- Yang, C.Y.; Su, P.F.; Hung, J.Y.; Ou, H.T.; Kuo, S. Comparative predictive ability of visit-to-visit HbA1c variability measures for microvascular disease risk in type 2 diabetes. Cardiovasc. Diabetol. 2020, 19, 105. [Google Scholar] [CrossRef]
- Chiu, W.C.; Lai, Y.R.; Cheng, B.C.; Huang, C.C.; Chen, J.F.; Lu, C.H. HbA1C Variability Is Strongly Associated with Development of Macroalbuminuria in Normal or Microalbuminuria in Patients with Type 2 Diabetes Mellitus: A Six-Year Follow-Up Study. BioMed Res. Int. 2020, 2020, 7462158. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.L.; Chen, C.H.; Wu, M.J.; Tsai, S.F. The variability of glycated hemoglobin is associated with renal function decline in patients with type 2 diabetes. Ther. Adv. Chronic. Dis. 2020, 11, 2040622319898370. [Google Scholar] [CrossRef] [Green Version]
- Penno, G.; Solini, A.; Bonora, E.; Fondelli, C.; Orsi, E.; Zerbini, G.; Morano, S.; Cavalot, F.; Lamacchia, O.; Laviola, L.; et al. HbA1c variability as an independent correlate of nephropathy, but not retinopathy, in patients with type 2 diabetes: The Renal Insufficiency And Cardiovascular Events (RIACE) Italian multicenter study. Diabetes Care 2013, 36, 2301–2310. [Google Scholar] [CrossRef] [Green Version]
- United States Renal Data System. 2020 USRDS Annual Data Report: End Stage Renal Disease: 11 International Comparisions. Available online: https://adr.usrds.org/2020/end-stage-renal-disease/11-international-comparisons (accessed on 1 July 2021).
- Lee, Y.H.; Han, K.; Ko, S.H.; Ko, K.S.; Lee, K.U.; Taskforce Team of Diabetes Fact Sheet of the Korean Diabetes Association. Data Analytic Process of a Nationwide Population-Based Study Using National Health Information Database Established by National Health Insurance Service. Diabetes Metab. J. 2016, 40, 79–82. [Google Scholar] [CrossRef]
- Song, S.O.; Jung, C.H.; Song, Y.D.; Park, C.Y.; Kwon, H.S.; Cha, B.S.; Park, J.Y.; Lee, K.U.; Ko, K.S.; Lee, B.W. Background and data configuration process of a nationwide population-based study using the Korean National Health Insurance System. Diabetes Metab. J. 2014, 38, 395–403. [Google Scholar] [CrossRef]
- Oh, J.Y.; Yang, Y.J.; Kim, B.S.; Kang, J.H. Validity and reliability of Korean version of International Physical Activity Questionnaire (IPAQ) short form. J. Korean Acad. Fam. Med. 2007, 28, 532–541. [Google Scholar]
- Mena, L.; Pintos, S.; Queipo, N.V.; Aizpúrua, J.A.; Maestre, G.; Sulbarán, T. A reliable index for the prognostic significance of blood pressure variability. J. Hypertens. 2005, 23, 505–511. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.K.; Han, K.; Koh, E.S.; Kim, H.S.; Kwon, H.S.; Park, Y.M.; Yoon, K.H.; Lee, S.H. Variability in Total Cholesterol Is Associated With the Risk of End-Stage Renal Disease: A Nationwide Population-Based Study. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1963–1970. [Google Scholar] [CrossRef] [Green Version]
- Levey, A.S.; Coresh, J.; Greene, T.; Stevens, L.A.; Zhang, Y.L.; Hendriksen, S.; Kusek, J.W.; Van Lente, F. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann. Intern. Med. 2006, 145, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Kidney Disease: Improving Global Outcomes (KDIGO). KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease: Chapter 1: Definition and classification of CKD. Kidney Int. Suppl. 2013, 3, 19–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.J.; Coleman, R.; Holman, R.R.; Reaven, P. Long-term glucose variability and risk of nephropathy complication in UKPDS, ACCORD and VADT trials. Diabetologia 2020, 63, 2482–2485. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.C.; Saunders, H.J.; Qi, W.; Pollock, C.A. Intermittent high glucose enhances cell growth and collagen synthesis in cultured human tubulointerstitial cells. Diabetologia 1999, 42, 1113–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, K.H.; Park, J.; Ha, H. High glucose increases mesangial lipid accumulation via impaired cholesterol transporters. Transpl. Proc. 2012, 44, 1021–1025. [Google Scholar] [CrossRef]
- Lin, C.C.; Chen, C.C.; Chen, F.N.; Li, C.I.; Liu, C.S.; Lin, W.Y.; Yang, S.Y.; Lee, C.C.; Li, T.C. Risks of diabetic nephropathy with variation in hemoglobin A1c and fasting plasma glucose. Am. J. Med. 2013, 126, 1017.e1–1017.e10. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.F.; Li, T.C.; Li, C.I.; Liu, C.S.; Lin, W.Y.; Yang, S.Y.; Chiang, J.H.; Huang, C.C.; Sung, F.C.; Lin, C.C. Visit-to-Visit Glucose Variability Predicts the Development of End-Stage Renal Disease in Type 2 Diabetes. Medicine 2015, 94, e1804. [Google Scholar] [CrossRef]
- Bigagli, E.; Lodovici, M. Circulating Oxidative Stress Biomarkers in Clinical Studies on Type 2 Diabetes and Its Complications. Oxidative Med. Cell. Longev. 2019, 2019, 5953685. [Google Scholar] [CrossRef]
- Ceriello, A.; Rossi, M.C.; De Cosmo, S.; Lucisano, G.; Pontremoli, R.; Fioretto, P.; Giorda, C.; Pacilli, A.; Viazzi, F.; Russo, G.; et al. Overall Quality of Care Predicts the Variability of Key Risk Factors for Complications in Type 2 Diabetes: An Observational, Longitudinal Retrospective Study. Diabetes Care 2019, 42, 514–519. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.H. Evaluation of Serum Glucose and Kidney Disease Progression Among Patients With Diabetes. JAMA Netw. Open 2021, 4, e2127387. [Google Scholar] [CrossRef]
- Cha, J.J.; Min, H.S.; Kim, K.; Lee, M.J.; Lee, M.H.; Kim, J.E.; Song, H.K.; Cha, D.R.; Kang, Y.S. Long-term study of the association of adipokines and glucose variability with diabetic complications. Korean J. Intern. Med. 2018, 33, 367–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salisbury, D.; Bronas, U. Reactive oxygen and nitrogen species: Impact on endothelial dysfunction. Nurs. Res. 2015, 64, 53–66. [Google Scholar] [CrossRef] [PubMed]
- El-Osta, A.; Brasacchio, D.; Yao, D.; Pocai, A.; Jones, P.L.; Roeder, R.G.; Cooper, M.E.; Brownlee, M. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J. Exp. Med. 2008, 205, 2409–2417. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, S.I.; Maurya, P.K. Markers of oxidative stress in erythrocytes during aging in humans. Ann. N. Y. Acad. Sci. USA 2007, 1100, 373–382. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2013, 3, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Fine, J.P.; Mottl, A.K. Competing Risk of Death With End-Stage Renal Disease in Diabetic Kidney Disease. Adv. Chronic. Kidney Dis. 2018, 25, 133–140. [Google Scholar] [CrossRef]
- Finne, P.; Groop, P.H.; Arffman, M.; Kervinen, M.; Helve, J.; Grönhagen-Riska, C.; Sund, R. Cumulative Risk of End-Stage Renal Disease Among Patients With Type 2 Diabetes: A Nationwide Inception Cohort Study. Diabetes Care 2019, 42, 539–544. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, M.; Hasegawa, G.; Majima, S.; Mitsuhashi, K.; Fukuda, T.; Iwase, H.; Kadono, M.; Asano, M.; Senmaru, T.; Tanaka, M.; et al. Effect of repaglinide versus glimepiride on daily blood glucose variability and changes in blood inflammatory and oxidative stress markers. Diabetol. Metab. Syndr. 2014, 6, 54. [Google Scholar] [CrossRef] [Green Version]
- Vora, J.; Cariou, B.; Evans, M.; Gross, J.L.; Harris, S.; Landstedt-Hallin, L.; Mithal, A.; Rodriguez, M.R.; Meneghini, L. Clinical use of insulin degludec. Diabetes Res. Clin. Pract. 2015, 109, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Lee, H.; Kim, Y.; Kim, E. Effect of DPP-IV Inhibitors on Glycemic Variability in Patients with T2DM: A Systematic Review and Meta-Analysis. Sci. Rep. 2019, 9, 13296. [Google Scholar] [CrossRef] [Green Version]
- Inzucchi, S.E.; Umpierrez, G.; DiGenio, A.; Zhou, R.; Kovatchev, B. How well do glucose variability measures predict patient glycaemic outcomes during treatment intensification in type 2 diabetes? Diabetes Res. Clin. Pract. 2015, 108, 179–186. [Google Scholar] [CrossRef]
- Hansen, T.W.; Thijs, L.; Li, Y.; Boggia, J.; Kikuya, M.; Björklund-Bodegård, K.; Richart, T.; Ohkubo, T.; Jeppesen, J.; Torp-Pedersen, C.; et al. Prognostic value of reading-to-reading blood pressure variability over 24 hours in 8938 subjects from 11 populations. Hypertension 2010, 55, 1049–1057. [Google Scholar] [CrossRef] [Green Version]
- Rothwell, P.M.; Howard, S.C.; Dolan, E.; O’Brien, E.; Dobson, J.E.; Dahlöf, B.; Sever, P.S.; Poulter, N.R. Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension. Lancet 2010, 375, 895–905. [Google Scholar] [CrossRef]
- Lee, H.J.; Choi, E.K.; Han, K.D.; Lee, E.; Moon, I.; Lee, S.R.; Cha, M.J.; Oh, S.; Lip, G.Y.H. Bodyweight fluctuation is associated with increased risk of incident atrial fibrillation. Heart Rhythm 2020, 17, 365–371. [Google Scholar] [CrossRef]
- Sedgwick, P. Retrospective cohort studies: Advantages and disadvantages. BMJ Br. Med. J. 2014, 348, g1072. [Google Scholar] [CrossRef]
Characteristics | VIM Q1 (n = 194,302) | VIM Q2 (n = 194,291) | VIM Q3 (n = 194,301) | VIM Q4 (n = 194,298) | p-Value |
---|---|---|---|---|---|
Age (years) | 61.2 ± 9.8 | 60.2 ± 10.0 | 59.7 ± 10.2 | 59.4 ± 10.5 | <0.001 |
Sex, male (%) | 109,509 (56.4) | 116,074 (59.7) | 120,274 (61.9) | 125,355 (64.5) | <0.001 |
BMI (kg/m2) | 24.7 ± 3 | 24.9 ± 3.1 | 24.9 ± 3.1 | 24.8 ± 3.2 | <0.001 |
Systolic BP (mmHg) | 128.3 ± 15.2 | 128.7 ± 15.2 | 128.8 ± 15.3 | 128.5 ± 15.3 | <0.001 |
Fasting glucose (mg/dL) | 125.0 ± 33.9 | 130.1 ± 35.5 | 135.7 ± 39.0 | 146.0 ± 53.4 | <0.001 |
Total cholesterol (mg/dL) | 193.6 ± 39.1 | 194.9 ± 39.9 | 195.6 ± 40.7 | 194.4 ± 41.5 | <0.001 |
Triglyceride (mg/dL) | 132.9 (132.5–133.2) | 138.4 (138.1–138.8) | 143(142.6–143.4) | 146.3 (146.0–146.7) | <0.001 |
HDL-C (mg/dL) | 52.7 ± 22.8 | 52.3 ± 21.5 | 52 ± 21.8 | 51.5 ± 21.3 | <0.001 |
LDL-C (mg/dL) | 111.6 ± 43.0 | 111.6 ± 42.7 | 111.2 ± 43.4 | 109.5 ± 44.5 | <0.001 |
GLU_VIM (%) | 8.2 ± 3 | 16.6 ± 2.2 | 25.5 ± 3 | 43.5 ± 11.1 | <0.001 |
GLU_SD (mg/dL) | 8.1 ± 5.3 | 16.8 ± 8.5 | 26.7 ± 13.1 | 49.0 ± 25.2 | <0.001 |
GLU_CV (%) | 6.2 ± 2.6 | 12.7 ± 2.9 | 19.9 ± 4.3 | 35 ± 11.2 | <0.001 |
GLU_ARV (mg/dL) | 10 ± 7.2 | 20.3 ±11.9 | 31.6 ± 18.3 | 56.5 ± 34.3 | <0.001 |
Current smoker (%) | 31,644 (16.3) | 36,873 (19.0) | 42,614 (21.9) | 50,137 (25.8) | <0.001 |
Heavy drinking (%) | 12,395 (6.4) | 13,844 (7.1) | 14,670 (7.6) | 14,289 (7.4) | <0.001 |
Regular exercise (%) | 49,893 (25.7) | 48,442 (24.9) | 46,317 (23.8) | 43,246 (22.3) | <0.001 |
eGFR (mL/minute/1.73 m2) | 79.6 (68.5–92.6) | 79.9 (68.5–92.9) | 80.1 (68.5–93.3) | 79.6 (67.7–92.9) | <0.001 |
Chronic kidney disease (%) b | 23,041 (11.9) | 22,930 (11.8) | 23,569 (12.1) | 26,133 (13.5) | <0.001 |
Dipstick proteinuria (%) | <0.001 | ||||
Absence (%) | 178,444 (91.8) | 177,043 (91.1) | 175,837 (90.5) | 173,973 (89.5) | |
Trace (%) | 6065 (3.1) | 6380 (3.3) | 6777 (3.5) | 6723 (3.5) | |
1 + (%) | 5939 (3.1) | 6580 (3.4) | 6999 (3.6) | 7742 (4) | |
2 + (%) | 2841 (1.5) | 3149 (1.6) | 3450 (1.8) | 4205 (2.2) | |
3 + (%) | 841 (0.4) | 924 (0.5) | 1064 (0.6) | 1378 (0.7) | |
4 + (%) | 172 (0.1) | 215 (0.1) | 174 (0.1) | 277 (0.1) | |
Comorbidities | |||||
Hypertension (%) | 119,605 (61.6) | 117,761 (60.6) | 115,704 (59.6) | 112,881 (58.1) | <0.001 |
Dyslipidemia (%) | 102,627 (52.8) | 98,666 (50.8) | 95,100 (48.9) | 90,667 (46.7) | <0.001 |
IHD (%) | 28,614 (14.7) | 26,445 (13.6) | 24,879 (12.8) | 23,758 (12.2) | <0.001 |
Stroke (%) | 10,979 (5.7) | 10,286 (5.3) | 9961 (5.1) | 9996 (5.1) | <0.001 |
Income (lower 20%, %) | 34,931 (18.0) | 36,804 (18.9) | 39,098 (20.1) | 43,447 (22.4) | <0.001 |
ACE inhibitors or ARBs (%) | 71,197 (36.6) | 69,355 (35.7) | 67,950 (35.0) | 67,800 (34.9) | <0.001 |
Oral GLM | |||||
Metformin | 72,551 (37.3) | 75,633 (38.9) | 79,615 (41.0) | 85,739 (44.1) | <0.001 |
Sulfonylurea | 70,505 (36.3) | 76,924 (39.6) | 84,825 (43.7) | 92,837 (47.8) | <0.001 |
Meglitinide | 3960 (2) | 4286 (2.2) | 4821 (2.5) | 5950 (3.1) | <0.001 |
Thiazolidinedione | 11,624 (6) | 12,466 (6.4) | 13,402 (6.9) | 14,708 (7.6) | <0.001 |
DPP-4 inhibitor | 7602 (3.9) | 7871 (4.1) | 8300 (4.3) | 8531 (4.4) | <0.001 |
a-Glucosidase inhibitor | 18,941 (9.8) | 21,134 (10.9) | 24,274 (12.5) | 28,984 (14.9) | <0.001 |
Number of oral GLM | <0.001 | ||||
0 | 96,962 (49.9) | 93,619 (48.2) | 88,878 (45.7) | 82,779 (42.6) | |
1 | 34,341 (17.7) | 31,949 (16.4) | 29,574 (15.2) | 26,813 (13.8) | |
2 | 42,096 (21.7) | 44,622 (23.0) | 47,759 (24.6) | 51,446 (26.5) | |
3 | 17,310 (8.9) | 19,723 (10.2) | 22,828 (11.8) | 26,763 (13.8) | |
≥4 | 3593 (1.9) | 4378 (2.3) | 5262 (2.7) | 6497 (3.3) | |
Insulin | 8125 (4.2) | 9515 (4.9) | 11,928 (6.1) | 19,582 (10.1) | <0.001 |
Duration of diabetes | 2.7 ± 3.1 | 2.8 ± 3.1 | 3 ± 3.2 | 3.3 ± 3.2 | <0.001 |
≥5 years (%) | 56,944 (29.3) | 59,454 (30.6) | 63,309 (32.6) | 68,451 (35.2) | <0.001 |
Type 1 diabetes (%) | 1274 (0.7) | 1537 (0.8) | 2106 (1.1) | 4153 (2.1) | <0.001 |
Number of exams | <0.001 | ||||
3 | 167,018 (86.0) | 152,379 (78.4) | 146,220 (75.3) | 142,455 (73.3) | |
4 | 13,832 (7.1) | 19,418 (10.0) | 22,307 (11.5) | 24,566 (12.6) | |
5 | 13,452 (6.9) | 22,494 (11.6) | 25,774 (13.3) | 27,277 (14) | |
Time interval between adjacent exams (years) | 1.87 (1.3–2.1) | 1.8 (1.1–2.1) | 1.76 (1.1–2.1) | 1.71 (1.1–2.1) | <0.001 |
Events (n) | Follow-Up Duration (Person-Years) | Incidence Rate (Per 1000 Person-Years) | Age- and Sex- Adjusted HR (95% CI) | Multivariate-Adjusted HR (95% CI) | ||
---|---|---|---|---|---|---|
Model 1 | Model 2 | |||||
Q1 (n = 194,302) | 1412 | 1,478,422.2 | 0.96 | 1 (Ref.) | 1 (Ref.) | 1 (Ref.) |
Q2 (n = 194,291) | 1487 | 1,483,681.0 | 1.00 | 1.07 (0.99–1.15) | 1.05 (0.97–1.13) | 0.99 (0.92–1.06) |
Q3 (n = 194,301) | 1721 | 1,482,829.3 | 1.16 | 1.25 (1.16–1.34) | 1.21 (1.12–1.3) | 1.03 (0.96–1.1) |
Q4 (n = 194,298) | 2670 | 1,468,254.3 | 1.82 | 1.96 (1.84–2.10) | 1.79 (1.68–1.91) | 1.27 (1.19–1.36) |
IR per 1000 | HR (95% CI) | p for Interaction | |
---|---|---|---|
Age (years) | 0.000 | ||
40–64 (n = 521,902) | 1.50 | 1.36 (1.28–1.45) | |
≥65 (n = 255,290) | 2.61 | 1.14 (1.06–1.23) | |
Sex | 0.849 | ||
Male (n = 471,212) | 2.02 | 1.26 (1.19–1.33) | |
Female (n = 305,980) | 1.46 | 1.27 (1.16–1.39) | |
BMI | 0.325 | ||
<25 kg/m2 (n = 425,481) | 1.94 | 1.24 (1.16–1.32) | |
≥25 kg/m2 (n = 351,711) | 1.68 | 1.3 (1.2–1.4) | |
Current smoking | 0.215 | ||
No (n = 615,924) | 1.88 | 1.28 (1.21–1.35) | |
Yes (n = 161,268) | 1.63 | 1.19 (1.08–1.32) | |
Hypertension | 0.004 | ||
No (n = 311,241) | 0.51 | 1.05 (0.92–1.2) | |
Yes (n = 465,951) | 2.80 | 1.3 (1.23–1.37) | |
ACE inhibitor or ARB | 0.001 | ||
No (n = 500,890) | 0.70 | 1.11 (1.01–1.21) | |
Yes (n = 276,302) | 3.99 | 1.33 (1.25–1.4) | |
Chronic kidney disease | 0.988 | ||
No (n = 681,519) | 0.75 | 1.26 (1.17–1.36) | |
Yes (n= 95,673) | 9.33 | 1.26 (1.19–1.34) | |
Dyslipidemia | 0.035 | ||
No (n = 390,132) | 1.15 | 1.18 (1.09–1.28) | |
Yes (n = 387,060) | 2.58 | 1.31 (1.23–1.39) | |
Income lower 20% | 0.636 | ||
No (n = 622,912) | 1.79 | 1.27 (1.2–1.34) | |
Yes (n = 154,280) | 1.92 | 1.23 (1.12–1.37) |
IR per 1000 | HR (95% CI) | p for Interaction | |
---|---|---|---|
Baseline fasting glucose | 0.305 | ||
<126 mg/dL (n = 349,855) | 2.67 | 1.16 (1.08–1.25) | |
≥126 mg/dL (n = 427,337) | 1.34 | 1.23 (1.15–1.31) | |
Duration of diabetes | <0001 | ||
<5 years (n = 529,034) | 0.63 | 1.01 (0.92–1.11) | |
≥5 years (n = 248,158) | 4.11 | 1.38 (1.3–1.46) | |
Type of diabetes | 0.348 | ||
Type 2 diabetes (n = 768,122) | 1.65 | 1.26 (1.19–1.32) | |
Type 1 diabetes (n = 9070) | 10.06 | 1.16 (0.98–1.36) | |
Metformin | 0.002 | ||
No (n = 463,634) | 1.34 | 1.16 (1.08–1.25) | |
Yes (n = 313,538) | 2.43 | 1.35 (1.26–1.44) | |
Sulfonylurea | 0.011 | ||
No (n = 452,101) | 1.24 | 1.16 (1.07–1.26) | |
Yes (n = 325,091) | 2.46 | 1.32 (1.25–1.41) | |
Meglitinide | 0.276 | ||
No (n = 758,175) | 1.69 | 1.27 (1.21–1.34) | |
Yes (n = 19,017) | 5.99 | 1.16 (0.99–1.36) | |
Thiazolidinedione | 0.174 | ||
No (n = 724,992) | 1.74 | 1.25 (1.18–1.31) | |
Yes (n = 52,200) | 2.73 | 1.39 (1.2–1.61) | |
DPP-4 inhibitor | 0.182 | ||
No (n = 744,888) | 1.80 | 1.25 (1.19–1.31) | |
Yes (n = 32,304) | 2.31 | 1.45 (1.17–1.78) | |
α-Glucosidase inhibitor | 0.003 | ||
No (n = 683,859) | 1.42 | 1.2 (1.13–1.27) | |
Yes (n = 93,333) | 4.20 | 1.4 (1.29–1.53) | |
Insulin | 0.001 | ||
No (n = 728,042) | 1.14 | 1.19 (1.12–1.26) | |
Yes (n = 49,150) | 8.38 | 1.42 (1.31–1.54) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.Y.; Kim, J.; Park, S.; Park, S.Y.; Yu, J.H.; Seo, J.A.; Kim, N.H.; Yoo, H.J.; Kim, S.G.; Choi, K.M.; et al. Fasting Glucose Variability as a Risk Indicator for End-Stage Kidney Disease in Patients with Diabetes: A Nationwide Population-Based Study. J. Clin. Med. 2021, 10, 5948. https://doi.org/10.3390/jcm10245948
Lee DY, Kim J, Park S, Park SY, Yu JH, Seo JA, Kim NH, Yoo HJ, Kim SG, Choi KM, et al. Fasting Glucose Variability as a Risk Indicator for End-Stage Kidney Disease in Patients with Diabetes: A Nationwide Population-Based Study. Journal of Clinical Medicine. 2021; 10(24):5948. https://doi.org/10.3390/jcm10245948
Chicago/Turabian StyleLee, Da Young, Jaeyoung Kim, Sanghyun Park, So Young Park, Ji Hee Yu, Ji A. Seo, Nam Hoon Kim, Hye Jin Yoo, Sin Gon Kim, Kyung Mook Choi, and et al. 2021. "Fasting Glucose Variability as a Risk Indicator for End-Stage Kidney Disease in Patients with Diabetes: A Nationwide Population-Based Study" Journal of Clinical Medicine 10, no. 24: 5948. https://doi.org/10.3390/jcm10245948
APA StyleLee, D. Y., Kim, J., Park, S., Park, S. Y., Yu, J. H., Seo, J. A., Kim, N. H., Yoo, H. J., Kim, S. G., Choi, K. M., Baik, S. H., Han, K., & Kim, N. H. (2021). Fasting Glucose Variability as a Risk Indicator for End-Stage Kidney Disease in Patients with Diabetes: A Nationwide Population-Based Study. Journal of Clinical Medicine, 10(24), 5948. https://doi.org/10.3390/jcm10245948