Predictors of Exercise Capacity in Dilated Cardiomyopathy with Focus on Pulmonary Venous Flow Recorded with Transesophageal Eco-Doppler
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Criteria
2.2. Assessment
2.3. Echocardiographic Evaluation
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. LV Diastolic Filling Pressure Estimated via PVF
4.2. Renal Insufficiency
4.3. The Role of Obesity in Reducing Functional Capacity
4.4. Previous Studies
4.5. Clinical Implications
4.6. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- MacIntyre, K.; Capewell, S.; Stewart, S.; Chalmers, J.W.; Boyd, J.; Finlayson, A.; Redpath, A.; Pell, J.P.; McMurray, J.J. Evidence of improving prognosis in heart failure: Trends in case fatality in 66 547 patients hospitalized between 1986 and 1995. Circulation 2000, 102, 1126–1131. [Google Scholar] [CrossRef] [Green Version]
- Lapu-Bula, R.; Robert, A.; De Kock, M.; D’Hondt, A.M.; Detry, J.M.; Melin, J.A.; Vanoverschelde, J.L. Relation of exercise capacity to left ventricular systolic function and diastolic filling in idiopathic or ischemic dilated cardiomyopathy. Am. J. Cardiol. 1999, 83, 728–734. [Google Scholar] [CrossRef]
- Faggiano, P.; D’Aloia, A.; Gualeni, A.; Giordano, A. Relative contribution of resting haemodynamic profile and lung function to exercise tolerance in male patients with chronic heart failure. Heart 2001, 85, 179–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assayag, P.; Benamer, H.; Aubry, P.; de Picciotto, C.; Brochet, E.; Besse, S.; Camus, F. Alteration of the alveolar-capillary membrane diffusing capacity in chronic left heart disease. Am. J. Cardiol. 1998, 82, 459–464. [Google Scholar] [CrossRef]
- Lele, S.S.; Macfarlane, D.; Morrison, S.; Thomson, H.; Khafagi, F.; Frenneaux, M. Determinants of exercise capacity in patients with coronary artery disease and mild to moderate systolic dysfunction. Role of heart rate and diastolic filling abnormalities. Eur. Heart J. 1996, 17, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F.; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 1321–1360. [Google Scholar] [CrossRef]
- Kuecherer, H.F.; Muhiudeen, I.A.; Kusumoto, F.M.; Lee, E.; Moulinier, L.E.; Cahalan, M.K.; Schiller, N.B. Estimation of mean left atrial pressure from transesophageal pulsed Doppler echocardiography of pulmonary venous flow. Circulation 1990, 82, 1127–1139. [Google Scholar] [CrossRef] [Green Version]
- Rossvoll, O.; Hatle, L.K. Pulmonary venous flow velocities recorded by transthoracic Doppler ultrasound: Relation to left ven-tricular diastolic pressures. J. Am. Coll. Cardiol. 1993, 21, 1687–1696. [Google Scholar] [CrossRef] [Green Version]
- Dini, F.L.; Michelassi, C.; Micheli, G.; Rovai, D. Prognostic value of pulmonary venous flow Doppler signal in left ventricular dysfunction: Contribution of the difference in duration of pulmonary venous and mitral flow at atrial contraction. J. Am. Coll. Cardiol. 2000, 36, 1295–1302. [Google Scholar] [CrossRef] [Green Version]
- Dini, F.L.; Dell’Anna, R.; Micheli, A.; Michelassi, C.; Rovai, D. Impact of blunted pulmonary venous flow on the outcome of patients with left ventricular systolic dysfunction secondary to either ischemic or idiopathic dilated cardiomyopathy. Am. J. Cardiol. 2000, 85, 1455–1460. [Google Scholar] [CrossRef]
- Buffle, E.; Kramarz, J.; Elazar, E.; Aviram, G.; Ingbir, M.; Nesher, N.; Biner, S.; Keren, G.; Topilsky, Y. Added value of pulmonary venous flow Doppler assessment in patients with preserved ejection fraction and its contribution to the diastolic grading paradigm. Eur. Heart J.-Cardiovasc. Imaging 2015, 16, 1191–1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishimura, R.A.; Abel, M.D.; Hatle, L.K.; Tajik, A.J. Relation of pulmonary vein to mitral flow velocities by transesophageal Doppler echocardiography. Effect of different loading conditions. Circulation 1990, 81, 1488–1497. [Google Scholar] [CrossRef] [Green Version]
- Appleton, C.P. Doppler assessment of left ventricular diastolic function: The refinements continue. J. Am. Coll. Cardiol. 1993, 21, 1697–1700. [Google Scholar] [CrossRef] [Green Version]
- Jensen, J.L.; Williams, F.E.; Beilby, B.J.; Johnson, B.L.; Miller, L.K.; Ginter, T.L.; Tomaselli-Martin, G.; Appleton, C.P. Feasibility of obtaining pulmonary venous flow velocity in cardiac patients using transthoracic pulsed wave Doppler technique. J. Am. Soc. Echocardiogr. Ficial Publ. Am. Soc. Echocardiogr. 1997, 10, 60–66. [Google Scholar] [CrossRef]
- Konstantinidou, E.; Koukouvou, G.; Kouidi, E.; Deligiannis, A.; Tourkantonis, A. Exercise training in patients with end-stage renal disease on hemodialysis: Comparison of three rehabilitation programs. J. Rehabil. Med. 2002, 34, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Lavie, C.J.; Alpert, M.A.; Arena, R.; Mehra, M.R.; Milani, R.V.; Ventura, H.O. Impact of obesity and the obesity paradox on prevalence and prognosis in heart failure. JACC Heart Fail. 2013, 1, 93–102. [Google Scholar] [CrossRef]
- Levine, H.J.; Gaasch, W.H. Clinical recognition and treatment of diastolic dysfunction and heart failure. In Left Ventricular Diastolic Dysfunction and Heart Failure; Gaasch, W.H., LeWinter, M.M., Eds.; Lea & Febiger: Philadelphia, PA, USA, 1994; pp. 439–464. [Google Scholar]
- Weber, T.K.; Janicki, S.J. (Eds.) Chronic heart failure. In Cardio Pulmonary Exercise Testing Physiologic Principles and Clinical Applications; W. B. Saunders Company: Philadelphia, PA, USA, 1986; pp. 168–196. [Google Scholar]
- Lapu-Bula, R.; Robert, A.; De Kock, M.; D’Hondt, A.M.; Detry, J.M.; Melin, J.A.; Vanoverschelde, J.L. Risk stratification in patients with dilated cardiomyopathy: Contribution of Doppler-derived left ventricular filling. Am. J. Cardiol. 1998, 82, 779–785. [Google Scholar] [CrossRef]
- Sheikh, K.H.; Bengtson, J.R.; Rankin, J.S.; de Bruijn, N.P.; Kisslo, J. Intraoperative transesophageal Doppler color flow imaging used to guide patient selection and operative treatment of ischemic mitral regurgitation. Circulation 1991, 84, 594–604. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.D.; Harrison, M.R.; Pinton, R.; Kandil, H.; Kwan, O.L.; DeMaria, A.N. Regurgitant jet size by transesophageal compared with transthoracic Doppler color flow imaging. Circulation 1991, 83, 79–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Kidney, F. K/DOQI clinical practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Am. J. Kidney Dis. 2002, 39 (Suppl. 1), S1–S266. [Google Scholar]
- Caiati, C.; Luzzi, G.; Pollice, P.; Favale, S.; Lepera, M.E. A Novel Clinical Perspective on New Masses after Lead Extraction (Ghosts) by Means of Intracardiac Echocardiography. J. Clin. Med. 2020, 9, 2571. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F.; Appleton, C.P.; Gillebert, T.C.; Marino, P.N.; Oh, J.K.; Smiseth, O.A.; Waggoner, A.D.; Flachskampf, F.A.; Pellikka, P.A.; Evangelisa, A. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J. Am. Soc. Echocardiogr. Off. Publ. Am. Soc. Echocardiogr. 2009, 22, 107–133. [Google Scholar] [CrossRef] [Green Version]
- Ross, R.; Blair, S.N.; Arena, R.; Church, T.S.; Després, J.P.; Franklin, B.A.; Haskell, W.L.; Kaminsky, L.A.; Levine, B.D.; Lavie, C.J.; et al. Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement from the American Heart Association. Circulation 2016, 134, e653–e699. [Google Scholar] [CrossRef] [PubMed]
- Rihal, C.S.; Nishimura, R.A.; Hatle, L.K.; Bailey, K.R.; Tajik, A.J. Systolic and diastolic dysfunction in patients with clinical diagnosis of dilated cardiomyopathy. Relation to symptoms and prognosis. Circulation 1994, 90, 2772–2779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, S.W.; Fussell, A.L.; Jordan, S.L.; Poole-Wilson, P.A.; Lipkin, D.P. Abnormal diastolic filling patterns in chronic heart failure-relationship to exercise capacity. Eur. Heart J. 1992, 13, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Tana, L.B.; Cubukcu, A. What factors determine exercise capacity in left ventricular dysfunction? Eur. Heart J. 1996, 17, 168–170. [Google Scholar] [CrossRef] [PubMed]
- Nunes, M.D.C.P.; Beloti, F.R.; Lima, M.M.O.; Barbosa, M.M.; Filho, M.M.P.; de Barros, M.V.L.; Rocha, M.O. Functional capacity and right ventricular function in patients with Chagas heart disease. Eur. J. Echocardiogr. 2010, 11, 590–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schrier, R.W. Pathogenesis of sodium and water retention in high-output and low-output cardiac failure, nephrotic syndrome, cirrhosis, and pregnancy (1). N. Engl. J. Med. 1988, 319, 1065–1072. [Google Scholar] [CrossRef]
- Ichikawa, I.; Pfeffer, J.M.; Pfeffer, M.A.; Hostetter, T.H.; Brenner, B.M. Role of angiotensin II in the altered renal function in congestive heart failure. Circ. Res. 1984, 55, 669. [Google Scholar] [CrossRef] [Green Version]
- Mullens, W.; Abrahams, Z.; Francis, G.S.; Sokos, G.; Taylor, D.O.; Starling, R.C.; Young, J.B.; Tang, W.W. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J. Am. Coll. Cardiol. 2009, 53, 589–596. [Google Scholar] [CrossRef] [Green Version]
- Aronson, D.; Abassi, Z.; Allon, E.; Burger, A.J. Fluid loss, venous congestion, and worsening renal function in acute decompensated heart failure. Eur. J. Heart Fail 2013, 15, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Dupont, M.; Mullens, W.; Finucan, M.; Taylor, D.O.; Starling, R.C.; Tang, W.H. Determinants of dynamic changes in serum creatinine in acute decompensated heart failure: The importance of blood pressure reduction during treatment. Eur. J. Heart Fail. 2013, 15, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Pastan, S.O.; Braunwald, E. Renal disorders and heart diseases. In Heart Disease; Braunwald, E., Ed.; W. B. Saunders Company: Philadelphia, PA, USA, 1992. [Google Scholar]
- Van Vleet, T.R.; Schnellmann, R.G. Toxic nephropathy: Environmental chemicals. Semin. Nephrol. 2003, 23, 500–508. [Google Scholar] [CrossRef]
- Caiati, C.; Pollice, P.; Favale, S.; Lepera, M.E. The Herbicide Glyphosate and Its Apparently Controversial Effect on Human Health: An Updated Clinical Perspective. Endocr. Metab. Immune. Disord. Drug Targets 2020, 20, 489–505. [Google Scholar] [CrossRef] [PubMed]
- Rennke, H.G.; Bradley, M.D. Renal Pathophysiology: The essentials, 4th ed.; Lippincot Williams & Wilkins: Baltimore, MD, USA, 2014. [Google Scholar]
- Perazella, M.A. Renal vulnerability to drug toxicity. Clin. J. Am. Soc. Nephrol. 2009, 4, 1275–1283. [Google Scholar] [CrossRef] [PubMed]
- Tonolo, G.; Cherchi, S. Tubulointerstitial disease in diabetic nephropathy. Int. J. Nephrol. Renov. Dis. 2014, 7, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Alexander, J.K. Obesity and cardiac performance. Am. J. Cardiol. 1964, 14, 860–865. [Google Scholar] [CrossRef]
- Alpert, M.A.; Lambert, C.R.; Terry, B.E.; Cohen, M.V.; Mukerji, V.; Massey, C.V.; Hashimi, M.W.; Panayiotou, H. Influence of left ventricular mass on left ventricular diastolic filling in normotensive morbid obesity. Am. Heart J. 1995, 130, 1068–1073. [Google Scholar] [CrossRef]
- Lin, W.-Y.; Yao, C.-A.; Wang, H.-C.; Huang, K.-C. Impaired Lung Function Is Associated with Obesity and Metabolic Syndrome in Adults. Obesity 2006, 14, 1654–1661. [Google Scholar] [CrossRef]
- Terzi, S.; Sayar, N.; Bilsel, T.; Enc, Y.; Yildirim, A.; Ciloğlu, F.; Yesilcimen, K. Tissue Doppler imaging adds incremental value in predicting exercise capacity in patients with congestive heart failure. Heart Vessel. 2007, 22, 237–244. [Google Scholar] [CrossRef]
- Wilson, J.R.; Martin, J.L.; Schwartz, D.; Ferraro, N. Exercise intolerance in patients with chronic heart failure: Role of impaired nu-tritive flow to skeletal muscle. Circulation 1984, 69, 1079–1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardin, J.M.; Leifer, E.S.; Fleg, J.L.; Whellan, D.; Kokkinos, P.; LeBlanc, M.H.; Wolfel, E.; Kitzman, D.W.; HF-ACTION Investigators. Relationship of Doppler-Echocardiographic left ventricular diastolic function to exercise performance in systolic heart failure: The HF-ACTION study. Am. Heart J. 2009, 158, S45–S52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gould, K.L.; Johnson, N.P. Coronary Physiology beyond Coronary Flow Reserve in Microvascular Angina: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2018, 72, 2642–2662. [Google Scholar] [CrossRef]
- Levine, H.J. Optimum heart rate of large failing hearts. Am. J. Cardiol. 1988, 61, 633–636. [Google Scholar] [CrossRef]
- Hori, M.; Okamoto, H. Heart rate as a target of treatment of chronic heart failure. J. Cardiol. 2012, 60, 86–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swedberg, K.; Komajda, M.; Böhm, M.; Borer, J.S.; Ford, I.; Dubost-Brama, A.; Lerebours, G.; Tavazzi, L.; SHIFT investigators. Ivabradine and outcomes in chronic heart failure (SHIFT): A randomised placebo-controlled study. Lancet 2010, 376, 875–885. [Google Scholar] [CrossRef]
- Konerman, M.C.; Hummel, S.L. Sodium restriction in heart failure: Benefit or harm? Curr. Treat. Options Cardiovasc. Med. 2014, 16, 286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarnak, M.I. A patient with heart failure and worsening kidney function. Clin. J. Am. Soc. Nephrol. 2014, 9, 1790–1798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, P.J.; Clark, J.J.J.; Agardy, F.J.; Rosenfeld, P.E. Toxic Legacy: Synthetic Toxins in the Food, Water and Air of the American Cities; Elsevier Academic Press: Amsterdam, The Netherlands, 2007; pp. 37–87. [Google Scholar]
- Acharya, T.; Huang, J.; Tringali, S.; Frei, C.R.; Mortensen, E.M.; Mansi, I.A. Statin Use and the Risk of Kidney Disease With Long-Term Follow-Up (8.4-Year Study). Am. J. Cardiol. 2016, 117, 647–655. [Google Scholar] [CrossRef] [Green Version]
- Segal, R.; Lubart, E.; Leibovitz, A.; Berkovitch, M.; Habot, B.; Yaron, M.; Caspi, D. Early and late effects of low-dose aspirin on renal function in elderly patients. Am. J. Med. 2003, 115, 462–466. [Google Scholar] [CrossRef]
- Schoenfeld, A.J.; Grady, D. Adverse Effects Associated with Proton Pump Inhibitors. JAMA Intern. Med. 2016, 176, 172–174. [Google Scholar] [CrossRef] [PubMed]
- Kinnaird Tim, D.; Thompson Christopher, R.; Munt Bradley, I. The deceleration time of pulmonary venous diastolic flow is more accurate than the pulmonary artery occlusion pressure in predicting left atrial pressure. J. Am. Coll. Cardiol. 2001, 37, 2025–2030. [Google Scholar] [CrossRef] [Green Version]
- Nagueh Sherif, F. Left Ventricular Diastolic Function. JACC Cardiovasc. Imaging 2020, 13, 228–244. [Google Scholar] [CrossRef]
- Park, J.H.; Marwick, T.H. Use and Limitations of E/e’ to Assess Left Ventricular Filling Pressure by Echocardiography. J Cardiovasc. Ultrasound 2011, 19, 169–173. [Google Scholar] [CrossRef] [Green Version]
- Mullens, W.; Borowski, A.G.; Curtin, R.J.; Thomas, J.D.; Tang, W.H. Tissue Doppler imaging in the estimation of intracardiac filling pressure in decompensated patients with advanced systolic heart failure. Circulation 2009, 119, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Masuyama, T.; Nagano, R.; Nariyama, K.; Lee, J.M.; Yamamoto, K.; Naito, J.; Mano, T.; Kondo, H.; Hori, M.; Kamada, T. Transthoracic Doppler echocardiographic measurements of pulmonary venous flow velocity patterns: Comparison with transesophageal measurements. J. Am. Soc. Echocardiogr. 1995, 8, 61–69. [Google Scholar] [CrossRef]
- Lambertz, H.; Schuhmacher, U.; Tries, H.P.; Stein, T. Improvement of pulmonary venous flow Doppler signal after intravenous injection of Levovist. J. Am. Soc. Echocardiogr. 1997, 10, 891–898. [Google Scholar] [CrossRef]
- Caiati, C.; Lepera, M.; Santoro, D.; Santis, A.D.; Piscopo, A.; Rizzo, C.; Santis, D.D.; Lagioia, R. Pulmonary Venous Flow as Assessed by Transesophageal Echocardiography Independently Predicts Mortality in Patients with Dilated Cardiomyopathy. A Thirteen Year Follow-up Study. J. Am. Coll. Cardiol. 2012, 59, A276. [Google Scholar] [CrossRef] [Green Version]
- Puri, S.; Baker, B.L.; Dutka, D.P.; Oakley, C.M.; Hughes, J.M.; Cleland, J.G. Reduced alveolar-capillary membrane diffusing capacity in chronic heart failure. Its pathophysiological relevance and relationship to exercise performance. Circulation 1995, 91, 2769–2774. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, M.J.; Green, H.J.; Cobb, F.R. Altered skeletal muscle metabolic response to exercise in chronic heart failure. Relation to skeletal muscle aerobic enzyme activity. Circulation 1991, 84, 1597–1607. [Google Scholar] [CrossRef] [Green Version]
- Arboretti Giancristofaro, R.; Salmaso, L. Model performance analysis and model validation in logistic regression. Statistica 2003, 63, 375–396. [Google Scholar]
Study Group Findings | ||
---|---|---|
Demographics | ||
Age (years) | 59 ± 12 | |
Sex | Male, n (%) | 92 (75.4) |
Female, n (%) | 30 (24.6%) | |
BMI | 26.61 ± 3.74 | |
Previous diseases | ||
Diabetes | Absent, n (%) | 79 (64.8) |
Present, n (%) | 43 (35.2) | |
DCM etiology | Nonischemic, n (%) | 76 (62.3) |
Ischemic, n (%) | 46 (37.7) | |
Renal insufficiency * | Absent, n (%) | 87 (32) |
Present, n (%) | 32 (27) | |
Blood tests | ||
Cholesterol (mg/dL) | 192.47 ± 42.29 | |
LDL (mg/dL) | 119.13 ± 32.40 | |
Na (meq/L) | 139.73 ± 3.96 | |
Cr (mg/dL) | 1.25 ± 0.35 | |
BUN (mg/dL) | 0.51 ± 0.23 | |
Hemoglobin (g/dL) | 13.70 ± 1.70 | |
Echocardiography | ||
LVEF (%) | 29 ± 7 | |
LV diastolic diameter (mm) | 65 ± 7 | |
LV systolic diameter (mm) | 56 ± 8 | |
CPX | ||
Peak VO2 (mg/kg/min) | 18.17 ± 6.13 | |
HR (b/min) | 78.71 ± 13.00 | |
NYHA class | 1.00, n (%) | 22 (18.8%) |
2.00, n (%) | 37 (31.6%) | |
3.00, n (%) | 47 (40.2%) | |
4.00, n (%) | 11 (9.4%) | |
WEBER class | A, n (%) | 29 (24%) |
B, n (%) | 29 (24%) | |
C, n (%) | 30 (25%) | |
D, n (%) | 31 (26%) |
LV Filling Pressure Categories by Doppler | |
---|---|
Normal LV FP, n (%) | 62 (51%) |
● E/A < 1 and Arev-A ≤ 0, n (%) | 39 (32.8%) |
● E/A ≥ 1 and < 2 and Arev-A ≤ 0 and SF > 55, n (%) | 9 (7.6%) |
● SF > 55% with E/A fusion, n (%) | 14 (11.8%) |
High LV TDFP, n (%) | 20 (16%) |
● E/A < 1 with Arev-A > 0, n (%) | 17 (14%) |
● E/A ≥ 1 and < 2 and Arev-A > 0 and SF > 55, n (%) | 3 (2.5%) |
High Pre-a FP, n (%) | 40 (32.7%) |
● SF < 55% with E/A > 2, n (%) | 18 (15.1%) |
● SF > 55% with E/A > 2, n (%) | 2 (1.7%) |
● SF < 55% with E/A fusion, n (%) | 7 (5.9%) |
● E/A ≥ 1 and <2 and Arev-A > 0 and SF < 55, n (%) | 13 (10.1%) |
Variables | Group 1 | Group 2 | |||
---|---|---|---|---|---|
VO2 Max > 14 mL/kg/min (n = 78) | VO2 Max ≤ 14 mL/kg/min (n = 41) | p | OR (95% CI) | ||
Demographics and vital signs | |||||
Age (years) | 55 ± 10 | 66 ± 9 | <0.001 | − | |
Sex, n (%) | Male | 66 (85.0) | 23 (56.0) | 1 | |
Female | 12 (15.0) | 18 (44.0) | 4.3 (1.8–0) | ||
BMI | 26.09 ± 3.45 | 27.79 ± 4.13 | 0.03 | − | |
SBP (mm Hg) | 117.24 ± 11.89 | 117.88 ± 14.18 | ns | − | |
DBP (mm Hg) | 73.27 ± 7.42 | 74.73 ± 7.99 | ns | − | |
HR (bpm) | 79 ± 16.72 | 82.63 ± 14.45 | ns | − | |
Max VO2 | 20.24 ± 5.34 | 11.31 ± 2.51 | <0.001 | ||
Risk factors | |||||
DCM etiology, n (%) | Nonischemic | 51 (65.0) | 24 (58.0) | ns | 1 |
Ischemic | 27 (35.0) | 17 (42.0) | − | 1.3 (0.6–2.9) | |
Diabetes, n (%) | − | 59 (75) | 19 (46%) | 0.03 | 1 |
+ | 19 (24%) | 22 (54%) | − | 3.6 (1.6–8.0) | |
Echocardiography | |||||
EDD (mm) | 65 ± 7 | 66 ± 7 | ns | − | |
ESD (mm) | 55 ± 8 | 57 ± 9 | ns | − | |
EF (%) | 30 ± 6 | 25 ± 6 | <0.001 | − | |
IVCc (%) | 36.6 ± 13.2 | 23.3 ± 14.3 | 0.012 | − | |
Mitral regurgitation (jet area, cm2) | 18 ± 7 | 17 ± 8 | ns | − | |
Mitral regurgitation (jet area/LA area, %) | 34.6 ± 15 | 45.4 ± 18 | 0.004 | ||
E/A fusion, n (%) | − | 66 (85.0) | 32 (78.0) | ns | 1 |
+ | 12 (15.0) | 9 (22.0) | 1.5(0.6–2.5) | ||
E/A | 1.14 ± 0.86 | 1.55 ± 0.91 | 0.035 | − | |
EDT (s) | 0.182 ± 0.08 | 0.148 ± 0.041 | 0.02 | − | |
S Fract PV | 63.81 ± 16.44 | 52.96 ± 18.12 | 0.001 | − | |
S/D PV | 1.32 ± 0.67 | 0.99 ± 0.65 | <0.011 | − | |
Ar PV-A (ms) | −8.64 ± 55.96 | 0.41 ± 67.62 | ns | − | |
Blood tests | |||||
Cr (mg/dL) | 1.17 ± 0.25 | 1.40 ± 0.46 | 0.001 | − | |
CrCl (mL/min) | 69.83 ± 17.28 | 52.38 ± 18.00 | <0.001 | − | |
BUN (mg/dL) | 0.45 ± 0.14 | 0.65 ± 0.31 | <0.001 | − | |
Hb (g/dL) | 14.00 ± 1.32 | 12.97 ± 2.10 | 0.002 | − | |
Na (mEq/L) | 140.37 ± 3.58 | 138.60 ± 4.54 | 0.02 | − | |
Drugs | |||||
ACEi, n (%) | − | 12 (15.0) | 11 (27.0) | ns | 1 |
+ | 66 (85.0) | 29 (71.0) | − | 0.4 (0.1–1.2) | |
Diuretics, n (%) | − | 17 (22.0) | 1 (2.0) | 0.009 | 1 |
+ | 61 (78.0) | 39 (95.0) | − | 10 (1.4–84) | |
Digitalis, n (%) | − | 34 (44.0) | 8 (20.0) | 0.016 | 1 |
+ | 44 (56.0) | 32 (78.0) | − | 3.1 (1.3–7.6) | |
Nitrates, n (%) | − | 52 (67.0) | 24 (59.0) | ns | 1 |
+ | 26 (33.0) | 16 (39.0) | − | 1.3 (0.6–2.9) | |
BB, n (%) | − | 58 (84) | 34 (87) | ns | 1 |
+ | 11 (16) | 5 (13) | 0.8 (0.2–2.4) |
Doppler Parameters | Sample Size | t-Test | Significance (Two-Tailed) | Mean Diff | 95% CI of the | Cohen’s d |
---|---|---|---|---|---|---|
Lower/Upper Difference | (Effect Size) | |||||
S Fract (%) | 119 | 3.30 | 0.001 | 10.84 | 4.33/17.35 | 0.62 |
E DT (s) | 98 | 2.85 | 0.005 | 0.034 | 0.0105/0.058 | 0.55 |
E/A ratio | 99 | 2.13 | 0.035 | −0.404 | −0.780/−0.28 | 0.45 |
S/D ratio | 119 | 2.58 | 0.011 | 0.329 | 0.076/0.582 | 0.50 |
A rev–A dur (ms) | 98 | 0.700 | 0.486 | −9.0 | −34.68/16.60 | 0.14 |
A rev–A dur (ms) | 98 | 0.700 | 0.486 | −9.0 | −34.68/16.60 | 0.14 |
Variables | B | Wald | df | p | Odds Ratio | 95% CI for OR (Lower/Upper) | |
---|---|---|---|---|---|---|---|
Age ≤ 54 (reference category) | 4.569 | 2 | 0.102 | ||||
Age > 54 and ≤62 years | 0.71 | 0.822 | 1 | 0.365 | 2.051 | 0.434 | 9.690 |
Age > 62 years | 1.71 | 4.558 | 1 | 0.033 | 5.531 | 1.151 | 26.593 |
Gender (reference category = male) | 1.96 | 8.227 | 1 | 0.004 | 7.161 | 1.865 | 27.492 |
BMI ≤ 24 (reference category) | 5.512 | 2 | 0.064 | ||||
BMI > 24 and ≤28 | 0.51 | 0.407 | 1 | 0.523 | 1.665 | 0.348 | 7.975 |
BMI > 28 | 1.77 | 4.776 | 1 | 0.029 | 5.881 | 1.201 | 28.806 |
LVEF (reference category > 25%) | 0.83 | 1.775 | 1 | 1.183 | 2.296 | 0.676 | 7.793 |
Diastolic dysfunction (reference category, no diastolic dysfunction) | 6.706 | 2 | 0.035 | ||||
Diastolic dysfunction (telediastolic restriction) | −0.18 | 0.030 | 1 | 0.862 | 0.829 | 0.099 | 6.906 |
Diastolic dysfunction (diastolic restriction) | 1.59 | 5.234 | 1 | 0.022 | 4.934 | 1.257 | 19.366 |
CrCl by C.G. (reference category > 52.2 mL/m) | 2.00 | 0.240 | 1 | 0.007 | 7.394 | 1.722 | 31.756 |
Constant | −4.68 | 16.540 | 1 | 0.000 | 0.009 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caiati, C.; Argentiero, A.; Forleo, C.; Favale, S.; Lepera, M.E. Predictors of Exercise Capacity in Dilated Cardiomyopathy with Focus on Pulmonary Venous Flow Recorded with Transesophageal Eco-Doppler. J. Clin. Med. 2021, 10, 5954. https://doi.org/10.3390/jcm10245954
Caiati C, Argentiero A, Forleo C, Favale S, Lepera ME. Predictors of Exercise Capacity in Dilated Cardiomyopathy with Focus on Pulmonary Venous Flow Recorded with Transesophageal Eco-Doppler. Journal of Clinical Medicine. 2021; 10(24):5954. https://doi.org/10.3390/jcm10245954
Chicago/Turabian StyleCaiati, Carlo, Adriana Argentiero, Cinzia Forleo, Stefano Favale, and Mario Erminio Lepera. 2021. "Predictors of Exercise Capacity in Dilated Cardiomyopathy with Focus on Pulmonary Venous Flow Recorded with Transesophageal Eco-Doppler" Journal of Clinical Medicine 10, no. 24: 5954. https://doi.org/10.3390/jcm10245954
APA StyleCaiati, C., Argentiero, A., Forleo, C., Favale, S., & Lepera, M. E. (2021). Predictors of Exercise Capacity in Dilated Cardiomyopathy with Focus on Pulmonary Venous Flow Recorded with Transesophageal Eco-Doppler. Journal of Clinical Medicine, 10(24), 5954. https://doi.org/10.3390/jcm10245954